Progress in the application of microseismic monitoring in the operation of underground gas storage
-
摘要:
地下储气库在调节天然气供需、保障能源安全及优化市场运营中具有重要作用,其安全运行依赖微地震监测技术。微地震监测通过捕捉天然气注采过程中应力扰动引起岩体破裂产生的微弱信号,为储气库盖层密封性评估与风险预警提供关键数据支持。文章系统综述了微地震监测技术的原理、方法及应用。首先阐述微地震监测的技术框架,包括系统部署、数据采集与信号处理流程;进而结合国内外典型实例(新疆 H 储气库、唐山 M 储气库、金坛盐穴储气库、意大利 Minerbio Stoccaggio 储气库、丹麦 Stenlille 储气库和西班牙 Castor 储气库)分析该技术在实时监测、运行参数优化及安全评估中的有效性;最后展望未来发展趋势,提出技术智能化、多学科融合、实时远程监测及国际标准化的研究方向,为储气库安全运营与技术创新提供参考。
Abstract:Objective Underground gas storage (UGS) systems are critical for ensuring the flexibility, reliability, and safety of natural gas supply. Microseismic monitoring has emerged as a key technology for assessing the integrity of caprock seals and evaluating dynamic geomechanical responses during gas injection and withdrawal operations. This study aims to systematically summarize the technical framework, implementation practices, and engineering benefits of microseismic monitoring in UGS applications.
Methods The study integrates technical principles and field experiences from a range of UGS types, including depleted reservoirs, aquifers, and salt caverns. Monitoring approaches are categorized into surface, shallow-borehole, and deep-borehole networks. Key procedures including signal preprocessing, phase picking, event detection, location methods (arrival-time based and waveform stacking), and mechanism analysis are reviewed. Case studies from China (e.g., Hutubi, Tangshan M, and Jintan UGS) and Europe (e.g., Minerbio, Stenlille, Castor) are analyzed to demonstrate the effectiveness of microseismic monitoring under varying geological conditions.
Results Quantitative findings from multiple UGS sites indicate that microseismic events typically range from ML −3.0 to 2.0, reflecting subtle stress perturbations. For instance, 229 events were recorded at the Hutubi UGS, exhibiting scattered distributions away from major faults and indicating effective caprock sealing. At the Jintan salt cavern UGS, 419 events within 23 days revealed dense clustering near cavern boundaries, enabling real-time evaluation of cavern stability. At the Tangshan M oilfield-based UGS, limited events were detected despite pressures exceeding 30 MPa, with analysis revealing insufficient sensitivity of surface and shallow monitoring arrays for 4-km-deep reservoirs. Comparative analysis of injection parameters and microseismicity demonstrated a stronger correlation with pressure variation than with injection volume. Additionally, the Castor UGS failure case in Spain, where delayed detection of fault reactivation led to M 4+ earthquakes and project termination, highlights the consequences of inadequate real-time monitoring.
Conclusion Microseismic monitoring enables real-time assessment of stress evolution and caprock integrity, supporting risk mitigation and operational optimization throughout the UGS lifecycle. Gas and oil reservoir-type UGSs prioritize deep fault reactivation monitoring, while salt cavern UGSs focus on cavern wall deformation. Deep borehole sensors and dense arrays are essential for improving detection thresholds and depth accuracy. Future advancements should integrate fiber-optic sensing, machine learning algorithms, real-time data streaming, and interdisciplinary modeling to enhance early warning capability and ensure long-term operational safety of UGS systems.
-
-
图 1 全球储气库发展情况(International Gas Union,2023)
Figure 1.
图 5 盐穴储气库微地震事件数量随时间演变图(据井岗等,2018b修改)
Figure 5.
-
[1] AFSHARI MOEIN M J, TORMANN T, VALLEY B, et al., 2018. Maximum magnitude forecast in hydraulic stimulation based on clustering and size distribution of early microseismicity[J]. Geophysical Research Letters, 45(14): 6907-6917. doi: 10.1029/2018GL077609
[2] AKRAM J, 2018. An application of waveform denoising for microseismic data using polarization–linearity and time–frequency thresholding[J]. Geophysical Prospecting, 66(5): 872-893. doi: 10.1111/1365-2478.12597
[3] AKRAM J, EATON D W, 2016. A review and appraisal of arrival-time picking methods for downhole microseismic data[J]. Geophysics, 81(2): KS71-KS91. doi: 10.1190/geo2014-0500.1
[4] ANIKIEV D, BIRNIE C, WAHEED U B, et al., 2023. Machine learning in microseismic monitoring[J]. Earth-Science Reviews, 239: 104371. doi: 10.1016/j.earscirev.2023.104371
[5] BAZIW E, WEIR-JONES I, 2002. Application of Kalman filtering techniques for microseismic event detection[J]. Pure and Applied Geophysics, 159(1-3): 449-471.
[6] CARANNANTE S, D’ALEMA E, AUGLIERA P, et al., 2020. Improvement of microseismic monitoring at the gas storage concession “Minerbio Stoccaggio” (Bologna, Northern Italy)[J]. Journal of Seismology, 24(5): 967-977. doi: 10.1007/s10950-019-09879-2
[7] CHANG X, LI Z, WANG P, et al., 2018. Micro-seismic location based on frequency attenuation compensation[J]. Chinese Journal of Geophysics, 61(1): 250-257. (in Chinese with English abstract)
[8] CHEN H C, TANG Y C, NIU F L, et al., 2016. Recent advances in microseismic monitoring and implications for hydraulic fracturing mapping[J]. Petroleum Science Bulletin, 1(2): 198-208. (in Chinese with English abstract)
[9] CHEN Y K, SAVVAIDIS A, FOMEL S, et al., 2023. RFloc3D: a machine-learning method for 3-D microseismic source location using P- and S-wave arrivals[J]. IEEE Transactions on Geoscience and Remote Sensing, 61: 5901310.
[10] DAHL-JENSEN T, JAKOBSEN R, BECH T B, et al. , 2021. Monitoring for seismological and geochemical groundwater effects of high-volume pumping of natural gas at the Stenlille underground gas storage facility, Denmark[J]. GEUS Bulletin, 47.
[11] DING G S, WEI H, 2020. Review on 20 years’ UGS construction in China and the prospect[J]. Oil & Gas Storage and Transportation, 39(1): 25-31. (in Chinese with English abstract)
[12] DING G S, WANG Y, WANYAN Q Q, et al., 2023. Construction difficulties and research directions of various complex UGSs[J]. Natural Gas Industry, 43(10): 14-23. (in Chinese with English abstract)
[13] FENG Q, HAN L G, PAN B Z, et al., 2022. Microseismic source location using deep reinforcement learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 60: 4510209.
[14] GAO G L, LIU W, LI C, et al., 2023. A calculation method for the storage capacity of UGS rebuilt from oil reservoirs[J]. Natural Gas Industry, 43(10): 132-140. (in Chinese with English abstract)
[15] GRECHKA V, 2010. Data-acquisition design for microseismic monitoring[J]. The Leading Edge, 29(3): 278-282. doi: 10.1190/1.3353723
[16] HU Y, WANG M Y, LUO Y, et al., 2024. Technical basis and development idea for the construction of "Gas Storage Capacity in Southwest China"[J]. Natural Gas Industry, 44(2): 1-13. (in Chinese with English abstract)
[17] International Gas Union. 2023. Global Gas Storage Development [R]. International Gas Union.
[18] JING G, HE J, CHEN J S, et al., 2018a. Application of real time micro-seismic technique to the stability monitoring of salt cavern gas storage[J]. Oil & Gas Storage and Transportation, 37(7): 751-756. (in Chinese with English abstract)
[19] JING G, LI L, BA J H, et al., 2018b. Real-time microseism monitoring of stability of salt-cavern gas storage in Jintan[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 40(5): 140-146. (in Chinese with English abstract)
[20] KARRENBACH M, KAHN D, COLE S, et al., 2017. Hydraulic-fracturing-induced strain and microseismic using in situ distributed fiber-optic sensing[J]. The Leading Edge, 36(10): 837-844. doi: 10.1190/tle36100837.1
[21] KARRENBACH M, COLE S, RIDGE A, et al., 2019. Fiber-optic distributed acoustic sensing of microseismicity, strain and temperature during hydraulic fracturing[J]. Geophysics, 84(1): D11-D23. doi: 10.1190/geo2017-0396.1
[22] KIM K I, MIN K B, KIM K Y, et al., 2018. Protocol for induced microseismicity in the first enhanced geothermal systems project in Pohang, Korea[J]. Renewable and Sustainable Energy Reviews, 91: 1182-1191. doi: 10.1016/j.rser.2018.04.062
[23] LI H J, WANG R Q, CAO S Y, et al., 2016. Weak signal detection using multiscale morphology in microseismic monitoring[J]. Journal of Applied Geophysics, 133: 39-49. doi: 10.1016/j.jappgeo.2016.07.015
[24] LI J L, ZHANG H J, RODI W L, et al., 2013. Joint microseismic location and anisotropic tomography using differential arrival times and differential backazimuths[J]. Geophysical Journal International, 195(3): 1917-1931. doi: 10.1093/gji/ggt358
[25] Li J J, 2022. Development status and prospect of underground gas storage in China[J]. Oil & Gas Storage and Transportation, 41(7): 780-786. (in Chinese)
[26] LI J, TIAN J X, WANG B, et al., 2023. Accumulation conditions and exploration potential of deep natural gas in the Qaidam Basin[J]. Journal of Geomechanics, 29(5): 618-630. (in Chinese with English abstract)
[27] LI L, TAN J Q, XIE Y J, et al., 2019. Waveform-based microseismic location using stochastic optimization algorithms: a parameter tuning workflow[J]. Computers & Geosciences, 124: 115-127.
[28] LI S H, DUAN J L, 2023-06-30(001). Yang Chunhe: "Energy Guard" who dares to ask for space underground[N]. China Science Daily. (in Chinese)
[29] LI X, MAIN I, JUPE A, 2018. Induced seismicity at the UK ‘hot dry rock’ test site for geothermal energy production[J]. Geophysical Journal International, 214(1): 331-344. doi: 10.1093/gji/ggy135
[30] LI Z, CHANG X, YAO Z X, et al., 2019. Fracture monitoring and reservoir evaluation by micro-seismic method[J]. Chinese Journal of Geophysics, 62(2): 707-719. (in Chinese with English abstract)
[31] LIAO W, LIU G L, DAI Y, et al., 2020. Design and application of micro-seismic monitoring system for gas reservoir-type gas storage: case study of Xinjiang H gas storage[J]. Natural Gas Geoscience, 31(11): 1654-1662. (in Chinese with English abstract)
[32] LIAO W, LIU G L, CHEN R H, et al., 2021. Evaluation on the dynamic sealing capacity of underground gas storages rebuilt from gas reservoirs: a case study of Xinjiang H underground gas storage[J]. Natural Gas Industry, 41(3): 133-141. (in Chinese with English abstract)
[33] LIAO W, WEI L L, LUO H T, et al., 2023. Application of microseismic monitoring in evaluation of geological body integrity for UGS in oil-gas fields[J]. Oil Geophysical Prospecting, 58(4): 913-921. (in Chinese with English abstract)
[34] LIU J X, LIU Y, 2022. Development status and prospects of China’s underground gas storage construction[J]. Applied Chemical Industry, 51(4): 1136-1140, 1145. (in Chinese with English abstract)
[35] LIU T X, LI Q, LI X Y, et al., 2024. A critical review of distributed fiber optic sensing applied to geologic carbon dioxide storage[J]. Greenhouse Gases: Science and Technology, 14(4): 676-694. doi: 10.1002/ghg.2279
[36] LIU W, LI Q H, YANG C H, et al., 2023. The role of underground salt caverns for large-scale energy storage: a review and prospects[J]. Energy Storage Materials, 63: 103045. doi: 10.1016/j.ensm.2023.103045
[37] LIU Y L, TIAN Y, FENG X, et al., 2013. Review of microseism technology and its application[J]. Progress in Geophysics, 28(4): 1801-1808. (in Chinese with English abstract)
[38] MA K, TANG C A, WANG L X, et al., 2016. Stability analysis of underground oil storage caverns by an integrated numerical and microseismic monitoring approach[J]. Tunnelling and Underground Space Technology, 54: 81-91. doi: 10.1016/j.tust.2016.01.024
[39] MAXWELL S, 2014. Microseismic imaging of hydraulic fracturing: improved engineering of unconventional shale reservoirs[M]. Tulsa: Society of Exploration Geophysicists: 1-197.
[40] MAXWELL S C, RUTLEDGE J, JONES R, et al., 2010. Petroleum reservoir characterization using downhole microseismic monitoring[J]. Geophysics, 75(5): 75A129-75A137. doi: 10.1190/1.3477966
[41] MCCLELLAN J H, EISNER L, LIU E T, et al., 2018. Array processing in microseismic monitoring: detection, enhancement, and localization of induced seismicity[J]. IEEE Signal Processing Magazine, 35(2): 99-111. doi: 10.1109/MSP.2017.2776798
[42] MENDECKI A J, 1996. Seismic monitoring in mines[M]. Dordrecht: Springer.
[43] MOUSAVI S M, LANGSTON C A, HORTON S P, 2016. Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform[J]. Geophysics, 81(4): V341-V355. doi: 10.1190/geo2015-0598.1
[44] PENG P A, HE Z X, WANG L G, et al., 2020. Automatic classification of microseismic records in underground mining: a deep learning approach[J]. IEEE Access, 8: 17863-17876. doi: 10.1109/ACCESS.2020.2967121
[45] SHAO X G, DONG H L, DAI L Y, 2018. Review of microseismic monitoring technology[J]. Journal of Jilin University (Information Science Edition), 36(1): 55-61. (in Chinese with English abstract)
[46] SKINNER N G, MAIDA JR J L, STARK D, 2024. Fiber optic sensing in the oil and gas industry[M]//UDD E, SPILLMAN JR W B. Fiber optic sensors: an introduction for engineers and scientists. 3rd ed. Hoboken: Wiley: 495-512.
[47] SU X, ZHANG L, LI Y, 2007. Status and development trend of foreign underground gas storages[J]. Natural Gas and Oil, 25(4): 1-4, 7. (in Chinese with English abstract)
[48] TEZUKA K, NIITSUMA H, 2000. Stress estimated using microseismic clusters and its relationship to the fracture system of the Hijiori hot dry rock reservoir[J]. Developments in Geotechnical Engineering, 84: 55-70.
[49] VAN DER BAAN M, EATON D, DUSSEAULT M, 2013. Microseismic monitoring developments in hydraulic fracture stimulation[C]//Proceedings of ISRM international conference for effective and sustainable hydraulic fracturing. Brisbane: ISRM.
[50] VERDON J P, HORNE S A, CLARKE A, et al., 2020. Microseismic monitoring using a fiber-optic distributed acoustic sensor array[J]. Geophysics, 85(3): KS89-KS99.
[51] VILARRASA V, DE SIMONE S, CARRERA J, et al., 2021. Unraveling the causes of the seismicity induced by underground gas storage at castor, Spain[J]. Geophysical Research Letters, 48(7): e2020GL092038. doi: 10.1029/2020GL092038
[52] WAMRIEW D, PEVZNER R, MALTSEV E, et al., 2021. Deep neural networks for detection and location of microseismic events and velocity model inversion from microseismic data acquired by distributed acoustic sensing array[J]. Sensors, 21(19): 6627. doi: 10.3390/s21196627
[53] WANG H, LI M, SHANG X F, 2016. Current developments on micro-seismic data processing[J]. Journal of Natural Gas Science and Engineering, 32: 521-537. doi: 10.1016/j.jngse.2016.02.058
[54] WANG L C, CHANG X, WANG Y B, 2016. Locating micro-seismic events based on interferometric traveltime inversion[J]. Chinese Journal of Geophysics, 59(8): 3037-3045. (in Chinese with English abstract)
[55] WANYAN Q Q, DING G S, ZHAO Y, et al., 2018. Key technologies for salt-cavern underground gas storage construction and evaluation and their application[J]. Natural Gas Industry, 38(5): 111-117. (in Chinese with English abstract)
[56] WANYAN Q Q, WANG Y, LI D X, et al., 2023. Technical progress of construction and safe operation of underground gas storage under complex geological conditions[J]. Oil & Gas Storage and Transportation, 42(10): 1092-1099. (in Chinese with English abstract)
[57] WEI L L, JING G, XU G, et al., 2018. Application of microseismic monitoring technology in underground gas storage[J]. Natural Gas Industry, 38(8): 41-46. (in Chinese with English abstract)
[58] YANG X P, 2023. Construction demand and key technology development direction of underground gas storage in China[J]. Oil & Gas Storage and Transportation, 42(10): 1100-1106. (in Chinese with English abstract)
[59] ZHANG F Q, ZENG P, ZHOU L J, et al. , 2021. Underground gas storage research status quo and application expectations at home and abroad[J]. Coal Geology of China, 33(10): 39-42, 52. (in Chinese with English abstract)
[60] ZHANG T, ZHU J J, ZHANG S Y, et al., 2023. Optimization of UGS capacity under the "Two-Part Pricing" model[J]. Natural Gas Industry, 43(6): 148-155. (in Chinese with English abstract)
[61] ZHAO F F, MA T, XU T, 2014. A review of the travel-time calculation methods of seismic first break[J]. Progress in Geophysics, 29(3): 1102-1113. (in Chinese with English abstract)
[62] ZHEBEL O, EISNER L, 2015. Simultaneous microseismic event localization and source mechanism determination[J]. Geophysics, 80(1): KS1-KS9. doi: 10.1190/geo2014-0055.1
[63] ZHENG D W, XU H C, WANG J M, et al., 2017. Key evaluation techniques in the process of gas reservoir being converted into underground gas storage[J]. Petroleum Exploration and Development, 44(5): 794-801. (in Chinese with English abstract)
[64] ZHENG D W, XU H C, WANG J M, et al., 2017. Key evaluation techniques in the process of gas reservoir being converted into underground gas storage[J]. Petroleum Exploration and Development, 44(5): 840-849. doi: 10.1016/S1876-3804(17)30095-2
[65] ZHU W Q, MOUSAVI S M, BEROZA G C, 2019. Seismic signal denoising and decomposition using deep neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 57(11): 9476-9488. doi: 10.1109/TGRS.2019.2926772
[66] ZOU X B, LI X J, SHAO Y X, et al., 2024. Tectonic deformation and seismic mechanism of the 2021 Aksai MS 5.5 earthquake[J]. Journal of Geomechanics, 30(6): 978-990. (in Chinese with English abstract)
[67] 陈海潮, 唐有彩, 钮凤林, 等, 2016. 利用微地震参数评估水力压裂改造效果研究进展[J]. 石油科学通报, 1(2): 198-208.
[68] 丁国生, 魏欢, 2020. 中国地下储气库建设20年回顾与展望[J]. 油气储运, 39(1): 25-31.
[69] 丁国生, 王云, 完颜祺琪, 等, 2023. 不同类型复杂地下储气库建库难点与攻关方向[J]. 天然气工业, 43(10): 14-23. doi: 10.3787/j.issn.1000-0976.2023.10.002
[70] 高广亮, 刘伟, 李聪, 等, 2023. 油藏改建地下储气库库容量计算方法[J]. 天然气工业, 43(10): 132-140. doi: 10.3787/j.issn.1000-0976.2023.10.014
[71] 胡勇, 王梦雨, 罗瑜, 等, 2024. “中国西南储气能力”建设的技术基础与发展思考[J]. 天然气工业, 44(2): 1-13. doi: 10.3787/j.issn.1000-0976.2024.02.001
[72] 井岗, 何俊, 陈加松, 等, 2018a. 盐穴储气库稳定性的实时微地震监测[J]. 油气储运, 37(7): 751-756.
[73] 井岗, 李龙, 巴金红, 等, 2018b. 实时微地震监测金坛盐穴储气库稳定性[J]. 西南石油大学学报(自然科学版), 40(5): 140-146.
[74] 李建君, 2022. 中国地下储气库发展现状及展望[J]. 油气储运, 41(7): 780-786. doi: 10.6047/j.issn.1000-8241.2022.07.004
[75] 李思辉, 段金利, 2023-06-30(001). 杨春和: 敢向地下要空间的“能源卫士”[N]. 中国科学报.
[76] 廖伟, 刘国良, 戴勇, 等, 2020. 气藏型储气库微地震监测系统设计及应用: 以新疆H储气库为例[J]. 天然气地球科学, 31(11): 1654-1662.
[77] 廖伟, 刘国良, 陈如鹤, 等, 2021. 气藏型地下储气库动态密封性评价: 以新疆H地下储气库为例[J]. 天然气工业, 41(3): 133-141. doi: 10.3787/j.issn.1000-0976.2021.03.016
[78] 廖伟, 魏路路, 罗海涛, 等, 2023. 微地震监测在油气藏型储气库地质体完整性评价中的应用[J]. 石油地球物理勘探, 58(4): 913-921.
[79] 柳云龙, 田有, 冯晅, 等, 2013. 微震技术与应用研究综述[J]. 地球物理学进展, 28(4): 1801-1808. doi: 10.6038/pg20130421
[80] 邵晓光, 董宏丽, 代丽艳, 2018. 微地震监测技术综述[J]. 吉林大学学报(信息科学版), 36(1): 55-61. doi: 10.3969/j.issn.1671-5896.2018.01.009
[81] 完颜祺琪, 丁国生, 赵岩, 等, 2018. 盐穴型地下储气库建库评价关键技术及其应用[J]. 天然气工业, 38(5): 111-117. doi: 10.3787/j.issn.1000-0976.2018.05.013
[82] 完颜祺琪, 王云, 李东旭, 等, 2023. 复杂地质条件下储气库建设安全运行技术进展[J]. 油气储运, 42(10): 1092-1099.
[83] 魏路路, 井岗, 徐刚, 等, 2018. 微地震监测技术在地下储气库中的应用[J]. 天然气工业, 38(8): 41-46. doi: 10.3787/j.issn.1000-0976.2018.08.006
[84] 阳小平, 2023. 中国地下储气库建设需求与关键技术发展方向[J]. 油气储运, 42(10): 1100-1106. doi: 10.6047/j.issn.1000-8241.2023.10.003
[85] 张福强, 曾平, 周立坚, 等, 2021. 国内外地下储气库研究现状与应用展望[J]. 中国煤炭地质, 33(10): 39-42, 52. doi: 10.3969/j.issn.1674-1803.2021.10.06
[86] 张涛, 主俊杰, 张霜艳, 等, 2023. 基于“两部制”背景的地下储气库库容优化[J]. 天然气工业, 43(6): 148-155. doi: 10.3787/j.issn.1000-0976.2023.06.015
-