Crustal anatexis and ductile superimposition in the Culai Mountain region, western Shandong Province: Constraints on the Neoarchean tectonic framework of the eastern North China Craton
-
摘要:
鲁西位于华北克拉通东部,是太古宙基底典型分布区域之一,且整体呈北西—南东向带状展布。该地区不仅保留了新太古代不同阶段、不同类型的岩浆作用记录,同时保存了丰富的深熔−流变构造及韧性变形叠加记录,对深入了解华北克拉通该时期构造演化历史具有重要意义。徂徕山地区位于鲁西构造带中部(B带),深熔作用和韧性变形均十分发育,是深入认识鲁西地壳深熔作用及叠加变形的最佳场所。因此,选择该地区黄石崖村典型露头的混合岩作为研究对象,通过系统的野外构造解析、室内岩相学及LA-ICP-MS锆石U-Pb年代学分析,进而限定新太古代晚期深熔作用和韧性变形的时空耦合关系及其构造演化。野外观察显示该地区构造线整体呈北西—南东向展布,斜长角闪岩中发育大量长英质熔体,主要沿其面理呈条带状展布,少数呈网脉状或浸染状,揉流褶皱发育。岩相学观察可见石英颗粒沿着受到侵蚀的钾长石和斜长石的不规则边界分布,含有小熔体囊、串珠状石英和熔体膜。二者综合指示该区发生强烈深熔作用,且新生的熔体降低了整体的岩石强度,令其更容易受到后期韧性变形的叠加。同时,北东—南西向水平挤压应力又进一步促进了区域北西—南东向伸展,与斜长角闪岩形成一致的近直立面理和近水平矿物拉伸线理,显示出区域水平向近压扁型应变为主导的变形特征。为限定区域变形时代,文章选取该区域典型的残留体−熔体−脉体开展了LA-ICP-MS锆石U-Pb年龄测试。结果显示,残留相斜长角闪岩的熔体结晶年龄为~2503 Ma,代表了区域深熔作用的时代。同构造二长花岗岩获得了~2497 Ma的结晶年龄,代表了区域同构造岩浆事件的时代,而未变形的伟晶岩脉体形成于~2465 Ma,进而限定了区域韧性变形时代为2497~2465 Ma。综上所述,鲁西在新太古代晚期经历了强烈的深熔作用,并快速叠加了北东—南西水平向挤压应力场下以近压扁型应变为主的变形,深熔作用又促进了北西—南东向伸展韧性变形的发育。二者时空上密切协同作用,最终造就了鲁西地区新太古代地壳构造变形样式。
Abstract:Objective Western Shandong is located in the core area of the eastern North China Craton and represents a typical Archean basement exposure. It extends as an overall NW–SE trending linear belt. This area preserves not only multiple phases of magmatic records spanning the early to late Neoarchean but also abundant anatectic–rheological structures overprinted by ductile deformation fabrics. These features are of great significance for understanding the Neoarchean tectonic evolution of the North China Craton. The Culai Mountain region is one of the most promising areas for such geological studies. Situated in the core of the tectonic belt (Belt B) of western Shandong, it is characterized by well-developed anatexis and ductile deformation. This makes it an ideal location for investigating the spatial and temporal relationships between crustal anatexis and ductile deformation.
Methods In this study, we selected a representative migmatite outcrop at the Huangshiya Village and conducted systematic field structural analyses, petrographic observations, and LA–ICP–MS zircon U–Pb geochronology.
Results Field observations show that the structural lineaments in this region exhibit an overall NW–SE orientation. Numerous felsic melts developed within the amphibolites, mainly as bands along the foliation, with a few occurring in a network-like or disseminated pattern. Flow folds are well-developed. Petrographic observations demonstrate that quartz grains are distributed along the irregular, corroded boundaries of K-feldspar and plagioclase, containing small melt pockets, bead-like quartzs, and melt films. These features collectively indicate intense anatexis in the region. The newly generated melts reduced the overall rock strength, making it more susceptible to subsequent ductile deformation. Concurrently, NE–SW-oriented horizontal compressive stress further promoted NW–SE regional extension, consistent with the nearly vertical foliation and sub-horizontal mineral stretching lineations observed in the amphibolite. This suggests a deformation regime dominated by near-oblate strain. To constrain the timing of the regional deformation, we conducted LA-ICP-MS zircon U-Pb dating on representative pre-, syn-, and post-tectonic samples of the area. The results indicate that the residual amphibolite records a melt crystallization age of ~2503 Ma, representing the timing of the regional anatexis event. The syn-tectonic monzogranite yields a crystallization age of ~2497 Ma, reflecting a syn-tectonic magmatic event, while the undeformed pegmatite veins formed at ~2465 Ma, bracketing the regional ductile deformation at 2497-2465 Ma.
Conclusion In summary, the western Shandong region experienced intense anatexis in the late Neoarchean, which was rapidly overprinted by near-oblate strain-dominated shortening deformation under NE–SW-oriented horizontal compressive stress. The anatexis further facilitated the development of NW–SE-directed ductile deformation. The superimposition of these two events ultimately shaped the structural pattern of the Neoarchean crust of the western Shandong region. [Significance] This study provides new constraints that improve the understanding of the Neoarchean tectonic framework and structural patterns of the western Shandong region.
-
Key words:
- North China Craton /
- western Shandong /
- Culai Mountain /
- Late Neoarchean /
- anatexis /
- ductile deformation
-
-
[1] BUROV E B, 2011. Rheology and strength of the lithosphere[J]. Marine and Petroleum Geology, 28(8): 1402-1443. doi: 10.1016/j.marpetgeo.2011.05.008
[2] CAO G Q, 1996. Early Precambrian geology of western Shandong[M]. Beijing: Geology Press: 1-210. (in Chinese)
[3] CAVALCANTE G C G, VIEGAS G, ARCHANJO C J, et al., 2016. The influence of partial melting and melt migration on the rheology of the continental crust[J]. Journal of Geodynamics, 101: 186-199. doi: 10.1016/j.jog.2016.06.002
[4] CHEN Z, 2017. Numerical simulations of crustal melting and rheology and theirs geological constraints[D]. Changchun: Jilin University. (in Chinese with English abstract)
[5] CHENG Y Q, 1987. On migmatites and migmatization: half a century's recollection of certain related problems[J]. Bulletin of the Chinese Academy of Geological Sciences(2): 5-19. (in Chinese)
[6] DONG C Y, XIE H Q, KRÖNER A, et al., 2017. The complexities of zircon crystllazition and overprinting during metamorphism and anatexis: an example from the late Archean TTG terrane of western Shandong Province, China[J]. Precambrian Research, 300: 181-200. doi: 10.1016/j.precamres.2017.07.034
[7] DONG Y L, CAO S Y, ZHAN L F, et al., 2022. Tectono-magmatism evolution in the Gaoligong orogen belt during Neoproterozoic to Paleozoic: significance for assembly of east Gondwana[J]. Precambrian Research, 378: 106776. doi: 10.1016/j.precamres.2022.106776
[8] GAO L, LIU S W, ZHANG B, et al., 2019. A Ca. 2.8‐Ga plume‐induced intraoceanic arc system in the eastern North China Craton[J]. Tectonics, 38(5): 1694-1717. doi: 10.1029/2018TC005432
[9] GORCZYK W, VOGT K, 2015. Tectonics and melting in intra-continental settings[J]. Gondwana Research, 27(1): 196-208. doi: 10.1016/j.gr.2013.09.021
[10] GU D X, ZHANG J J, LIN C, et al. , 2022. Anatexis and resultant magmatism of the Ama Drime Massif: implications for Himalayan mid-Miocene tectonic regime transition[J]. Lithos, 424-425: 106773.
[11] HU Z P, ZHANG Y S, HU R, et al., 2016. Amphibole-bearing migmatite in North Dabie, eastern China: water-fluxed melting of the orogenic crust[J]. Journal of Asian Earth Sciences, 125: 100-116. doi: 10.1016/j.jseaes.2016.05.018
[12] KUSKY T M, POLAT A, WINDLEY B F, et al., 2016. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: a record of outward growth of Precambrian continents[J]. Earth-Science Reviews, 162: 387-432. doi: 10.1016/j.earscirev.2016.09.002
[13] LI J, LIU Y J, JIN W, et al., 2017. Neoarchean tectonics: insight from the Baijiafen ductile shear zone, eastern Anshan, Liaoning Province, NE China[J]. Journal of Asian Earth Sciences, 139: 165-182. doi: 10.1016/j.jseaes.2017.01.019
[14] LI J Y, CAO S Y, NEUBAUER F, et al. , 2021. Structure and spatial-temporal relationships of Eocene-Oligocene potassic magmatism linked to the Ailao Shan-Red River shear zone and post-collisional extension[J]. Lithos, 396-397: 106203.
[15] LI W Y, CAO S Y, DONG Y L, et al., 2023. Crustal anatexis and initiation of the continental-scale Chongshan strike-slip shear zone on the southeastern Xizang Plateau[J]. Tectonics, 42(4): e2023TC007864. doi: 10.1029/2023TC007864
[16] LI X H, TANG G Q, GONG B, et al., 2013. Qinghu zircon: a working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 58(36): 4647-4654. doi: 10.1007/s11434-013-5932-x
[17] LI Y, REN P, XIE H Q, et al., 2020. Anatomy of a Neoarchean geological section in the Lihang area, western Shandong: field observation and SHRIMP U-Pb zircon dating[J]. Earth Science, 45(9): 3341-3352. (in Chinese with English abstract)
[18] LI Y, XIE H Q, DONG C Y, et al., 2022. Zircon evolution from migmatite to crustally-derived granite: a case study of late Neoarchean migmatite in the Yishan area, western Shandong, North China Craton[J]. Gondwana Research, 112: 82-104. doi: 10.1016/j.gr.2022.09.008
[19] LIU S W, BAO H, GAO L, et al., 2021. Late Neoarchean metavolcanics and geodynamics regime in central and eastern North China Craton[J]. Acta Petrologica Sinica, 37(1): 113-128. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.01.08
[20] LUDWIG K R, 2012. User's manual for isoplot version 3.75-4.15: a Geochronological toolkit for Microsoft Excel[M]. Berkley: Berkeley Geochronological Centre Special Publication.
[21] PEARCE N J G, PERKINS W T, WESTGATE J A, et al., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials[J]. Geostandards Newsletter, 21(1): 115-144. doi: 10.1111/j.1751-908X.1997.tb00538.x
[22] REN P, XIE H Q, WANG S J, et al., 2015. 2.5 ~2.7 Ga tectono-thermal events in western Shandong geology and zircon SHRIMP dating of TTG rocks in Huangqian Reservoir, Taishan Mountain[J]. Geological Review, 61(5): 1068-1078. (in Chinese with English abstract)
[23] REN P, 2016. ~2.6 Ga tectono-thermal event in western Shandong Province: geology, SHRIMP zircon dating and geochemistry[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
[24] REN P, XIE H Q, WANG S J, et al., 2016. A ca. 2.60 Ga tectono-thermal event in Western Shandong Province, North China Craton from zircon U–Pb–O isotopic evidence: plume or convergent plate boundary process[J]. Precambrian Research, 281: 236-252. doi: 10.1016/j.precamres.2016.05.016
[25] REN P, XIE H Q, WANG S J, et al., 2017. ~2.6 Ga anatexis in western Shandong: geology and geochemistry of leucosomes in the Taishan area[J]. Chinese Journal of Geology, 52(4): 1097-1119. (in Chinese with English abstract)
[26] ROSENBERG C L, HANDY M R, 2005. Experimental deformation of partially melted granite revisited: implications for the continental crust[J]. Journal of Metamorphic Geology, 23(1): 19-28. doi: 10.1111/j.1525-1314.2005.00555.x
[27] SAWYER E W, 2008. Atlas of migmatites[M]. Ottawa: NRC Research Press.
[28] SAWYER E W, 2010. Migmatites formed by water-fluxed partial melting of a leucogranodiorite protolith: microstructures in the residual rocks and source of the fluid[J]. Lithos, 116(3-4): 273-286. doi: 10.1016/j.lithos.2009.07.003
[29] SAWYER E W, CESARE B, BROWN M, 2011. When the continental crust melts[J]. Elements, 7(4): 229-234. doi: 10.2113/gselements.7.4.229
[30] SLÁMA J, KOŠLER J, CONDON D J, et al., 2008. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005
[31] WAN Y S, LIU D Y, WANG S J, et al., 2010. Juvenile magmatism and crustal recycling at the end of the Neoarchean in western Shandong Province, North China Craton: evidence from SHRIMP zircon dating[J]. American Journal of Science, 310(10): 1503-1552. doi: 10.2475/10.2010.11
[32] WAN Y S, LIU D Y, WANG S J, et al., 2011. ~2.7 Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): further evidence of an understated event from U–Pb dating and Hf isotopic composition of zircon[J]. Precambrian Research, 186(1-4): 169-180. doi: 10.1016/j.precamres.2011.01.015
[33] WAN Y S, DONG C Y, LIU D Y, et al. , 2012a. Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: a review[J]. Precambrian Research, 222-223: 265-289.
[34] WAN Y S, DONG C Y, XIE H Q, et al., 2012a. Formation ages of Early Precambrian BIFs in the North China Craton: SHRIMP zircon U-Pb dating[J]. Acta Geologica Sinica, 86(9): 1447-1478. (in Chinese with English abstract)
[35] WAN Y S, WANG S J, LIU D Y, et al., 2012b. Redefinition of depositional ages of Neoarchean supracrustal rocks in western Shandong Province, China: SHRIMP U–Pb zircon dating[J]. Gondwana Research, 21(4): 768-784. doi: 10.1016/j.gr.2011.05.017
[36] WAN Y S, LIU D Y, WANG S J, et al., 2012b. Redefinition of Early Precambrian supracrustal rocks and formation age of BIF in western Shandong, North China Craton[J]. Acta Petrologica Sinica, 28(11): 3457-3475. (in Chinese with English abstract)
[37] WAN Y S, DONG C Y, WANG S J, et al., 2014a. Middle Neoarchean magmatism in western Shandong, North China Craton: SHRIMP zircon dating and LA-ICP-MS Hf isotope analysis[J]. Precambrian Research, 255: 865-884. doi: 10.1016/j.precamres.2014.07.016
[38] WAN Y S, XIE S W, YANG C H, et al., 2014b. Early Neoarchean (~2.7 Ga) tectono-thermal events in the North China Craton: a synthesis[J]. Precambrian Research, 247: 45-63. doi: 10.1016/j.precamres.2014.03.019
[39] WAN Y S, LIU D Y, DONG C Y, et al. , 2015. Formation and evolution of Archean continental crust of the North China Craton[M]//ZHAI M G. Precambrian geology of China. Berlin: Springer: 59-136.
[40] WAN Y S, WANG S J, REN P, et al., 2015. Neoarchean magmatism in the Culaishan Area, western Shandong: evidence from SHRIMP Zircon U-Pb dating[J]. Acta Geoscientica Sinica, 36(5): 634-646. (in Chinese with English abstract)
[41] WAN Y S, DONG C Y, REN P, et al., 2017. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: a synthesis[J]. Acta Petrologica Sinica, 33(5): 1405-1419. (in Chinese with English abstract)
[42] WAN Y S, XIE H Q, DONG C Y, et al., 2020. Timing of tectonothermal events in Archean basement of the North China Craton[J]. Earth Science, 45(9): 3119-3160. (in Chinese with English abstract)
[43] WAN Y S, DONG C Y, XIE H Q, et al., 2022. Huge growth of the late Mesoarchean-Early Neoarchean (2.6~3.0 Ga) continental crust in the North China Craton: a review[J]. Journal of Geomechanics, 28(5): 866-906. (in Chinese with English abstract)
[44] WANG D M, HU J M, ZHAO Y F, et al., 2024. Kinematics and geochronology of the ductile shear zones in the western Shandong granite-greenstone belt: implications for the Neoarchean plate tectonics of the North China Craton[J]. Precambrian Research, 411: 107509. doi: 10.1016/j.precamres.2024.107509
[45] WANG H B, CAO S Y, LI J Y, et al., 2022. High-pressure granulite-facies metamorphism and anatexis of deep continental crust: new insights from the Cenozoic Ailao Shan–Red River shear zone, Southeast Asia[J]. Gondwana Research, 103: 314-334. doi: 10.1016/j.gr.2021.10.010
[46] WANG W, 2015. Geochemistry of the meta-basalts from the Taishan Group in the western Shandong Province and its geological significance[J]. Acta Petrologica Sinica, 31(10): 2959-2973. (in Chinese with English abstract)
[47] WANG W, YANG E X, ZHAI M G, et al., 2013. Geochemistry of ~2.7 Ga basalts from Taishan area: Constraints on the evolution of Early Neoarchean granite-greenstone belt in western Shandong Province, China[J]. Precambrian Research, 224: 94-109.
[48] WANG W, ZHAI M G, WANG S J, et al., 2016. Neoarchean crustal evolution in western Shandong Province of the North China Craton: the role of 2.7-2.6 Ga magmatism[J]. Precambrian Research, 285: 170-185. doi: 10.1016/j.precamres.2016.09.010
[49] WANG X S, ZHUANG Y X, XU H F, et al., 1999. The implication of terminal Archean ductile shearing in continental crustal evolution of the Taishan Mountain region[J]. Regional Geology of China, 18(2): 57-63. (in Chinese with English abstract)
[50] WANG X S, ZHANG S K, ZHANG F Z, et al., 2005. Kinematic vorticities and shear types of the Qingyi ductile shear zone in Western Shandong[J]. Acta Geoscientica Sinica, 26(5): 423-428. (in Chinese with English abstract)
[51] WATTS A B, BUROV E B, 2003. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness[J]. Earth and Planetary Science Letters, 213(1-2): 113-131. doi: 10.1016/S0012-821X(03)00289-9
[52] XU H J, ZHANG J F, 2017. Anatexis witnessed post-collisional evolution of the Dabie orogen, China[J]. Journal of Asian Earth Sciences, 145: 278-296. doi: 10.1016/j.jseaes.2017.04.001
[53] XU J, XIA X P, YIN C Q, et al., 2022. Geochronology and geochemistry of the granitoids in the Diancangshan-Ailaoshan fold belt: implications on the Neoproterozoic subduction and crustal melting along the southwestern Yangtze Block, South China[J]. Precambrian Research, 383: 106907. doi: 10.1016/j.precamres.2022.106907
[54] YU P, WANG D M, ZHANG Z G, et al., 2025. Dynamic characteristics in Late Neoproterozoic period of granite-greenstone belt in Luxi Area: evidence from deformation of structures in ductile shear belt[J]. Shandong Land and Resources, 41(1): 1-12. (in Chinese with English abstract)
[55] YU S Y, LI S Z, ZHANG J X, et al., 2019. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: a review of the North Qaidam UHP Belt, NW China[J]. Earth-Science Reviews, 191: 190-211. doi: 10.1016/j.earscirev.2019.02.016
[56] ZHAI M G, BIAN A G, ZHAO T P, 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic[J]. Science in China Series D: Earth Sciences, 43(S1): 219-232. doi: 10.1007/BF02911947
[57] ZHAI M G, SANTOSH M, 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 20(1): 6-25. doi: 10.1016/j.gr.2011.02.005
[58] ZHAI M G, SANTOSH M, 2013. Metallogeny of the North China Craton: link with secular changes in the evolving earth[J]. Gondwana Research, 24(1): 275-297. doi: 10.1016/j.gr.2013.02.007
[59] ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract)
[60] ZHANG H, HOU G T, ZHANG B, et al., 2022. Kinematics, temperature and geochronology of the Qingyi ductile shear zone: tectonic implications for late Neoarchean microblock amalgamation in the Western Shandong Province, North China craton[J]. Journal of Structural Geology, 161: 104645. doi: 10.1016/j.jsg.2022.104645
[61] ZHANG S H, ZHANG J, ZHAO C, et al., 2025. Deformational characteristics of the Qixingtai ductile shear zone, western Shandong: implications for the Neoarchean tectonic evolution of the eastern North China Craton[J]. Acta Petrologica Sinica, 41(1): 237-259. (in Chinese with English abstract) doi: 10.18654/1000-0569/2025.01.13
[62] ZHAO G C, SUN M, WILDE S A, et al., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002
[63] ZHAO G C, 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: key issues and discussion[J]. Acta Petrologica Sinica, 25(8): 1772-1792. (in Chinese with English abstract)
[64] ZHAO G C, ZHAI M G, 2013. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications[J]. Gondwana Research, 23(4): 1207-1240. doi: 10.1016/j.gr.2012.08.016
[65] ZHOU K, CHEN Y X, ZHENG Y F, et al., 2019. Migmatites record multiple episodes of crustal anatexis and geochemical differentiation in the Sulu ultrahigh‐pressure metamorphic zone, eastern China[J]. Journal of Metamorphic Geology, 37(8): 1099-1127. doi: 10.1111/jmg.12503
[66] 曹国权, 1996. 鲁西早前寒武纪地质[M]. 北京: 地质出版社: 1-210.
[67] 陈震, 2017. 陆壳熔融与流变的数值模拟及其地质约束研究[D]. 长春: 吉林大学.
[68] 程裕淇, 1987. 有关混合岩和混合岩化作用的一些问题: 对半个世纪以来某些基本认识的回顾[J]. 中国地质科学院院报(2): 5-19.
[69] 李源, 任鹏, 颉颃强, 等. 2020. 鲁西栗杭地区新太古代地质剖面的解剖: 野外研究和SHRIMP U-Pb锆石定年[J]. 地球科学, 45(9): 3341-3352.
[70] 刘树文, 包涵, 高磊, 等, 2021. 华北克拉通中东部新太古代晚期变质火山岩及动力学体制[J]. 岩石学报, 37(1): 113-128. doi: 10.18654/1000-0569/2021.01.08
[71] 任鹏, 颉颃强, 王世进, 等, 2015. 鲁西2.5~2.7Ga构造岩浆热事件: 泰山黄前水库TTG侵入岩的野外地质和锆石SHRIMP定年[J]. 地质论评, 61(5): 1068-1078.
[72] 任鹏, 2016. 鲁西~2.6 Ga构造热事件: 地质、SHRIMP年代学及地球化学研究[D]. 北京: 中国地质科学院.
[73] 任鹏, 颉颃强, 王世进, 等, 2017. 鲁西~2.6 Ga深熔作用: 泰山地区浅色脉体的野外地质和地球化学研究[J]. 地质科学, 52(4): 1097-1119.
[74] 万渝生, 董春艳, 颉颃强, 等, 2012a. 华北克拉通早前寒武纪条带状铁建造形成时代: SHRIMP锆石U-Pb定年[J]. 地质学报, 86(9): 1447-1478.
[75] 万渝生, 刘敦一, 王世进, 等, 2012b. 华北克拉通鲁西地区早前寒武纪表壳岩系重新划分和BIF形成时代[J]. 岩石学报, 28(11): 3457-3475.
[76] 万渝生, 王世进, 任鹏, 等, 2015. 鲁西徂徕山地区新太古代岩浆作用: 锆石SHRIMP U-Pb定年证据[J]. 地球学报, 36(5): 634-646.
[77] 万渝生, 董春艳, 任鹏, 等, 2017. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化: 综述[J]. 岩石学报, 33(5): 1405-1419.
[78] 万渝生, 颉颃强, 董春艳, 等, 2020. 华北克拉通太古宙构造热事件时代及演化[J]. 地球科学, 45(9): 3119-3160.
[79] 万渝生, 董春艳, 颉颃强, 等, 2022. 华北克拉通新太古代早期—中太古代晚期(2.6~3.0 Ga)巨量陆壳增生: 综述[J]. 地质力学学报, 28(5): 866-906.
[80] 王伟, 2015. 鲁西泰山岩群变质玄武岩地球化学特征及地质意义[J]. 岩石学报, 31(10): 2959-2973.
[81] 王新社, 庄育勋, 徐惠芬, 等, 1999. 泰山地区太古宙末韧性剪切作用在陆壳演化中的意义[J]. 中国区域地质, 18(2): 57-63.
[82] 王新社, 张尚坤, 张富中, 等, 2005. 鲁西青邑韧性剪切带运动学涡度及剪切作用类型[J]. 地球学报, 26(5): 423-428.
[83] 于萍, 王东明, 张志刚, 等, 2025. 鲁西花岗-绿岩带新太古代晚期动力学特征: 来自韧性剪切带构造变形的证据[J]. 山东国土资源, 41(1): 1-12.
[84] 翟明国, 2019. 华北克拉通构造演化[J]. 地质力学学报, 25(5): 722-745.
[85] 张书慧, 张健, 赵辰, 等, 2025. 鲁西七星台地区韧性剪切带变形特征及样式: 对华北克拉通东部新太古代演化的构造约束[J]. 岩石学报, 41(1): 237-259.
[86] 赵国春, 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 25(8): 1772-1792.
-