中国地质科学院地质力学研究所
中国地质学会
主办

东构造结那木拉断裂带上新世以来强烈活动的年代学证据

涂继耀, 季建清, 钟大赉, 孙东霞, 周晶. 2021. 东构造结那木拉断裂带上新世以来强烈活动的年代学证据. 地质力学学报, 27(4): 679-690. doi: 10.12090/j.issn.1006-6616.2021.27.04.056
引用本文: 涂继耀, 季建清, 钟大赉, 孙东霞, 周晶. 2021. 东构造结那木拉断裂带上新世以来强烈活动的年代学证据. 地质力学学报, 27(4): 679-690. doi: 10.12090/j.issn.1006-6616.2021.27.04.056
TU Jiyao, JI Jianqing, ZHONG Dalai, SUN Dongxia, ZHOU Jing. 2021. The strong activities of the Namula fault zone in the eastern Himalayan syntaxis since Pliocene, constraints from thermochronological data. Journal of Geomechanics, 27(4): 679-690. doi: 10.12090/j.issn.1006-6616.2021.27.04.056
Citation: TU Jiyao, JI Jianqing, ZHONG Dalai, SUN Dongxia, ZHOU Jing. 2021. The strong activities of the Namula fault zone in the eastern Himalayan syntaxis since Pliocene, constraints from thermochronological data. Journal of Geomechanics, 27(4): 679-690. doi: 10.12090/j.issn.1006-6616.2021.27.04.056

东构造结那木拉断裂带上新世以来强烈活动的年代学证据

  • 基金项目:
    国家自然科学基金项目(41603055);中国地震局地球物理研究所基本科研业务费专项(DQJB20X10)
详细信息
    作者简介: 涂继耀(1988-), 男, 助理研究员, 从事构造地质学与同位素年代学研究。E-mail: 406962923@qq.com
  • 中图分类号: P546

The strong activities of the Namula fault zone in the eastern Himalayan syntaxis since Pliocene, constraints from thermochronological data

  • Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant No.41603055) and the Special Fund of the Institute of Geophysics, China Earthquake Administration (Grant No.DQJB20X10)
  • 为揭示东喜马拉雅构造结那木拉断裂带上新世以来强烈活动特征,对采集自那木拉断裂带的三件基岩样品进行黑云母40Ar/39Ar、磷灰石裂变径迹两种热年代学方法测年;并利用"Pecube"软件对测得年龄数据及断裂带两侧已发表年龄数据进行定量模拟计算。测试结果显示黑云母40Ar/39Ar年龄范围为4.44±0.71 Ma~3.45±0.24 Ma,磷灰石裂变径迹年龄范围为3.7±0.4 Ma~1.8±0.2 Ma。年龄数据及其模拟计算结果表明,约3 Ma以前那木拉断裂带南侧地壳隆升最快,隆升速率约2.5 km/Ma,断裂带以正断层运动特征为主;约3 Ma以来那木拉断裂带北侧地壳隆升最快,约为1.3 km/Ma,断裂带以逆断层运动特征为主。那木拉断裂带运动特征变化可能与约8 Ma以来东喜马拉雅构造结快速地壳隆升剥露区域由南向北逐渐迁移有关。

  • 加载中
  • 图 1  东喜马拉雅构造结大地构造位置及构造地质简图

    Figure 1. 

    图 2  那木拉断裂带区域数字地貌及样品位置图

    Figure 2. 

    图 3  黑云母40Ar/39Ar坪年龄图

    Figure 3. 

    图 4  那木拉断裂带不同区域热史演化曲线图

    Figure 4. 

    图 5  那木拉断裂带热年代学年龄模拟解译结果

    Figure 5. 

    图 6  那木拉断裂带实测年龄与模拟年龄对比图

    Figure 6. 

    图 7  那木拉断裂带演化模式图

    Figure 7. 

    表 1  样品信息及年龄结果

    Table 1.  Sample information and chronology data

    样品编号 高程/m 经度E/(°) 纬度N/(°) 岩性 黑云母40Ar/39Ar测试结果
    坪年龄/Ma 误差(2σ) MSWD
    11DXG-13 4991 94.981 29.551 片麻岩 3.45 0.24 0.65
    11DXG-15 4626 94.975 29.553 片麻岩 4.44 0.71 0.11
    11DXG-16 4458 94.971 29.554 片麻岩 4.19 0.44 0.3
    样品编号 磷灰石裂变径迹测试结果
    测试颗粒 ρs (×105 cm-2)
    (Ns)
    ρi (×105 cm-2)
    (Ni)
    ρd (×105 cm-2)
    (Nd)
    Pχ2/% 中值年龄/Ma 误差(1σ)
    11DXG-13 34 0.266(93) 32.80(11455) 14.18(8264) 99.96 2.3 0.3
    11DXG-15 53 0.286(149) 19.82(10326) 14.00(8264) 99.64 3.7 0.4
    11DXG-16 65 0.367(314) 56.02(47891) 13.83(8264) 99.57 1.8 0.2
    ρs为自发径迹密度,ρi为诱发径迹密度,ρd为标准径迹密度,Ns为自发径迹数,Ni为诱发径迹数,Nd为标准径迹数,Pχ2为检验概率;Zeta=393.5±27.5
    下载: 导出CSV

    表 2  那木拉断裂带区域热年代学年龄统计结果

    Table 2.  Thermochronology data from the Namula fault zone area

    样品编号 经度(E) 纬度(N) 高程/m 黑云母40Ar/39Ar年龄/Ma 磷灰石裂变径迹年龄/Ma 数据来源
    坪年龄 2σ误差 中值年龄 1σ误差
    DXL-01 94.948° 29.488° 4233 4.5 0.9 3.6 0.4 Gong et al., 2015Yu et al., 2011
    DXL-02 94.956° 29.490° 4073 3.5 0.2 3.9 0.6 Gong et al., 2015Yu et al., 2011
    DXL-03 94.956° 29.486° 4038 3.1 0.2 4.6 0.6 Gong et al., 2015Yu et al., 2011
    11DXG-16 94.971° 29.554° 4458 4.19 0.44 1.8 0.2 文中
    11DXG-15 94.985° 29.553° 4626 4.44 0.71 3.7 0.4 文中
    11DXG-13 94.981° 29.551° 4991 3.45 0.24 2.3 0.3 文中
    NB-14 94.986° 29.578° 4100 4.75 0.71 1.2 0.2 Tu et al., 2015
    NB-13 94.996° 29.580° 4400 3.96 0.32 1.5 0.1 Tu et al., 2015
    NB-12 94.999° 29.583° 4610 3.77 0.55 1.8 0.2 Tu et al., 2015
    下载: 导出CSV
  • ALLÉGRE C J, COURTILLOT V, TAPPONNIER P, et al., 1984. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 307(5946): 17-22. doi: 10.1038/307017a0

    BAI Y J, NI H Y, GE H, 2019. Advances in research on the geohazard effect of active faults on the southeastern margin of the tibetan plateau[J]. Journal of Geomechanics, 25(6): 1116-1128. (in Chinese with English abstract)

    BAKSI A K, ARCHIBALD D A, FARRAR E, 1996. Intercalibration of 40Ar/39Ar dating standards[J]. Chemical Geology, 129(3-4): 307-324. doi: 10.1016/0009-2541(95)00154-9

    BOOTH A L, ZEITLER P K, KIDD W S F, et al., 2004. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area[J]. American Journal of Science, 304(10): 889-929. doi: 10.2475/ajs.304.10.889

    BRACCIALI L, PARRISH R R, NAJMAN Y, et al., 2016. Plio-Pleistocene exhumation of the eastern Himalayan syntaxis and its domal 'pop-up'[J]. Earth-Science Reviews, 160: 350-385. doi: 10.1016/j.earscirev.2016.07.010

    BRAUN J, 2003. Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography[J]. Computers & Geosciences, 29(6): 787-794.

    BRAUN J, VAN DER BEEK P, VALLA P, et al., 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE[J]. Tectonophysics, 524-525: 1-28. doi: 10.1016/j.tecto.2011.12.035

    BURG J P, NIEVERGELT P, OBERLI F, et al., 1998. The Namche Barwa syntaxis: evidence for exhumation related to compressional crusta folding[J]. Journal of Asian Earth Sciences, 16(2-3): 239-252. doi: 10.1016/S0743-9547(98)00002-6

    CARSLAW H S, JAEGER J C, 1959. Conduction of heat in solids[M]. 2nd ed. Oxford: Oxford University Press.

    CHUNG S L, CHU M F, ZHANG Y Q, et al., 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 68(3-4): 173-196.

    CRAW D, KOONS P O, ZEITLER P K, et al., 2005. Fluid evolution and thermal structure in the rapidly exhuming gneiss complex of Namche Barwa-Gyala Peri, eastern Himalayan syntaxis[J]. Journal of Metamorphic Geology, 23(9): 829-845. http://dx.doi.org/10.1111/j.1525-1314.2005.00612.x

    DING L, ZHONG D L, 1999. High pressure granulite facies metamorphism characteristics and tectonic geological significance in the Namche Barwa Region Tibet[J]. Science in China (Series D), 29(5): 385-397. (in Chinese)

    DING L, ZHONG D L, YIN A, et al., 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa)[J]. Earth and Planetary Science Letters, 192(3): 423-438. doi: 10.1016/S0012-821X(01)00463-0

    GONG J F, JI J Q, ZHOU J, et al., 2015. Late Miocene thermal evolution of the eastern Himalayan syntaxis as constrained by biotite 40Ar/39Ar thermochronology[J]. The Journal of Geology, 123(4): 369-384. doi: 10.1086/682951

    GOVIN G, VAN DER BEEK P, NAJMAN Y, et al., 2020. Early onset and late acceleration of rapid exhumation in the Namche Barwa syntaxis, eastern Himalaya[J]. Geology, 48(12): 1139-1143. doi: 10.1130/G47720.1

    HERMAN F, BRAUN J, DUNLAP W J, 2007. Tectonomorphic scenarios in the Southern alps of New Zealand[J]. Journal of Geophysical Research: Solid Earth, 112(B4): B04201. http://onlinelibrary.wiley.com/doi/10.1029/2004JB003472/full

    HERMAN F, COPELAND P, AVOUAC J P, et al., 2010. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography[J]. Journal of Geophysical Research: Solid Earth, 115(B6): B06407. http://www.sciencedirect.com/science/article/pii/S0040195110001733

    HURFORD A J, GREEN P F, 1983. The zeta age calibration of fission-track dating[J]. Chemical Geology, 41: 285-317. doi: 10.1016/S0009-2541(83)80026-6

    HURFORD A J, 1990. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology[J]. Chemical Geology, 80(2): 171-178. http://www.sciencedirect.com/science/article/pii/0168962290900258

    KING G E, HERMAN F, GURALNIK B, 2016. Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry[J]. Science, 353(6301): 800-804. doi: 10.1126/science.aaf2637

    LAO X, 1995. On the formation of Yarlung Zangbo river fault zone[J]. Journal of Geomechanics, 1(1): 53-59. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX501.009.htm

    LEE H Y, CHUNG S L, WANG J R, et al., 2003. Miocene Jiali faulting and its implications for Tibetan tectonic evolution[J]. Earth and Planetary Science Letters, 205(3-4): 185-194. doi: 10.1016/S0012-821X(02)01040-3

    LIU Y, ZHONG D, 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis[J]. Journal of Metamorphic Geology, 15(4): 451-466. doi: 10.1111/j.1525-1314.1997.00033.x

    LIU Y, MASSONNE H J, SIEBEL W, et al., 2006. Geological aspects of the eastern Himalayan syntaxis: New constraints from structural, petrologic and zircon SHRIMP data[M]//SAKLANI P S. Himalaya: geological aspects, Vol. 4. New Delhi: Satish Serial Publishing House: 325-388.

    STEIGER R H, JÄGER E, 1977. Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology[J]. Earth and Planetary Science Letters, 36(3): 359-362. doi: 10.1016/0012-821X(77)90060-7

    TU J Y, JI J Q, SUN D X, et al., 2015. Thermal structure, rock exhumation, and glacial erosion of the Namche Barwa Peak, constraints from thermochronological data[J]. Journal of Asian Earth Sciences, 105: 223-233. doi: 10.1016/j.jseaes.2015.03.035

    WEN D R, LIU D Y, CHUNG S L, et al., 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 252(3-4): 191-201. doi: 10.1016/j.chemgeo.2008.03.003

    XU Z Q, JI S C, CAI Z H, et al., 2012. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: Constraints from deformation, fabrics and geochronology[J]. Gondwana Research, 21(1): 19-36. doi: 10.1016/j.gr.2011.06.010

    YANG R, HERMAN F, FELLIN M G, et al., 2018. Exhumation and topographic evolution of the Namche Barwa Syntaxis, eastern Himalaya[J]. Tectonophysics, 722: 43-52. doi: 10.1016/j.tecto.2017.10.026

    YIN A, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211

    YIN A, 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 76(1-2): 1-131. doi: 10.1016/j.earscirev.2005.05.004

    YU X J, JI J Q, GONG J F, et al., 2011. Evidences of rapid erosion driven by climate in the Yarlung Zangbo (Tsangpo) Great Canyon, the eastern Himalayan syntaxis[J]. Chinese Science Bulletin, 56(11): 1123-1130. doi: 10.1007/s11434-011-4419-x

    ZEITLER P K, MELTZER A S, BROWN L, et al., 2014. Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet[M]//NIE J S, HORTON B K, HOKE G D. Toward an improved understanding of uplift mechanisms and the elevation history of the Tibetan Plateau. Boulder, Colorado: The Geological Society of America, 507: 23-58.

    ZHANG J J, JI J Q, ZHONG D L, et al., 2004. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process[J]. Science in China Series D: Earth Sciences, 47(2): 138-150. doi: 10.1360/02yd0042

    ZHANG J J, CHEN L, WANG J C, et al, 2018. Study of disaster-inducing geological conditions of collapse and landslide along Lulang-Tongmai in SE Tibet[J]. Journal of Geomechanics, 24(4): 474-481. (in Chinese with English abstract)

    ZHANG Z M, DONG X, SANTOSH M, et al., 2012. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: constraints on the origin and evolution of the north-eastern margin of the Indian Craton[J]. Gondwana Research, 21(1): 123-137. doi: 10.1016/j.gr.2011.02.002

    ZHANG Z G, LIU Y H, WANG T W, et al., 1992. Geology of the Namche Barwa region[M]. Beijing: Chinese Science Press. (in Chinese)

    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905007.htm

    ZHONG D L, DING L, 1995. High pressure granulite found in the Namche Barwa region Tibet[J]. Chinese Science Bulletin, 40(14): 1343. (in Chinese) doi: 10.1360/csb1995-40-14-1343

    白永健, 倪化勇, 葛华, 2019. 青藏高原东南缘活动断裂地质灾害效应研究现状[J]. 地质力学学报, 25(6): 1116-1128. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190613&journal_id=dzlxxb

    丁林, 钟大赉, 1999. 西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义[J]. 中国科学(D辑: 地球科学), 29(5): 385-397. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199905000.htm

    劳雄, 1995. 雅鲁藏布江断裂带的形成[J]. 地质力学学报, 1(1): 53-59. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19950108&journal_id=dzlxxb

    张佳佳, 陈龙, 王军朝, 等, 2018. 藏东南鲁朗-通麦崩塌滑坡孕灾地质背景特征研究[J]. 地质力学学报, 24(4): 474-481. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180404&journal_id=dzlxxb

    章振根, 刘玉海, 王天武, 等, 1992. 南迦巴瓦峰地区地质[M]. 北京: 科学出版社.

    郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190506&journal_id=dzlxxb

    钟大赉, 丁林, 1995. 西藏南迦巴瓦峰地区发现高压麻粒岩[J]. 科学通报, 40(14): 1343. doi: 10.3321/j.issn:0023-074X.1995.14.029

  • 加载中

(7)

(2)

计量
  • 文章访问数:  2396
  • PDF下载数:  149
  • 施引文献:  0
出版历程
收稿日期:  2021-05-11
修回日期:  2021-06-25
刊出日期:  2021-08-28

目录