中国地质科学院地质力学研究所
中国地质学会
主办

西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展

张世殊, 胡新丽, 章广成, 李亚博, 刘欣宇, 徐庆尧, 冉从彦, 赵小平. 2024. 西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展. 地质力学学报, 30(5): 795-810. doi: 10.12090/j.issn.1006-6616.2024031
引用本文: 张世殊, 胡新丽, 章广成, 李亚博, 刘欣宇, 徐庆尧, 冉从彦, 赵小平. 2024. 西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展. 地质力学学报, 30(5): 795-810. doi: 10.12090/j.issn.1006-6616.2024031
ZHANG Shishu, HU Xinli, ZHANG Guangcheng, LI Yabo, LIU Xinyu, XU Qingyao, RAN Congyan, ZHAO Xiaoping. 2024. Formation and catastrophic evolution of giant landslides in the alpine canyon area of western China. Journal of Geomechanics, 30(5): 795-810. doi: 10.12090/j.issn.1006-6616.2024031
Citation: ZHANG Shishu, HU Xinli, ZHANG Guangcheng, LI Yabo, LIU Xinyu, XU Qingyao, RAN Congyan, ZHAO Xiaoping. 2024. Formation and catastrophic evolution of giant landslides in the alpine canyon area of western China. Journal of Geomechanics, 30(5): 795-810. doi: 10.12090/j.issn.1006-6616.2024031

西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展

  • 基金项目: 国家自然科学基金项目(U22A20601)
详细信息
    作者简介: 张世殊(1970—),男,博士,正高级工程师,岩土工程专业,主要从事工程勘察与地灾研究。Email:1992070@chidi.com.cn
  • 中图分类号: P642.22

Formation and catastrophic evolution of giant landslides in the alpine canyon area of western China

  • Fund Project: This research is financially supported by National Natural Science Foundation of China (Grant No. U22A20601).
More Information
    Author Bio: 张世殊,正高级工程师,中国电建集团成都勘测设计研究院有限公司党委副书记、总经理,国际岩石力学与岩石工程学会(ISRM)中国国家小组副主席,四川省岩石力学与工程学会理事长。2023年荣获第十八次李四光地质科学奖野外奖。从事水电工程勘察设计和技术管理工作30余年,为我国水电开发建设事业做出重要贡献:牵头国家某重大工程勘察设计,策划并实施该巨型工程重大科学问题与关键技术的科技攻关,系统构建超2000 m级深部工程定向钻探与随钻探测技术、超深厚河床覆盖层原位取样测试技术;研发高能环境深埋越岭隧TBM高效安全施工与超前地质预报技术,显著促进工程勘测技术水平的重大提升;提出工程岩体力学参数综合取值方法,开创性地利用Ⅲ2类岩体作为300 m级特高拱坝坝基,突破高坝基岩体利用下限,为特高拱坝建基面的科学选定做出贡献;解决滑坡失稳堰塞、高陡危岩体、泥石流、隐蔽型变形体等地质灾害防控难题,为水电工程安全建设与运行提供支撑。获国家发明专利授权50余项;出版技术专著13部,编纂专业辞典2部;发表论文100余篇;起草行业、团体技术标准16项。先后获国务院政府特殊津贴专家、电建集团首席技术专家、四川省工程勘察设计大师,入选成都市重大人才计划“蓉城英才计划”。获国家科技进步二等奖1项、省部级科技进步特等奖等25项科技奖 .
  • 中国西部水电工程大多位于高山峡谷内,复杂的工程地质条件导致峡谷库岸滑坡灾害分布广泛。基于西部高山峡谷水电工程区的工程地质特征,系统分析了地形、地质构造、滑体物质、坡体结构和水文地质条件与滑坡的成生发育关系,并总结了典型滑坡的类型、特征及其灾变演化的力学机制。研究结果表明:西部高山峡谷滑坡以坡度30°~50°、高程超过1000 m、体积超过100×104 m3的滑坡为主;三叠系、奥陶系和志留系为典型的易滑地层;降雨和水库蓄水导致侵蚀基准面抬升、侵蚀范围扩大,库区水位的反复升降导致涉水滑坡体前缘岩土体性质降低。西部高山峡谷区滑坡类型主要分为以牵引式滑坡、推移式滑坡和复合式滑坡为主的堆积层滑坡以及以顺层岩质滑坡、溃屈型岩质滑坡、反倾岩质滑坡和座落式滑坡为主的岩质滑坡,不同类型的滑坡其演化过程不同,滑坡灾变机理也有所差异。研究成果将对西部高山峡谷区的滑坡识别、监测、预警以及防治具有一定的指导意义。

  • 加载中
  • 图 1  川西高程分布图

    Figure 1. 

    图 2  库区77个典型滑坡发育分布图

    Figure 2. 

    图 3  牵引式滑坡受力分析模型(变量含义见文中)

    Figure 3. 

    图 4  推移式滑坡演化过程示意图

    Figure 4. 

    图 5  复合式滑坡演化示意图(易志坚,2010

    Figure 5. 

    图 6  复合式滑坡地质力学模型

    Figure 6. 

    图 7  顺层岩质滑坡演化概念模型(Tang et al.,2015

    Figure 7. 

    图 8  顺层岩质滑坡渐进锁固力学模型

    Figure 8. 

    图 9  典型溃屈型滑坡演化示意图(闫国强等,2022

    Figure 9. 

    图 10  岩质边坡溃屈破坏力学模型

    Figure 10. 

    图 11  反倾岩质边坡倾覆破坏力学模型(殷坤龙等,2014

    Figure 11. 

    图 12  座落式滑坡演化示意图(据雷清雄,2017

    Figure 12. 

    表 1  中国西部地区地下水的主要类型

    Table 1.  Main classification of groundwater in the western region

    类别 分布区域 补给方式 排泄方式
    松散沉积物孔隙水 成都平原、断陷盆地、黄土高原 冰雪消融水、降水 河流外泄、蒸发排泄
    基岩裂隙水 天山南麓、鄂尔多斯高原、黔北山地等高山丘陵区 降雨入渗、冰雪消融 泉水、蒸发、向山区河流的泻流
    碳酸盐岩裂隙溶洞水 西南地区 降水、地表径流 泉水、泻流
    冻土冻结水 阿尔泰山区及青藏高原地区
    下载: 导出CSV

    表 2  滑坡发育流域统计

    Table 2.  Basin statistics of landslide development

    流域岷江雅砻江金沙江大渡河
    滑坡数量2036138
    占比/%26471710
    下载: 导出CSV

    表 3  滑坡发育高程统计

    Table 3.  Elevation statistics of landslide development

    高程/m 500~1000 1000~2000 >2000
    滑坡数量 14 38 22
    占比/% 19 51 30
    下载: 导出CSV

    表 4  滑坡发育体积分类统计

    Table 4.  Volume statistics of landslide development

    体积/
    ×104m3
    小型
    (<10)
    中型
    (10~100)
    大型
    (100~1000)
    特大型
    (1000~10000)
    巨型
    (>10000)
    滑坡数量 1 9 23 34 8
    占比/% 1 12 31 45 11
    下载: 导出CSV

    表 5  滑坡发育岸别统计

    Table 5.  Bank statistics of landslide development

    流域 岷江 雅砻江 金沙江 大渡河
    左岸滑坡数量 11 9 6 5
    右岸滑坡数量 9 27 7 3
    下载: 导出CSV

    表 6  滑坡发育坡度统计

    Table 6.  Slope gradient statistics of landslide development

    坡度/(°)10~2020~3030~4040~5050~60
    滑坡数量1741142
    占比/%11163223
    下载: 导出CSV

    表 7  滑坡发育坡高统计

    Table 7.  Slope height statistics of landslide development

    坡高/m0~200200~400400~600600~800800~10001000~1200
    滑坡数量1127151425
    占比/%1536201937
    下载: 导出CSV

    表 8  滑坡发育地层统计

    Table 8.  Stratigraphic unit statistics of landslide development

    地层元古界寒武系奥陶系、志留系泥盆系二叠系三叠系
    滑坡数量22273134
    占比/%33394249
    下载: 导出CSV

    表 9  滑坡发育岸坡结构统计

    Table 9.  Bank slope structure statistics of landslide development

    岸坡结构顺向坡逆向坡斜向坡
    滑坡数量27221
    占比/%54442
    下载: 导出CSV
  • [1]

    BELLONI L G, STEFANI R, 1987. The Vajont slide: instrumentation: past experience and the modern approach[J]. Engineering Geology, 24(1-4): 445-474. doi: 10.1016/0013-7952(87)90079-2

    [2]

    CHEN Z L, ZHANG X Y, SHEN F, et al., 1999. GPS monitoring of the crustal motion in southwestern China[J]. Chinese Science Bulletin, 44(19): 1804-1807. (in Chinese with English abstract doi: 10.1007/BF02886164

    [3]

    CHENG G D, JIN H J, 2013. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology & Engineering Geology, 40(1): 1-11. (in Chinese with English abstract

    [4]

    China electricity council, 2007. Design specification for slope of hydropower and water conservancy project: DL/T 5353-2006[S]. Beijing: China Electric Power Press: 6-72. (in Chinese)

    [5]

    DU Y, YAN E C, CAI J S, et al., 2023. Mechanical discrimination of stability state of progressive failure of broken-line complex landslides[J]. Chinese Journal of Geotechnical Engineering, 45(6): 1151-1161. (in Chinese with English abstract

    [6]

    HU R J, FAN Z L, WANG Y J, et al., 2002. Groundwater resources and their characteristics in arid lands of northwestern China[J]. Journal of Natural Resources, 17(3): 321-326. (in Chinese with English abstract

    [7]

    HUANG R Q, 2007. large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454. (in Chinese with English abstract

    [8]

    HUANG R Q, 2009. Some catastrophic landslides since the twentieth century in the southwest of China[J]. Landslides, 6(1): 69-81. doi: 10.1007/s10346-009-0142-y

    [9]

    KENNEDY R, TAKE W A, SIEMENS G, 2021. Geotechnical centrifuge modelling of retrogressive sensitive clay landslides[J]. Canadian Geotechnical Journal, 58(10): 1452-1465. doi: 10.1139/cgj-2019-0677

    [10]

    LEI Q X, 2017. Analysis of formation mechanism and environmental effects of collapses and landslides at Hanyuan-Tongjiezi in the Dadu River[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract

    [11]

    LIAN B Q, PENG J B, ZHAN H B, et al., 2020. Formation mechanism analysis of irrigation-induced retrogressive loess landslides[J]. CATENA, 195: 104441. doi: 10.1016/j.catena.2019.104441

    [12]

    LIU G R, YAN E C, LIAN C, 2002. Discussion on classification of landslides[J]. Journal of Engineering Geology, 10(4): 339-342. (in Chinese with English abstract

    [13]

    LU S Q, YI Q L, YI W, et al. , 2014. Analysis of deformation and failure mechanism of Shuping landslide in Three Gorges reservoir area[J]. Rock and Soil Mechanics, 35(4): 1123-1130, 1202. (in Chinese with English abstract

    [14]

    LU Y F, 2015. Deformation and failure mechanism of slope in three dimensions[J]. Journal of Rock Mechanics and Geotechnical Engineering, 7(2): 109-119. doi: 10.1016/j.jrmge.2015.02.008

    [15]

    PENG J B, LENG Y Q, ZHU X H, et al., 2016. Development of a loess-mudstone landslide in a fault fracture zone[J]. Environmental Earth Sciences, 75(8): 658. doi: 10.1007/s12665-016-5336-8

    [16]

    ROSSO R, RULLI M C, VANNUCCHI G, 2006. A physically based model for the hydrologic control on shallow landsliding[J]. Water Resources Research, 42(6): W06410.

    [17]

    SUN G Z, 1988. Rock mass structure mechanics[M]. Beijing: Science Press. (in Chinese)

    [18]

    TANG H M, ZHANG G C, 2005. A study on slope stability during reservoir water level falling[J]. Rock and Soil Mechanics, 26(S2): 11-15. (in Chinese with English abstract

    [19]

    TANG H M, LI D W, HU X L, 2009. Faulting characteristics of Wenchuan earthquake and evaluation theory of regional crustal stability for engineering[J]. Journal of Engineering Geology, 17(2): 145-152. (in Chinese with English abstract

    [20]

    TANG H M, ZOU Z X, XIONG C R, et al., 2015. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China[J]. Engineering Geology, 186: 17-27. doi: 10.1016/j.enggeo.2014.08.021

    [21]

    TANG Y Y, 1992. The effect of neotectonic movement on formations of landslide and debris flow in Southern Gansu[J]. Journal of Lanzhou University (Natural Sciences), 28(4): 152-160. (in Chinese with English abstract

    [22]

    VARNES D J, 1978. Slope movement types and processes[R]. Washington: Transportation Research Board Special Report.

    [23]

    WANG F, TANG H M, ZHANG G C, et al., 2018. Development characteristics and evolution mechanism of the deep-seated toppling in the upstream of the Yalong River, China[J]. Mountain Research, 36(3): 411-421. (in Chinese with English abstract

    [24]

    WANG K W, DENG C J, ZHANG F, 2012. Formation process of Tanggudong landslide and Yuri accumulation body in Yalong river valley in southwest China[J]. Journal of Engineering Geology, 20(6): 955-970. (in Chinese with English abstract

    [25]

    WANG G X, 2005. Key technique in landslide control and its handling measures[J]. Chinese Journal of Rock Mechanics and Engineering, 24(21): 3818-3827. (in Chinese with English abstract

    [26]

    WANG L S, ZHANG Z Y, 1979. Basic geomechanic model of slope deformation[C]//Proceedings of the First Engineering Geology Congress. Suzhou. (in Chinese)

    [27]

    WANG Q Z, LI Z Q, YIN Y, et al., 2020. Distribution characteristics of typical geological relics in the Western Sichuan Plateau[J]. Open Geosciences, 12(1): 307-323. doi: 10.1515/geo-2020-0104

    [28]

    WANG S J, 1966. An engineering geological study on the mechanical behaviour of a rock mass[J]. Chinese Journal of Geology, 7(1): 64-78. (in Chinese with English abstract

    [29]

    XU J R, ZHAO Z X, ISHIKAWA Y, 2008. Regional characteristics of crustal stress field and tectonic motions in and around Chinese mainland[J]. Chinese Journal of Geophysics, 51(3): 770-781. (in Chinese with English abstract

    [30]

    XU L, DAI F C, CHEN J, et al., 2014. Analysis of a progressive slope failure in the Xiangjiaba reservoir area, Southwest China[J]. Landslides, 11(1): 55-66. doi: 10.1007/s10346-012-0373-1

    [31]

    XU Q, HUANG R Q, LI X Z, 2004. Research progress in time forecast and prediction of landslides[J]. Advance in Earth Sciences, 19(3): 478-483. (in Chinese with English abstract

    [32]

    XU Q, HUANG R Q, 2008. Kinetics characteristics of large landslides triggered by May 12th Wenchuan earthquake[J]. Journal of Engineering Geology, 16(6): 721-729. (in Chinese with English abstract

    [33]

    YAN G Q, YIN Y P, HUANG B L, et al., 2022. Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 43(9): 2568-2580. (in Chinese with English abstract

    [34]

    YI Z J, 2010. Research on formation mechanism and stability of Tanggudong giant landslide of Lenggu hydropower station[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract

    [35]

    YIN K L, ZHOU C M, CHAI B, 2014. Reservoir area failure mechanism and criterion of counter-tilt rock slopes at Wuxia gorge section in three gorges[J]. Chinese Journal of Rock Mechanics and Engineering, 33(8): 1635-1643. (in Chinese with English abstract

    [36]

    YIN Y P, PENG X M, 2007. Failure mechanism on Qianjiangping landslide in the three gorges reservoir region[J]. Hydrogeology & Engineering Geology, 34(3): 51-54. (in Chinese with English abstract

    [37]

    YIN Y P, 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4): 433-444. (in Chinese with English abstract

    [38]

    ZHANG D, WU Z H, LI J C, et al., 2013. An overview on earthquake-induced landslide research[J]. Journal of Geomechanics, 19(3): 225-241. (in Chinese with English abstract

    [39]

    ZHANG L F, WU Y P, MIAO F S, et al., 2019. Mechanical model and stability analysis of progressive failure for thrust-type gently inclined shallow landslide[J]. Rock and Soil Mechanics, 40(12): 4767-4776. (in Chinese with English abstract

    [40]

    ZHANG S S, HU X L, ZHANG G C, et al. , 2018. Catastrophic evolution and control technology of major landslides in western hydropower project[M]. Beijing: China Water & Power Press. (in Chinese)

    [41]

    ZOU Z X, TANG H M, XIONG C R, et al., 2012. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2222-2231. (in Chinese with English abstract

    [42]

    中国电力企业联合会,2007. 水电水利工程边坡设计规范:DL/T 5353—2006[S]. 北京:中国电力出版社:6-72.

    [43]

    陈智梁,张选阳,沈凤,等,1999. 中国西南地区地壳运动的GPS监测[J]. 科学通报,44(8):851-854. doi: 10.3321/j.issn:0023-074X.1999.08.015

    [44]

    程国栋,金会军,2013. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质,40(1):1-11.

    [45]

    杜毅,晏鄂川,蔡静森,等,2023. 折线型复合式滑坡渐进破坏稳定性状态的力学判别[J]. 岩土工程学报,45(6):1151-1161. doi: 10.11779/CJGE20220184

    [46]

    胡汝骥,樊自立,王亚俊,等,2002. 中国西北干旱区的地下水资源及其特征[J]. 自然资源学报,17(3):321-326. doi: 10.3321/j.issn:1000-3037.2002.03.012

    [47]

    黄润秋,2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,26(3):433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    [48]

    雷清雄,2017. 大渡河汉源—铜街子段崩、滑灾害成因机制及环境效应研究[D]. 成都:成都理工大学.

    [49]

    刘广润,晏鄂川,练操,2002. 论滑坡分类[J]. 工程地质学报,10(4):339-342. doi: 10.3969/j.issn.1004-9665.2002.04.001

    [50]

    卢书强,易庆林,易武,等,2014. 三峡库区树坪滑坡变形失稳机制分析[J]. 岩土力学,35(4):1123-1130,1202.

    [51]

    孙广忠,1988. 岩体结构力学[M]. 北京:科学出版社.

    [52]

    唐辉明,章广成,2005. 库水位下降条件下斜坡稳定性研究[J]. 岩土力学,26(S2):11-15.

    [53]

    唐辉明,李德威,胡新丽,2009. 龙山门断裂带活动特征与工程区域地壳稳定性评价理论[J]. 工程地质学报,17(2):145-152. doi: 10.3969/j.issn.1004-9665.2009.02.001

    [54]

    唐永仪,1992. 新构造运动在陇南滑坡泥石流形成中的作用[J]. 兰州大学学报(自然科学版),28(4):152-160. doi: 10.3321/j.issn:0455-2059.1992.04.027

    [55]

    王飞,唐辉明,章广成,等,2018. 雅砻江上游深层倾倒体发育特征及形成演化机制[J]. 山地学报,36(3):411-421.

    [56]

    王恭先,2005. 滑坡防治中的关键技术及其处理方法[J]. 岩石力学与工程学报,24(21):3818-3827. doi: 10.3321/j.issn:1000-6915.2005.21.003

    [57]

    王兰生,张倬元,1979. 斜坡岩体变形破坏的基本模式[C]//第一届工程地质大会论文. 苏州.

    [58]

    王孔伟,邓成进,张帆,2012. 中国西南雅砻江流域唐古栋滑坡及雨日堆积体形成机理分析. 工程地质学报,20(06):955-970.

    [59]

    王思敬,1966. 以工程地质观点探讨岩体的力学属性[J]. 地质科学,7(1):64-78.

    [60]

    徐纪人,赵志新,石川有三,2008. 中国大陆地壳应力场与构造运动区域特征研究[J]. 地球物理学报,51(3):770-781. doi: 10.3321/j.issn:0001-5733.2008.03.018

    [61]

    许强,黄润秋,李秀珍,2004. 滑坡时间预测预报研究进展[J]. 地球科学进展,19(3):478-483. doi: 10.3321/j.issn:1001-8166.2004.03.021

    [62]

    许强,黄润秋,2008. 5.12汶川大地震诱发大型崩滑灾害动力特征初探[J]. 工程地质学报,16(6):721-729. doi: 10.3969/j.issn.1004-9665.2008.06.001

    [63]

    闫国强,殷跃平,黄波林,等,2022. 三峡库区顺层灰岩岸坡劣化-溃屈灾变机制研究[J]. 岩土力学,43(9):2568-2580.

    [64]

    易志坚,2010. 楞古水电站唐古栋巨型滑坡成因机制及稳定性研究[D]. 成都:成都理工大学.

    [65]

    殷坤龙,周春梅,柴波,2014. 三峡库区巫峡段反倾岩石边坡的破坏机制及判据[J]. 岩石力学与工程学报,33(8):1635-1643.

    [66]

    殷跃平,彭轩明,2007. 三峡库区千将坪滑坡失稳探讨[J]. 水文地质工程地质,34(3):51-54. doi: 10.3969/j.issn.1000-3665.2007.03.013

    [67]

    殷跃平,2008. 汶川八级地震地质灾害研究[J]. 工程地质学报,16(4):433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001

    [68]

    张铎,吴中海,李家存,等,2013. 国内外地震滑坡研究综述[J]. 地质力学学报,19(3):225-241. doi: 10.3969/j.issn.1006-6616.2013.03.001

    [69]

    张龙飞,吴益平,苗发盛,等,2019. 推移式缓倾浅层滑坡渐进破坏力学模型与稳定性分析[J]. 岩土力学,40(12):4767-4776.

    [70]

    张世殊,胡新丽,章广成,等,2018. 西部水电工程重大滑坡灾变演化及控制技术[M]. 北京:中国水利水电出版社.

    [71]

    邹宗兴,唐辉明,熊承仁,等,2012. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报,31(11):2222-2231. doi: 10.3969/j.issn.1000-6915.2012.11.010

  • 加载中

(12)

(9)

计量
  • 文章访问数:  238
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2024-04-02
修回日期:  2024-06-14
录用日期:  2024-06-20
网络出版日期:  2024-09-26
刊出日期:  2024-10-28

目录