中国地质科学院地质力学研究所
中国地质学会
主办

羌塘地块中西部布木错走滑断裂系的第四纪晚期地表变形特征与构造意义

韩帅, 吴中海, 王世锋, 高扬, 张圣听, 陆诗铭, 张铭杲. 2024. 羌塘地块中西部布木错走滑断裂系的第四纪晚期地表变形特征与构造意义. 地质力学学报, 30(2): 298-313. doi: 10.12090/j.issn.1006-6616.2023086
引用本文: 韩帅, 吴中海, 王世锋, 高扬, 张圣听, 陆诗铭, 张铭杲. 2024. 羌塘地块中西部布木错走滑断裂系的第四纪晚期地表变形特征与构造意义. 地质力学学报, 30(2): 298-313. doi: 10.12090/j.issn.1006-6616.2023086
HAN Shuai, WU Zhonghai, WANG Shifeng, GAO Yang, ZHANG Shengting, LU Shiming, ZHANG Minggao. 2024. Late Quaternary surface deformation and tectonic implications of the Bue Co strike-slip fault system in central-western Qiangtang block. Journal of Geomechanics, 30(2): 298-313. doi: 10.12090/j.issn.1006-6616.2023086
Citation: HAN Shuai, WU Zhonghai, WANG Shifeng, GAO Yang, ZHANG Shengting, LU Shiming, ZHANG Minggao. 2024. Late Quaternary surface deformation and tectonic implications of the Bue Co strike-slip fault system in central-western Qiangtang block. Journal of Geomechanics, 30(2): 298-313. doi: 10.12090/j.issn.1006-6616.2023086

羌塘地块中西部布木错走滑断裂系的第四纪晚期地表变形特征与构造意义

  • 基金项目:
    国家自然科学基金项目(42202259);中国地质科学院地质力学研究所中央财政科研项目结余经费新开项目(所科研56);中国地质调查局地质调查项目(DD20221644)
详细信息
    作者简介: 韩帅(1989—),男,助理研究员,主要从事构造地质学和活动构造研究。Email: 814224279@qq.com
    通讯作者: 吴中海(1974—),男,博士,研究员,主要从事活动构造和第四纪地质研究。Email: 715516189@qq.com
  • 中图分类号: P54;P597;P59

Late Quaternary surface deformation and tectonic implications of the Bue Co strike-slip fault system in central-western Qiangtang block

  • Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant No.42202259), the Fundamental Research Fund of the Institute of Geomechanics, Chinese Academy of Geological Sciences (Grant No.56), and the Geological Survey Project of the China Geological Survey (Grant No.DD20221644)
More Information
  • 班公-怒江缝合带(班怒带)是青藏高原内部羌塘地块与拉萨地块之间的重要边界,研究该边界带上共轭走滑断裂第四纪晚期的几何结构与变形特性对于理解高原内部在印度-欧亚板块碰撞作用下形成的空间差异响应和构造模型具有重要意义。位于班怒带西段的布木错断裂系包括北东向布木错断裂和北西向纳屋错断裂,通过遥感解译和野外地质调查,明确了这两条断裂在第四纪晚期的构造特征和最新的地表变形特征。结果显示,两条断裂自第四纪晚期以来的活动特征明显,并且近期都经历过一次大地震,产生了地表破裂。据此推测班怒带西段北西、北东两组断裂的最新活动强度接近,羌塘地块南部边界现今变形可能受控于两组断裂的共同影响,并已延伸至块体内部。以上发现进一步证明,青藏高原内部物质受中—下地壳流的驱动作用,通过走滑断层和正断层持续向北扩展。

  • 加载中
  • 图 1  研究区区域地质图

    Figure 1. 

    图 2  布木错断裂带的展布特征及不同部位跨断裂带高程剖面图

    Figure 2. 

    图 3  纳屋错断裂带展布特征及不同部位跨断裂带高程剖面图

    Figure 3. 

    图 4  布木错断裂带和地表破裂带典型遥感影像图

    Figure 4. 

    图 5  布木错断裂带地表破裂带构造地貌特征(位置见图 4b)

    Figure 5. 

    图 6  布木错地表破裂带无人机测图

    Figure 6. 

    图 7  纳屋错断裂带和地表破裂带典型遥感影像图

    Figure 7. 

    图 8  纳屋错断裂带地表破裂带野外构造地貌特征(位置见图 7a)

    Figure 8. 

    图 9  纳屋错地表破裂带无人机测图

    Figure 9. 

    表 1  布木错断裂系位移量分布表

    Table 1.  Statistic table of displacement in the Bue Co fault system

    断裂名称 经度 纬度 断错标志 位移量/m 误差/m
    布木错断裂 81°29′55.14″ 33°15′50.10″ 冲沟左旋 11.0 0.5
    81°29′52.02″ 33°15′40.44″ 冲沟左旋 3.7 0.2
    81°29′35.71″ 33°14′59.25″ 沟壁左旋 43.0 3.0
    81°29′51.82″ 33°15′40.52″ 小沟左旋 4.2 0.3
    81°29′54.82″ 33°15′50.25″ 小沟左旋 4.5 0.4
    81°29′54.58″ 33°15′50.25″ 小沟左旋 6.4 0.6
    纳屋错断裂 81°43′41.52″ 33°13′16.02″ 深沟右旋 7.3 1.2
    81°43′31.62″ 33°13′20.10″ 小溪右旋 4.5 0.5
    81°43′32.78″ 33°13′19.41″ 小溪右旋 2.7 0.3
    81°43′33.49″ 33°13′19.10″ 冲沟右旋 13.7 1.1
    81°43′40.51″ 33°13′16.28″ 小溪右旋 8.3 2.0
    81°43′41.61″ 33°13′15.70″ 沟壁右旋 10.3 2.4
    81°43′44.41″ 33°13′14.21″ 沟壁右旋 27.0 3.0
    81°43′45.32″ 33°13′13.85″ 沟壁右旋 15.0 1.5
    81°43′45.66″ 33°13′13.58″ 深沟右旋 14.0 1.5
    下载: 导出CSV
  • ARMIJO R, TAPPONNIER P, MERCIER J L, et al., 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872.

    ARMIJO R, TAPPONNIER P, HAN T L, 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838.

    BAI M K, CHEVALIER M L, PAN J W, et al., 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications[J]. Earth and Planetary Science Letters, 485: 19-31.

    CHEN Q Z, FREYMUELLER J T, WANG Q, et al., 2004. A deforming block model for the present-day tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 109(B1): B01403, doi: 10.1029/2002JB002151.

    CHEVALIER M L, TAPPONNIER P, VAN DER WOERD J, et al., 2012. Spatially constant slip rate along the southern segment of the Karakorum fault since 200ka[J]. Tectonophysics, 530-531: 152-179.

    CHEVALIER M L, VAN DER WOERD J, TAPPONNIER P, et al., 2016. Late Quaternary slip-rate along the central Bangong-Chaxikang segment of the Karakorum fault, western Tibet[J]. GSA Bulletin, 128(1-2): 284-314.

    CLARK M K, ROYDEN L H, 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2

    ELLIOTT J R, WALTERS R J, ENGLAND P C, et al., 2010. Extension on the Tibetan plateau: recent normal faulting measured by InSAR and body wave seismology[J]. Geophysical Journal International, 183(2): 503-535. doi: 10.1111/j.1365-246X.2010.04754.x

    ENGLAND P, HOUSEMAN G, 1989. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. doi: 10.1029/JB094iB12p17561

    GAN W J, ZHANG P Z, SHEN Z K, et al., 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8): B08416.

    GAO Y P, LIU J, HAN L F, et al., 2023. Discussion on the magnitude or intensity limitation of paleoearthquake events[J]. Journal of Geomechanics, 29(5): 704-719. (in Chinese with English abstract)

    GARTHWAITE M C, Wang H and Wright T J, 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR. Journal of Geophysical Research: Solid Earth 118: 5071-5083.

    HAN M M, CHEN L C, ZENG D, et al., 2022. Discussion on the latest surface ruptures near the Zhonggu village along the Selaha segment of the Xianshuihe fault zone[J]. Journal of Geomechanics, 28(6): 969-980. (in Chinese with English abstract)

    HAN S, LI H B, PAN J W, et al., 2019. Co-seismic surface ruptures in Qiangtang Terrane: Insight into Late Cenozoic deformation of central Tibet[J]. Tectonophysics, 750: 359-378.

    HARRISON T M, COPELAND P, KIDD W S F, et al., 1992. Raising Tibet[J]. Science, 255(5052): 1663-1670.

    LIU F C, PAN J W, LI H B, et al., 2022. Characteristics of Quaternary Activities along the Riganpei Co Fault and Seismogenic Structure of the July 23, 2020 Mw6.4 Nima Earthquake, Central Tibet [J]. Acta Geoscientica Sinica, 43(2): 173-188. (in Chinese with English abstract)

    MÉRIAUX S A, TAPPONNIER P, RYERSON F J, et al., 2005. The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate[J]. Journal of Geophysical Research: Solid Earth, 110(B4): B04404.

    MEADE B J L, 2007. Present-day kinematics at the India-Asia collision zone[J]. Geology, 35(1): 81-84.

    MERCIER J L, ARMIJO R, TAPPONNIER P, et al., 1987. Change from late tertiary compression to quaternary extension in southern Tibet during the India-Asia Collision[J]. Tectonics, 6(3): 275-304.

    MOLNAR P, DAYEM K E, 2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength[J]. Geosphere, 6(4): 444-467.

    MOLNAR P, TAPPONNIER P, 1975. Cenozoic tectonics of Asia: Effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 189(4201): 419-426.

    MOLNAR P, TAPPONNIER P, 1978. Active tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375.

    PAN G T, DING J, YAO D S, et al., 2004. The Qinghai-Tibet Plateau and its adjacent areas geological map 1 ∶ 150 million[M]. Chengdu: Chengdu Cartographic Publishing House: 1-140 (in Chinese).

    RATSCHBACHER L, KRUMREI I, BLUMENWITZ M, et al., 2011. Rifting and strike-slip shear in central Tibet and the geometry, age and kinematics of upper crustal extension in Tibet[J]. Geological Society, London, Special Publications, 353(1): 127-163.

    SHI X H, KIRBY E, LU H J, et al., 2014. Holocene slip rate along the Gyaring Co Fault, central Tibet[J]. Geophysical Research Letters, 41(16): 5829-5837.

    STYRON R, TAYLOR M, SUNDELL K, 2015. Accelerated extension of Tibet linked to the northward underthrusting of Indian crust[J]. Nature Geoscience, 8(2): 131-134.

    SUNDELL K E, TAYLOR M H, STYRON R H, et al., 2013. Evidence for constriction and Pliocene acceleration of east-west extension in the North Lunggar rift region of west central Tibet[J]. Tectonics, 32(5): 1454-1479.

    TAPPONNIER P, MOLNAR P, 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature, 264(5584): 319-324.

    TAPPONNIER P, MOLNAR P, 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905-2930.

    TAPPONNIER P, RYERSON F J, VAN DER WOERD J, et al., 2001a. Long-term slip rates and characteristic slip: keys to active fault behaviour and earthquake hazard[J]. Comptes Rendus de l' Academie des Sciences-Series IIA-Earth and Planetary Science, 333(9): 483-494.

    TAPPONNIER P, XU Z Q, ROGER F, et al., 2001b. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677.

    TAYLOR M, YIN A, RYERSON F J, et al., 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 22(4): 1044.

    TAYLOR M, PELTZER G, 2006. Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 111(B12): B12402.

    TAYLOR M, YIN A, 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 5(3): 199-214.

    TAYLOR M H, KAPP P A, HORTON B K, 2011. Basin response to active extension and strike‐slip deformation in the hinterland of the Tibetan Plateau[M]//BUSBY C, AZOR A. Tectonics of sedimentary basins: recent advances. Oxford: Blackwell Publishing Ltd: 445-460.

    VAN DER WOERD J, RYERSON F J, TAPPONNIER P, et al., 1998. Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China)[J]. Geology, 26(26): 695-698.

    VAN DER WOERD J, RYERSON F J, TAPPONNIER P, et al., 2000. Uniform slip-rate along the Kunlun Fault: Implications for seismic behaviour and large-scale tectonics[J]. Geophysical Research Letters, 27(16): 2353-2356.

    WANG D, YIN G M, WANG X L, et al., 2016. OSL dating of the late Quaternary slip rate on the Gyaring Co Fault in central Tibet[J]. Geochronometria, 43(1): 162-173.

    WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the seismological Society of America, 84(4): 974-1002.

    WU Z H, ZHAO X T, WU Z H, et al., 2006. Quaternary geology and faulting in the Damxung-Yangbajain Basin, Southern Tibet[J]. Journal of Geomechanics, 12(3): 305-316. (in Chinese with English abstract)

    WU Z H, ZHANG X D, HAN S, et al., 2022. Quaternary faulting and deformation mechanism of the western Qiangtang block in northern Ngari, Tibet[J]. Acta Geologica Sinica, 96(11): 3760-3783. (in Chinese with English abstract)

    YANG P X, CHEN Z W, ZHANG J, et al., 2012. The tension-shear of Gyaring Co Fault and the implication for dynamic model in South-central Tibet[J]. Chinese Journal of Geophysics, 55(10): 3285-3295. (in Chinese with English abstract)

    YIN A, KAPP P A, MURPHY M A, et al., 1999. Significant late Neogene east-west extension in northern Tibet[J]. Geology, 27(9): 787-790.

    YIN A, 2000. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 105(B9): 21745-21759.

    YIN A, HARRISON T M, 2003. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280.

    YIN A, TAYLOR M H, 2011. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. GSA Bulletin, 123(9-10): 1798-1821.

    ZHANG J J, DING L, 2003. East-west extension in Tibetan plateau and its significance to tectonic evolution[J]. Chinese Journal of Geology, 38(2): 179-189. (in Chinese with English abstract)

    ZHANG J J, WANG J M, WANG X X, et al., 2013. A new model for the Himalayan orogeny[J]. Chinese Journal of Geology, 48(2): 362-383. (in Chinese with English abstract)

    ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812.

    ZHAO G M, WU Z H, LIU J, 2020. The types, characteristics and mechanism of seismic migration[J]. Journal of Geomechanics, 26(1): 13-32. (in Chinese with English abstract)

    高云鹏, 刘静, 韩龙飞, 等, 2023. 古地震事件震级或强度大小限定的讨论[J]. 地质力学学报, 29(5): 704-719. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2023034

    韩明明, 陈立春, 曾蒂, 等, 2022. 鲜水河断裂带色拉哈段中谷村一带的最新地表破裂讨论[J]. 地质力学学报, 28(6): 969-980. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.20222824

    刘富财, 潘家伟, 李海兵, 等, 2022. 青藏高原中部日干配错断裂第四纪活动特征及2020年7月23日西藏尼玛MW 6.4地震发震构造分析[J]. 地球学报, 43(2): 173-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202202004.htm

    潘桂棠, 丁俊, 姚东生, 等, 2004. 青藏高原及邻区地质图(1 ∶ 1500000)说明书[M]. 成都: 成都地图出版社: 1-140.

    吴中海, 赵希涛, 吴珍汉, 等, 2006. 西藏当雄-羊八井盆地的第四纪地质与断裂活动研究[J]. 地质力学学报, 12(3): 305-316. https://journal.geomech.ac.cn/article/id/3ec85626-b773-448f-a430-a308b533aadd

    吴中海, 张旭东, 韩帅, 等, 2022. 西藏阿里北部羌塘地块内部的第四纪活动断层及其变形机制[J]. 地质学报, 96(11): 3760-3783. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202211008.htm

    杨攀新, 陈正位, 张俊, 等, 2012. 西藏中南部格仁错断裂张剪性质及其区域动力学意义[J]. 地球物理学报, 55(10): 3285-3295. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201210012.htm

    张进江, 丁林, 2003. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 38(2): 179-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200302005.htm

    张进江, 王佳敏, 王晓先, 等, 2013. 喜马拉雅造山带造山模式探讨[J]. 地质科学, 48(2): 362-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201302006.htm

    赵根模, 吴中海, 刘杰, 2020. 地震迁移的类型, 特征及机制讨论[J]. 地质力学学报, 26(1): 13-32. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2020.26.01.002

  • 加载中

(9)

(1)

计量
  • 文章访问数:  910
  • PDF下载数:  59
  • 施引文献:  0
出版历程
收稿日期:  2023-05-30
修回日期:  2023-12-04
录用日期:  2023-12-04
网络出版日期:  2023-12-07
刊出日期:  2024-04-28

目录