中国地质科学院地质力学研究所
中国地质学会
主办

基于微动方法提高浅层横波波速结构反演精度−以海口江东新区为例

张前, 吴小洁, 钟宙灿, 蔡水库. 2025. 基于微动方法提高浅层横波波速结构反演精度−以海口江东新区为例. 地质力学学报, 31(1): 109-123. doi: 10.12090/j.issn.1006-6616.2024055
引用本文: 张前, 吴小洁, 钟宙灿, 蔡水库. 2025. 基于微动方法提高浅层横波波速结构反演精度−以海口江东新区为例. 地质力学学报, 31(1): 109-123. doi: 10.12090/j.issn.1006-6616.2024055
ZHANG Qian, WU Xiaojie, ZHONG Zhoucan, CAI Shuiku. 2025. Improving the inversion accuracy of shallow shear wave velocity structure based on microtremor method: A case study of Haikou Jiangdong New District. Journal of Geomechanics, 31(1): 109-123. doi: 10.12090/j.issn.1006-6616.2024055
Citation: ZHANG Qian, WU Xiaojie, ZHONG Zhoucan, CAI Shuiku. 2025. Improving the inversion accuracy of shallow shear wave velocity structure based on microtremor method: A case study of Haikou Jiangdong New District. Journal of Geomechanics, 31(1): 109-123. doi: 10.12090/j.issn.1006-6616.2024055

基于微动方法提高浅层横波波速结构反演精度−以海口江东新区为例

  • 基金项目: 海南省海洋地质资源与环境重点实验室自主课题(22-HNHYDZZYHJKF023,HNHYDZZYHJZZ003)
详细信息
    作者简介: 张前(1982—),男,高级工程师,主要从事综合物探应用研究。 Email:251254900@qq.com
    通讯作者: 吴小洁(1983—),女,高级工程师,主要从事综合物探应用研究。 Email:12738455@qq.com
  • 中图分类号: P315.61

Improving the inversion accuracy of shallow shear wave velocity structure based on microtremor method: A case study of Haikou Jiangdong New District

  • Fund Project: This research is financially supported by Key Laboratory of Marine Geological Resources and Environment of Hainan Province (Grants No. 22-HNHYDZZYHJKF023 and HNHYDZZYHJZZ003).
More Information
  • 微动方法不受地震源时空分布的限制,已成为探测浅层地下横波速度空间结构的重要方法。在海口江东新区开展微动与钻孔、横波测井的对比试验,试验显示:微动反演结果与测井曲线形态一致,对应深度地层的横波速度基本吻合,取得了一定的应用效果;但在分层上微动和钻孔结果并非完全对应,就波速而言,微动结果未反演出一个波速差异较小界面,钻孔结果未区分出一个波速差异较大界面,对两者在微动反演结果中的影响机制进行研究,有助于提高对微动反演模型的认识,获得更合理的反演结果。基于波速差异较小和较大界面,设计物性分层模型、地质分层模型以及组合模型,从频散曲线形态、软弱夹层、分层变化等方面讨论两类界面影响反演结果的规律。结果显示:物性分层模型反演结果能更好地反映出软弱层位置;改变界面主要影响相邻地层,增加波速差异较小和较大界面,分别使相邻地层波速误差增大和减小;波速差异较大界面对相邻层波速的影响程度要小于差异较小界面,误差大幅变化主要是由波速差异较小界面引起,反演对波速差异较小界面更敏感。微动方法在海口江东新区实际应用研究表明,合并模型中波速差异较小界面或增设波速差异较大的界面,不改变地层局部的变化趋势时,有助于提高波速的反演精度。选取实测数据反演得到二维微动横波速度剖面,结合钻孔提供工程基岩面的埋深及起伏信息,为海口江东新区场地条件评价和地下空间利用规划提供可靠依据。

  • 加载中
  • 图 1  海口江东新区位置及收集钻孔分布图

    Figure 1. 

    图 2  江东新区孔中横波测井成果

    Figure 2. 

    图 3  微动探测台阵示意图

    Figure 3. 

    图 4  微动数据主要处理流程(钟宙灿等,2023

    Figure 4. 

    图 5  微动反演成果曲线与横波测井曲线对比

    Figure 5. 

    图 6  微动反演速度结构与钻孔钻遇地层对比

    Figure 6. 

    图 7  各层波速标准差和微动反演底界深度相对误差交汇图

    Figure 7. 

    图 8  模型1—6横波速度反演结果

    Figure 8. 

    图 9  模型1—6地层反演波速对比

    Figure 9. 

    图 10  模型1—6地层反演波速绝对误差对比

    Figure 10. 

    图 11  模型1—6地层反演波速均方相对误差对比

    Figure 11. 

    图 12  微动探测综合解释剖面

    Figure 12. 

    表 1  微动反演结果与JDSK006钻孔钻遇地层、孔中测井结果对比

    Table 1.  Comparison of microtremor inversion results with geological strata and logging results of borehole JDSK006

    钻孔钻遇地层 孔中测井 微动反演结果 底界深度
    相对误差/%
    层速度绝对
    误差/(m/s)
    测井波速
    标准差/(m/s)
    土的
    类型
    时代单元 岩性名称 底界
    深度/m
    层速度/
    (m/s)
    底界
    深度/m
    层速度/
    (m/s)
    第四系烟墩组、秀英组 粉细砂、黏土 15.35 163 15.6 184 1.62 21 30.8 软弱土−
    中软土
    新近系海口组3段 含贝壳碎屑砾砂 23.70 375 22.3 392 6.09 17 76.0 中硬土
    新近系海口组2段 粉质黏土 47.00 646 48.2 695 2.52 49 50.5 坚硬土
    贝壳碎屑岩 52.70 675 软质岩
    粉质黏土
    (层间含贝壳碎屑)
    666 60.2 620 4.55 46 30.7 坚硬土
    77.70 714 75.0 711 3.54 3 38.4 坚硬土
    粉质黏土
    (砾粒增多)
    94.00 736 92.5 770 1.62 34 30.5 坚硬土
    新近系海口组1段 贝壳碎屑砂砾岩(砾砂互层) 109.30 793 114.0 811 4.21 18 52.7 较硬岩
    贝壳碎屑砂砾岩 133.80 133.0 767 0.60 较硬岩
    新近系灯楼角组 多层相间的粉质黏土、中砂及粉砂 169.13 162.0 816 4.31 坚硬土
    多层相间的粉质黏土、粗砂及粉砂 200.17 216.0 963 坚硬土
    下载: 导出CSV

    表 2  模型1—3微动反演结果及误差分析

    Table 2.  Results and error analysis of microtremor inversion in models 1-3

    层编号钻探分层
    深度/m
    测井横波
    波速/(m/s)
    模型1模型2模型3
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    115.35163.0015.60183.8920.8915.60184.6921.6915.60182.6119.61
    223.70375.0022.30391.5816.5822.30381.006.0022.30403.7728.77
    347.00646.0048.20695.3449.3448.20735.1889.1848.20664.5018.50
    452.70675.0052.65461.90213.1052.65451.50223.50
    5666.0060.20620.2345.7760.20558.77107.23
    677.70714.0075.00711.012.9975.00724.4910.4975.00768.0754.07
    794.00736.0092.50769.6733.6792.60783.1847.1892.40752.5416.54
    8109.30793.00114.00811.2618.26114.00817.5524.55114.00809.5016.50
    9133.80133.80767.25133.20763.26133.20766.27
    10169.13162.00816.04162.00817.78162.00827.15
    11200.17216.00962.73216.00958.50216.00972.89
    均方相对误差4.58%均方相对误差11.42%均方相对误差11.43%
    下载: 导出CSV

    表 3  模型4—6微动反演结果及误差分析

    Table 3.  Results and error analysis of microtremor inversion in models 4-6

    层编号钻探分层
    深度/m
    测井横波
    波速/(m/s)
    模型4模型5模型6
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    分层深度/
    m
    反演波速/
    (m/s)
    绝对误差/
    (m/s)
    115.35163.0015.36180.0517.0515.36181.4018.4015.36180.9017.90
    223.70375.0023.70461.4586.4523.70446.1871.1823.70454.2179.21
    347.00646.0047.00634.3611.6447.00707.9261.9247.00662.9816.98
    452.70675.0052.65480.12194.8852.65495.54179.46
    5666.0060.20565.78100.2260.20637.6728.33
    677.70714.0077.60804.1290.1277.60774.1560.1577.60757.4043.40
    794.00736.0094.00746.2610.2694.00773.5337.5394.00761.5025.50
    8109.30793.00109.25735.8357.17109.25745.3747.63109.25739.4753.53
    9133.80133.80825.48133.80822.23133.80821.04
    10169.13169.20867.89169.20854.44169.20858.23
    11200.17200.00921.52200.00902.97200.00909.55
    均方相对误差11.55%均方相对误差10.70%均方相对误差6.51%
    下载: 导出CSV
  • [1]

    AKI K, 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 35: 415-456.

    [2]

    AKI K, 1965. A note on the use of microseisms in determining the shallow structures of the earth’s crust[J]. Geophysics, 30(4): 665-666. doi: 10.1190/1.1439640

    [3]

    BEATY K S, SCHMITT D R, SACCHI M, 2002. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophysical Journal International, 151(2): 622-631. doi: 10.1046/j.1365-246X.2002.01809.x

    [4]

    CAI W, SONG X H, YUAN S C, et al., 2018. Inversion of Rayleigh wave dispersion curves based on firefly and bat algorithms[J]. Chinese Journal of Geophysics, 61(6): 2409-2420. (in Chinese with English abstract

    [5]

    CHO I, NAKKKANISHI I, LING S, et al., 1999. Application of forking genetic algorithm FGA to an exploration method using microtremors; Bidotansaho heno kotaigun tansaku bunkigata identeki arugorizumu fGA no tekiyo[J]. Geophysical Exploration, 52(3): 227-246.

    [6]

    CHAVEZ-GARCIA F J, RODRIDUEZ M, STEPHENSON W R, 2005. Analternative approach to the SPAC analysis of microtremors: exploiting stationarity of noise[J]. Bull. Seism. Soc. Am.,95(1): 277-293.

    [7]

    FU W, XU P F, LING S Q, et al., 2012. Application of the microtremor survey method to geothermal exploration[J]. Shanghai Land & Resources, 33(3): 71-75. (in Chinese with English abstract

    [8]

    GAO Y H, HUANG S H, LIU D, et al., 2018. Microtremor detection technology and its new progress in engineering application[J]. Science Technology and Engineering, 18(23): 146-155. (in Chinese with English abstract

    [9]

    HE Z Q, DING Z F, JIA H, et al., 2007. To determine the velocity structure of shallow crust with surface wave information in microtremors[J]. Chinese Journal of Geophysics, 50(2): 492-498. (in Chinese with English abstract

    [10]

    HE Z Q, HU G, LU L Y, et al., 2013. The shallow velocity structure for the Tonghai basin in Yunnan[J]. Chinese Journal of Geophysics, 56(11): 3819-3827. (in Chinese with English abstract

    [11]

    HORIKE M, 1985. Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas[J]. Journal of Physics of the Earth, 33(2): 59-96. doi: 10.4294/jpe1952.33.59

    [12]

    HUANG H Q, 2011. Research on application of passive suface wave methods in the metallic ore zone[J]. Geology of Fujian, 30(4): 320-326. (in Chinese with English abstract

    [13]

    LI Q L, LEI X D, LI C, et al., 2019. Exploring thick overburden structure by microtremor survey: a case study in the subsidiary administrative center[J]. Progress in Geophysics, 34(4): 1635-1643. (in Chinese with English abstract

    [14]

    LIANG D Y, XU G Q, XIAO Y, et al., 2021. Neogene-quaternary stratigraphic standard and combined zoning of Haikou Jiangdong new district[J]. Science Technology and Engineering, 21(26): 11052-11063. (in Chinese with English abstract

    [15]

    LIU H P, BOORE D M, JOYNER W B, et al., 2000. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles[J]. Bulletin of the Seismological Society of America, 90(3): 666-678. doi: 10.1785/0119980186

    [16]

    LIU Y Z, MEI R W, YE P, et al., 2016. Data acquisition and processing system of WD intelligent natural source surface wave and its application test[J]. Geophysical and Geochemical Exploration, 40(5): 1007-1015. (in Chinese with English abstract

    [17]

    LI X Y, CHEN X F, YANG Z T, et al., Application of high-order surface waves in shallow exploration: An example of the Suzhou river, Shanghai[J]. Chinese Journal of Geophysics, 63(1): 247-255.

    [18]

    NI S D, LI Z W, SOMERVILLE P, 2014. Estimating subsurface shear velocity with radial to vertical ratio of local P waves[J]. Seismological Research Letters, 85(1): 82-90. doi: 10.1785/0220130128

    [19]

    SONG X H, GU H M, ZHANG X Q, et al., 2008. Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh-wave dispersion curves[J]. Computers & Geosciences, 34(6): 611-624.

    [20]

    SONG X H, TANG L, LV X C, et al., 2012. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 84: 1-13. doi: 10.1016/j.jappgeo.2012.05.011

    [21]

    TIAN B Q, DU Y N, YOU Z W, et al., 2019. Measuring the sediment thickness in urban areas using revised H/V spectral ratio method[J]. Engineering Geology, 260: 105223. doi: 10.1016/j.enggeo.2019.105223

    [22]

    TSAI V C, MOSCHETTI M P, 2010. An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results[J]. Geophysical Journal International, 182(1): 454-460.

    [23]

    XIA J H, MILLER R D, PARK C B, 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 64(3): 691-700. doi: 10.1190/1.1444578

    [24]

    XIE P, WANG Q L, LI J G, et al., 2019. Application of SPAC method on stratification of stratigraphic structure in Jianghan Plain[J]. China Earthquake Engineering Journal, 41(3): 717-723. (in Chinese with English abstract

    [25]

    XU H, WU X P, SHENG Y, et al., 2021. Application of microtremor survey method in detection of urban land subsidence[J]. Geophysical and Geochemical Exploration, 45(6): 1512-1519. (in Chinese with English abstract

    [26]

    XU P F, LI C J, LING S Q, et al., 2009. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics, 52(7): 1923-1930. (in Chinese with English abstract

    [27]

    XU P F, LING S Q, LI C J, et al., 2012. Mapping deeply-buried geothermal faults using microtremor array analysis[J]. Geophysical Journal International, 188(1): 115-122. doi: 10.1111/j.1365-246X.2011.05266.x

    [28]

    XU P F, SHI W, LING S Q, et al., 2012. Mapping spherically weathered “boulders” using 2D microtremor profiling method: a case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 55(6): 2120-2128. (in Chinese with English abstract

    [29]

    XU P F, LI S H, DU J G, et al., 2013a. Microtremor survey method: a new geophysical method for dividing strata and detecting the buried fault structures[J]. Acta Petrologica Sinica, 29(5): 1841-1845. (in Chinese with English abstract

    [30]

    XU P F, LI S H, LING S Q, et al., 2013b. Application of SPAC method to estimate the crustal S-wave velocity structure[J]. Chinese Journal of Geophysics, 56(11): 3846-3854. (in Chinese with English abstract

    [31]

    XU P F, DU Y N, LING S Q, et al., 2020. Microtremor survey method based on inversion of the SPAC coefficient of multi-mode Rayleigh waves and its application[J]. Chinese Journal of Geophysics, 63(10): 3857-3867. (in Chinese with English abstract

    [32]

    XU Y X, ZHANG B L, LUO Y H, et al., 2013b. Surface-wave observations after integrating active and passive source data[J]. The Leading Edge, 32(6): 634-637. doi: 10.1190/tle32060634.1

    [33]