中国地质科学院地质力学研究所
中国地质学会
主办

广义破裂活动准则

童亨茂, 张宏祥, 侯泉林, 陈正乐, 侯贵廷. 2024. 广义破裂活动准则. 地质力学学报, 30(1): 3-14. doi: 10.12090/j.issn.1006-6616.2023180
引用本文: 童亨茂, 张宏祥, 侯泉林, 陈正乐, 侯贵廷. 2024. 广义破裂活动准则. 地质力学学报, 30(1): 3-14. doi: 10.12090/j.issn.1006-6616.2023180
TONG Hengmao, ZHANG Hongxiang, HOU Quanlin, CHEN Zhengle, HOU Guiting. 2024. Generalized fracturing activation criteria. Journal of Geomechanics, 30(1): 3-14. doi: 10.12090/j.issn.1006-6616.2023180
Citation: TONG Hengmao, ZHANG Hongxiang, HOU Quanlin, CHEN Zhengle, HOU Guiting. 2024. Generalized fracturing activation criteria. Journal of Geomechanics, 30(1): 3-14. doi: 10.12090/j.issn.1006-6616.2023180

广义破裂活动准则

  • 基金项目: 国家自然科学基金项目(41272160,20772086);国家油气重大专项(2011zx05-006-02-01,2011zx5023-004-012)
详细信息
    作者简介: 童亨茂(1967—),男,博士,教授,主要从事盆地构造分析,构造物理模拟实验等方面的研究。Email:tonghm@cup.edu.cn
  • 中图分类号: P553

Generalized fracturing activation criteria

  • Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grants No. 41272160 and 20772086) and the National Oil and Gas Major Projects (Grants No. 2011zx05-006-02-01 and 2011zx5023-004-012).
  • 岩石破裂及其后续活动是最基本的构造变形方式,然而,经典的破裂准则(Coulomb-Mohr准则、Griffith准则和以Byerlee律为代表的滑动摩擦律)在实际应用中存在不同方面的局限。文章在经典破裂准则的基础上,从产生破裂(扩张破裂和剪切破裂)的物理本质出发,结合广义剪切活动准则和长期的研究实践,通过理论分析,提出了“广义破裂活动准则”。该准则用统一的无量纲因子(破裂活动趋势因子)来表达扩张破裂活动和剪切破裂活动,可以用来定量判断任意介质、在任意三轴应力状态下、任意方位界面(包括先存薄弱面和非薄弱面)发生破裂活动的可能性以及破裂的类型,把Coulomb-Mohr准则、Byerlee律和Griffith准则统一起来,将破裂(fracturing)扩展到破裂活动(fracturing activity)。该准则在与破裂活动相关的资源勘探开发(如页岩气、干热岩等)、灾害(如地震与滑坡等)预测和防治中具有广阔的应用前景。

  • 加载中
  • 图 1  Coulomb-Mohr准则与Griffith准则图解

    Figure 1. 

    图 2  界面的空间方位定义(以3个主应力为坐标轴)

    Figure 2. 

    图 3  Griffith应力状态下的摩尔空间图解

    Figure 3. 

    图 4  给定应力状态下摩尔空间中不同极点与破裂活动线的关系图解

    Figure 4. 

    图 5  含多个薄弱面地质体在流体压力不断增大过程中扩张活动演化的摩尔空间图解

    Figure 5. 

  • [1]

    ANDERSON E M, 1951. The dynamics of faultingand dyke formation with applications to Britain[M]. 2nd ed. Edinburgh: Oliver and Boyd.

    [2]

    BAILEY I W, BEN-ZION Y, 2009. Statistics of earthquake stress drops on a heterogeneous fault in an elastic half-space[J]. Bulletin of the Seismological Society of America, 99(3): 1786-1800. doi: 10.1785/0120080254

    [3]

    BOTT M H P, 1959. The mechanics of oblique slip faulting[J]. Geological Magazine, 96(2): 109-117. doi: 10.1017/S0016756800059987

    [4]

    BYERLEE J, 1978. Friction of rocks[J]. Pure and AppliedGeophysics, 116(4-5): 615-626.

    [5]

    CÉLÉRIER B, 2008. Seeking Anderson’s faulting in seismicity: a centennial celebration[J]. Reviews of Geophysics, 46(4): RG4001.

    [6]

    GRIFFITH A A, 1921. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal SocietyA: Mathematical, Physical and Engineering Sciences, 221(582-593): 163-198.

    [7]

    GUDMUNDSSON A, SIMMENES T H, LARSEN B, et al. , 2010. Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones[J]. Journal of Structural Geology, 32(11): 1643-1655. doi: 10.1016/j.jsg.2009.08.013

    [8]

    JAEGER J C, COOK N G W, 1979. Fundamentals of rock mechanics[M]. 3rd ed. London: Chapman and Hall.

    [9]

    MCKENZIE D P, 1969. The relation between fault plane solutions for earthquakes and the directions of the principal stresses[J]. Bulletin of the Seismological Society of America, 59(2): 591-601. doi: 10.1785/BSSA0590020591

    [10]

    MORLEY C K, GABDI S, SEUSUTTHIYAK, 2007. Fault superimposition and linkage resulting from stress changes during rifting: examples from 3D seismic data, Phitsanulok Basin, Thailand[J]. Journal of Structural Geology, 29(4): 646-663. doi: 10.1016/j.jsg.2006.11.005

    [11]

    MORRIS A, FERRILL D A, HENDERSON D B, 1996. Slip-tendency analysis and fault reactivation[J]. Geology, 24(3): 275-278. doi: 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2

    [12]

    TONG H M, MENG L J, CAI D S, et al. , 2009. Fault formation and evolution in rift basins: sandbox modeling and cognition[J]. Acta Geologica Sinica, 83(6): 759-774. (in Chinese with English abstract)

    [13]

    TONG H M, CAI D S, WU Y P, et al. , 2010. Activity criterion of pre-existing fabrics in non-homogeneous deformation domain[J]. Science China Earth Sciences, 53(8): 1115-1125. doi: 10.1007/s11430-010-3080-6

    [14]

    TONG H M, YIN A, 2011. Reactivation tendency analysis: a theory for predicting the temporal evolution of preexisting weakness under uniform stress state[J]. Tectonophysics, 503(3-4): 195-200. doi: 10.1016/j.tecto.2011.02.012

    [15]

    TONG H M, KOYI H, HUANG S, et al. , 2014. The effect of multiple pre-existing weaknesses on formation and evolution of faults in extended sandbox models[J]. Tectonophysics, 626: 197-212. doi: 10.1016/j.tecto.2014.04.046

    [16]

    TONG H M, WANG J J, ZHAO H T, et al. , 2014. Mohr space and its application to the activation prediction of pre-existing weakness[J]. Science China Earth Sciences, 57(7): 1595-1604. doi: 10.1007/s11430-014-4860-1

    [17]

    TONG H M, CHEN Z L, LIU R X, 2015. Generalized shear activation criterion[J]. Chinese Journal of Nature, 37(6): 441-447. (in Chinese with English abstract)

    [18]

    TONG H M, LIU Z P, ZHANG H X, et al. , 2021. Theory and method of temporary macrofracture plugging to prevent casing deformation in shale gas horizontal wells[J]. Natural Gas Industry, 41(5): 92-100. (in Chinese with English abstract)

    [19]

    TONG H M, ZHANG P, ZHANG H X, et al. , 2021. Geomechanical mechanisms and prevention countermeasures of casing deformation in shale gas horizontal wells[J]. Natural Gas Industry, 41(1): 189-197. (in Chinese with English abstract)

    [20]

    TWISS R J, MOORES E M, 1992. Structural geology[M]. San Francisco: W. H. Freeman & Co. : 532.

    [21]

    WALLACE R E, 1951. Geometry of shearing stress and relation to faulting[J]. The Journal of Geology, 59(2): 118-130. doi: 10.1086/625831

    [22]

    XU K L, ZHUZ C, 1989. Structural geology[M]. 2nd ed. Beijing: Geology Press: 270. (in Chinese)

    [23]

    YIN A, 1994. Mechanics of monoclinal systems in the Colorado plateau during the Laramide orogeny[J]. Journal of Geophysical Research: Solid Earth, 99(B11): 22043-22058. doi: 10.1029/94JB01408

    [24]

    ZOBACK M D, 2007. Reservoir geomechanics[M]. New York: Cambridge University Press.

    [25]

    童亨茂, 孟令箭, 蔡东升, 等, 2009. 裂陷盆地断层的形成和演化: 目标砂箱模拟实验与认识[J]. 地质学报, 83(6): 759-774. doi: 10.3321/j.issn:0001-5717.2009.06.002

    [26]

    童亨茂, 王建君, 赵海涛, 等, 2014. “摩尔空间”及其在先存构造活动性预测中的应用[J]. 中国科学: 地球科学, 44(9): 1948-1957.

    [27]

    童亨茂, 陈正乐, 刘瑞珣, 2015. 广义剪切活动准则[J]. 自然杂志, 37(6): 441-447.

    [28]

    童亨茂, 刘子平, 张宏祥, 等, 2021a. 暂堵大裂缝防治页岩气水平井套管变形的理论与方法[J]. 天然气工业, 41(5): 92-100.

    [29]

    童亨茂, 张平, 张宏祥, 等, 2021b. 页岩气水平井开发套管变形的地质力学机理及其防治对策[J]. 天然气工业, 41(1): 189-197.

    [30]

    徐开礼, 朱志澄, 1989. 构造地质学[M]. 2版. 北京: 地质出版社: 270.

  • 加载中

(5)

计量
  • 文章访问数:  788
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2023-11-06
修回日期:  2023-12-29
录用日期:  2024-01-12
网络出版日期:  2024-02-02
刊出日期:  2024-02-03

目录