Deep magmatic processes of mafic layered intrusions in the Lala mining area, western Sichuan
-
摘要:
既往研究表明,许多层状岩体是由岩浆多次脉动作用形成的,但参与脉动过程的岩浆来源(单一或多个岩浆房)仍缺乏系统的研究。矿物作为岩浆作用过程中的产物,记录着岩浆房的性质和深部岩浆的作用过程。通过对川西拉拉矿区含矿镁铁质层状岩体5个不同岩相带中的角闪石、云母斑晶开展电子探针成分剖面分析,结合矿物成因分析、矿物分类以及热力学计算,认为其形成于岩浆作用的不同阶段,结晶过程中岩浆房性质发生了改变;镁铁质层状岩体形成过程中,深部最少有2种不同性质的岩浆房;层状岩体是由岩浆在流体超压作用下,激活2个不同性质及深度的岩浆房,经过多次(4~5次)的岩浆脉动作用所形成。
Abstract:Objective Previous studies have shown that many layered intrusions are formed by multiple pulsations of magma. However, little research has been done on whether the magma involved in the pulsation process comes from a single magma chamber or multiple magma chambers. Minerals, as products of magmatism, record the properties of magma chambers and deep magmatism.
Methods Through the electron probe microanalysis technique (EPMA) on the hornblende and mica, combined with genetic analysis, mineral classification, and thermodynamic calculation, five different lithofacies zones of mafic layered intrusions in the western Sichuan LaLa mining area were studied.
Results It shows that hornblende and mica of five different facies lithofacies zones formed in different stages of magmatism, with changes in the property of the magma chamber during crystallization.
Conclusion There were at least two magma chambers with different properties in the deep layers during the formation of mafic layered intrusions. The layered intrusions were formed through multiple (4–5) magmatic pulsations, activated by fluid overpressure, which mobilized two magma chambers of differing compositions and depths.
-
Key words:
- mafic layered intrusion /
- hornblende /
- mica /
- magmatism /
- deep processes
-
-
图 9 YWS-1 相带— YWS-5相带云母成因判别图解(Foster,1960)
Figure 9.
图 10 云母Fe3+−Fe2+−Mg2+三元图解(David and Hans,1965)
Figure 10.
表 1 9个岩相带的岩石学特征一览表
Table 1. Petrological characteristics for nine lithofacies zones
岩相带 岩石类型 岩相学描述 接触关系 典型特征 YWS-1、YWS-9 煌斑岩 显微斑状结构,显微斑晶为角闪石(4%)、黑云母(3%)和Fe-Ti氧化物(5%);基质成分为方解石(20%)、角闪石(16%),黑云母(22%)、高岭石(5%)、沸石(5%);斜长石(20%),未分斑晶与基质;含少量硫化物 结构与YWS-2不同,二者呈侵入接触关系 发育球粒构造 YWS-2、YWS-8 煌斑岩 显微斑状结构,显微斑晶为角闪石(3%)、黑云母(3%)和Fe-Ti氧化物(8%);基质成分为方解石(15%)、角闪石(12%)、黑云母(22%)、高岭石(5%)、沸石(5%)等;斜长石(25%),未分斑晶与基质;含少量硫化物 与YWS-3和 YWS-1间可见明显的结构分层,与YWS-3对比更强烈 发育球粒状沸石、方解石 YWS-3、YWS-7 辉长岩 显微斑状结构,显微斑晶主要为辉石(15%)、角闪石(10%)、黑云母(6%)、斜长石(5%)和Fe-Ti氧化物(6%);基质成分主要为方解石(10%)、白云石(9%)、角闪石(14%)、黑云母(15%)、高岭石(5%)、沸石(5%);含少量硫化物 与YWS-4和YWS-2间可见明显的结构分层 发育大颗粒辉石斑晶 YWS-4、YWS-6 辉长岩 显微斑状结构,显微斑晶主要为角闪石(4%)、黑云母(5%)、辉石(4%)和Fe-Ti氧化物(6%);基质主要为方解石(15%)、斜长石(20%)、角闪石(11%)、黑云母(30%)高岭石(5%)等;含少量硫化物 与YWS-5和YWS-3结构分层明显 发育小颗粒辉石、大颗粒方解石 YWS-5 含磁铁矿辉长岩 显微斑状结构,显微斑晶主要为钾长石(5%)、白云母(10%)、石英(15%)和Fe-Ti氧化物(20%);基质主要为方解石(5%)、高岭石(5%)、云母(20%)、钠长石(15%)和磷灰石(5%) 与YWS-4和YWS-6结构分层均十分清晰 发育白云母、石英、大量Ti-Fe氧化物 -
[1] ANDERSON J L, SMITH D R. 1995. The effects of temperature and f O2 on the Al-in-hornblende barometer[J]. American mineralogist, 80(5-6): 549-559.
[2] BAI Y, SU B X, XIAO Y, et al., 2023. Distribution of Co-Ni in mafic-ultramafic layered intrusion and implications for formation of magmatic deposits: a case study of the Stillwater Complex[J]. Acta Petrologica Sinica, 39(4): 1172-1184. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.04.15
[3] BAO C F, SHE Y W, LU Y Y, et al., 2024. The magma evolution process of the Taihe Layered Intrusion in the Emeishan area, SW China: evidence from geochemical characteristics of amphiboles[J]. Acta Mineralogica Sinica, 44(2): 178-187. (in Chinese with English abstract)
[4] CHENG J H, LUO Z H, HEI H X, et al., 2017. The genesis and prospecting significance of amphibole-rich veins in fine-grained olivine gabbro on top of Qinggangping ore block, Baima[J]. Earth Science Frontiers, 24(3): 276-287. (in Chinese with English abstract)
[5] DAVID R W, HANS P E, 1965. Stability of biotite: experiment, theory, and application[J]. American Mineralogist, 50(9): 1228-1272.
[6] FEELEY T C, SHARP Z D, 1996. Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers[J]. Geology, 24(11): 1021-1024. doi: 10.1130/0091-7613(1996)024<1021:CAHIEF>2.3.CO;2
[7] FOSTER M D, 1960. Interpretation of the composition of trioctahedral micas[R]. Washington: United States Government Printing Office.
[8] GUO Y Y, HE W Y, LI Z C, et al., 2015. Petrogenesis of Ge'erkuohe porphyry granitoid, western Qinling: constraints from mineral chemical characteristics of biotites[J]. Acta Petrologica Sinica, 31(11): 3380-3390. (in Chinese with English abstract)
[9] HAMMARSTROM J M, ZEN E A, 1986. Aluminum in hornblende: an empirical igneous geobarometer[J]. American Mineralogist, 71(11-12): 1297-1313.
[10] HENRY D J, GUIDOTTI C V, THOMSON J A, 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms[J]. American Mineralogist, 90(2-3): 316-328. doi: 10.2138/am.2005.1498
[11] HOLLISTER L S, GRISSOM G C, PETERS E K, et al., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons[J]. American Mineralogist, 72(3-4): 231-239.
[12] HU B Q, LYU G X, WANG F Z, et al. , 2011. The ground pressure gradient in the lithosphere and its influence on geological processes[C]//The 13th Academic Annual Conference of the Mineralogy, Petrology and Geochemistry Society of China. Guangzhou: Chinese Society for Mineralogy, Petrology and Geochemistry: 34 (in Chinese)
[13] JI G Y, JIANG S H, ZHANG L S, et al., 2021. Petrogenic and metallogenic significance of Alubaogeshan granite in Maodeng deposit of southern Da Hinggan Mountains: evidence from mineralogy of zircon, amphibole and biotite[J]. Mineral Deposits, 40(3): 449-474. (in Chinese with English abstract)
[14] JOHNSON M C, RUTHERFORD M J, 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks[J]. Geology, 17(9): 837-841. doi: 10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
[15] LATPOV R, HANSKI E, LAVRENCHUK A, et al., 2011. A ‘three-increase model’for the origin of the marginal reversal of the Koitelainen layered intrusion, Finland[J]. Journal of Petrology, 52(4): 733-764. doi: 10.1093/petrology/egr001
[16] LE MAITRE R W, 2002. Igneous rocks: a classification and glossary of terms[J]. Mining Engineering(8)
[17] LEAKE B E, WOOLLEY A R, ARPS C E S, et al., 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on new minerals and mineral names[J]. The Canadian Mineralogist, 35(1): 219-246.
[18] LI J L, CHEN Z L, ZHOU T F, et al., 2021. Mineralogical characteristics of amphibole in calc-alkalic intrusive rocks from the Juelotage tectonic belt of the Eastern Tianshan and its implication for regional prospecting[J]. Geotectonica et Metallogenia, 45(3): 534-552. (in Chinese with English abstract)
[19] LIU L L, SU S G, YANG R N, et al., 2019. Characteristics and research significance of matrix minerals in Tanling polyphenocryst plagioporphyry, Wu'an, Hebei Province[J]. Earth Science Frontiers, 26(1): 286-299. (in Chinese with English abstract)
[20] LUO Z H, LU X X, CHEN B H, et al. , 2009. Introduction to magmatic fluid mineralization[M]. Beijing: Geological Publishing House. (in Chinese)
[21] LUO Z H, YANG Z F, DAI GENG, et al., 2013. Crystal populations of igneous rocks and their implications in genetic mineralogy[J]. Geology in China, 40(1): 176-181. (in Chinese with English abstract)
[22] LUO Z H, LIU C, SU S G, 2014. Understanding the physical processes in magmatic systems[J]. Acta Petrologica Sinica, 30(11): 3113-3119. (in Chinese with English abstract)
[23] MARSH B D, 1996. Solidification fronts and magmatic evolution[J]. Mineralogical Magazine, 60(398): 5-40. doi: 10.1180/minmag.1996.060.398.03
[24] MARSH B D, 2002. On bimodal differentiation by solidification front instability in basaltic magmas, part 1: basic mechanics[J]. Geochimica et Cosmochimica Acta, 66(12): 2211-2229. doi: 10.1016/S0016-7037(02)00905-5
[25] MILLER C F , STODDARD E F , BRADFISH L J , et al. , 1981. Composition of Plutonic Musgovite: Genetic Implications[J]. Canadian Mineral, 19(1): 25-34.
[26] MILLER C F, WARK D A, 2008. Supervolcanoes and their explosive supereruptions[J]. Elements, 4(1): 11-15. doi: 10.2113/GSELEMENTS.4.1.11
[27] Naldrett A J, 1989. Magmatic sulfide deposits[M]. New York: Oxford University Press.
[28] OTTEN M T, 1984. The origin of brown hornblende in the Artfjället gabbro and dolerites[J]. Contributions to Mineralogy and Petrology, 86(2): 189-199. doi: 10.1007/BF00381846
[29] RIDOLFI F, PUERINI M, RENZULLI A, et al., 2008. The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products[J]. Journal of Volcanology and Geothermal Research, 176(1): 94-106. doi: 10.1016/j.jvolgeores.2008.03.003
[30] RIDOLFI F, RENZULLI A, PUERINI M, 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes[J]. Contributions to Mineralogy and Petrology, 160(1): 45-66. doi: 10.1007/s00410-009-0465-7
[31] SELBY D, NESBITT B E, 2000. Chemical composition of biotite from the Casino porphyry Cu–Au–Mo mineralization, Yukon, Canada: evaluation of magmatic and hydrothermal fluid chemistry[J]. Chemical Geology, 171(1-2): 77-93. doi: 10.1016/S0009-2541(00)00248-5
[32] SHEN J F, LI S R, HUANG S F, et al., 2021. The decennary new advances on the genetic mineralogy and prospecting mineralogy (2010-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 610-623. (in Chinese with English abstract)
[33] SUN J Y, YU W J, CUI J W, et al., 2019a. The petrogenesis and tectonic setting of the ore-bearing mafic layered intrusions in Lala area, Western Sichuan[J]. Journal of Geomechanics, 25(1): 139-150. (in Chinese with English abstract)
[34] SUN J Y, YU W J, TANG Z X, et al., 2019b. Discovery of the ore-bearing mafic layered sill in the Lala Fe-Cu ore district, western Sichuan Province, China and its implications for petrogenesis and metallogenesis[J]. Earth Science Frontiers, 26(1): 313-325. (in Chinese)
[35] TANG Z Y, LI J, DENG C Z, et al., 2023. Crystallization conditions of magma from Longmen potassic pluton of the Trans-North China Orogen, North China Craton: constraints from mineral chemistry and zircon trace element[J]. Acta Petrologica Sinica, 39(5): 1370-1386. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.05.10
[36] WANG X X, WANG T, CHEN X D, et al., 2024. Regional variation of biotite composition of granitoid and its significance to deep crust component and mineralization: a case study on biotite from Early Mesozoic granitoid in the Qinling orogen[J]. Acta Petrologica Sinica, 40(3): 811-826. (in Chinese with English abstract) doi: 10.18654/1000-0569/2024.03.08
[37] WANG Y, PEATE I U, LUO Z H, et al., 2019. Rifting in SW China: structural and sedimentary investigation of the initial crustal response to emplacement of the Permian Emeishan LIP[J]. Geological Magazine, 156(4): 745-758. doi: 10.1017/S0016756818000171
[38] WANG Y C, LIU X, ZHAO Y Y, et al., 2025. Compositional characteristics of hornblende and biotite from Longgouhe intrusive rocks in upper Heilongjiang Basin and their significance[J]. Chinese Journal of Geology, 60(3): 877-889. (in Chinese with English abstract)
[39] XIA Y Q, TUO M J, LI N, et al., 2024. Geochemical characteristics and geological significance of biotite in granite of Dahongliutan area in the West Kunlun Orogen[J]. Chinese Journal of Geology, 59(2): 404-419. (in Chinese with English abstract)
[40] YU W J, LUO Z H, LIU Y S, et al., 2017. Petrogenesis of the Lala iron-copper deposit: evidence by cryptoexplosive breccia CSD data and their zircon U-Pb data[J]. Acta Petrologica Sinica, 33(3): 925-941. (in Chinese with English abstract)
[41] YU W J, LUO Z H, LIU Y S, et al., 2019. Genesis of the Lala iron-copper deposit: evidence from petrography of spilite-keratophyre formation and related geochemical data[J]. Earth Science Frontiers, 26(1): 300-312. (in Chinese with English abstract)
[42] ZIEG M J, MARSH B D, 2012. Multiple reinjections and crystal-mush compaction in the Beacon Sill, McMurdo Dry Valleys, Antarctica[J]. Journal of Petrology, 53(12): 2567-2591. doi: 10.1093/petrology/egs059
[43] 白洋, 苏本勋, 肖燕, 等, 2023. Co-Ni在镁铁-超镁铁层状岩体中的分布特征及对岩浆成矿的指示: 以Stillwater岩体为例[J]. 岩石学报, 39(4): 1172-1184. doi: 10.18654/1000-0569/2023.04.15
[44] 包从法, 佘宇伟, 路永严, 等, 2024. 峨眉山太和岩体角闪石地球化学特征与岩浆演化[J]. 矿物学报, 44(2): 178-187.
[45] 程金华, 罗照华, 黑慧欣, 等, 2017. 白马铁矿青杠坪矿段顶部细粒橄榄辉长岩中富角闪石细脉成因及其找矿意义[J]. 地学前缘, 24(3): 276-287.
[46] 郭耀宇, 和文言, 李在春, 等, 2015. 西秦岭格尔括合花岗闪长斑岩岩石成因: 黑云母矿物学特征约束[J]. 岩石学报, 31(11): 3380-3390.
[47] 胡宝群, 吕古贤, 王方正, 等, 2011. 岩石圈中的地压梯度及其对地质作用过程的影响[C]//中国矿物岩石地球化学学会第13届学术年会论文集. 广州: 中国矿物岩石地球化学学会: 34.
[48] 季根源, 江思宏, 张龙升, 等, 2021. 大兴安岭南段毛登矿区阿鲁包格山岩体成岩成矿意义: 锆石、角闪石和黑云母矿物学证据[J]. 矿床地质, 40(3): 449-474.
[49] 李季霖, 陈正乐, 周涛发, 等, 2021. 东天山觉罗塔格构造带钙碱性侵入岩角闪石矿物学特征及其对区域找矿的启示[J]. 大地构造与成矿学, 45(3): 534-552.
[50] 刘璐璐, 苏尚国, 杨睿娜, 等, 2019. 河北武安坦岭多斑斜长斑岩中基质矿物特征及其研究意义[J]. 地学前缘, 26(1): 286-299.
[51] 罗照华, 卢欣祥, 陈必河, 等, 2009. 透岩浆流体成矿作用导论[M]. 北京: 地质出版社.
[52] 罗照华, 杨宗锋, 代耕, 等, 2013. 火成岩的晶体群与成因矿物学展望[J]. 中国地质, 40(1): 176-181. doi: 10.3969/j.issn.1000-3657.2013.01.012
[53] 罗照华, 刘翠, 苏尚国, 2014. 理解岩浆系统的物理过程[J]. 岩石学报, 30(11): 3113-3119.
[54] 申俊峰, 李胜荣, 黄绍锋, 等, 2021. 成因矿物学与找矿矿物学研究进展(2010—2020)[J]. 矿物岩石地球化学通报, 40(3): 610-623.
[55] 孙君一, 于文佳, 崔加伟, 等, 2019a. 川西拉拉含矿镁铁质层状岩体的成因及构造背景[J]. 地质力学学报, 25(1): 139-150.
[56] 孙君一, 于文佳, 唐泽勋, 等, 2019b. 川西拉拉Fe-Cu矿区含矿镁铁质层状岩席的首次发现及其成岩成矿意义[J]. 地学前缘, 26(1): 313-325.
[57] 唐宗源, 李杰, 邓昌州, 等, 2023. 华北克拉通中部造山带龙门钾质岩浆结晶条件: 矿物化学和锆石微量元素的约束[J]. 岩石学报, 39(5): 1370-1386. doi: 10.18654/1000-0569/2023.05.10
[58] 王晓霞, 王涛, 陈小丹, 等, 2024. 花岗质岩石中黑云母成分区域性变化对深部物质示踪及成矿的约束: 以秦岭地区为例[J]. 岩石学报, 40(3): 811-826. doi: 10.18654/1000-0569/2024.03.08
[59] 王远超, 刘璇, 赵元艺, 等, 2025. 上黑龙江盆地龙沟河岩体角闪石和黑云母矿物成分特征及其成岩成矿意义[J]. 地质科学, 60(3): 877-889. doi: 10.12017/dzkx.2025.058
[60] 夏永旗, 庹明洁, 李诺, 等, 2024. 西昆仑大红柳滩花岗岩中黑云母地球化学特征及地质意义[J]. 地质科学, 59(2): 404-419. doi: 10.12017/dzkx.2024.029
[61] 于文佳, 罗照华, 刘永顺, 等, 2017. 拉拉铁铜矿床成因: 来自隐爆角砾岩结构定量化和锆石U-Pb年代学的证据[J]. 岩石学报, 33(3): 925-941.
[62] 于文佳, 罗照华, 刘永顺, 等, 2019. 拉拉铁铜矿床成因: 来自细碧-角斑岩岩相学和地球化学的证据[J]. 地学前缘, 26(1): 300-312.
-