Early Cretaceous spore-pollen assemblages from the Shahezi Formation in Well SK-2 and their paleoclimate significance
-
摘要:
为探讨黑龙江省安达市松科2井深层(3395.46~3901.35 m)地层的时代特征,分析地史时期的古植被及古气候条件演变,利用孢粉学方法对松科2井进行研究。结果显示,研究井段可划分为Leiotriletes sp.−Cyathidites australis−Chasmatosporites sp.孢粉组合(3832.94~3901.35 m)和Klukisporites triangulus−Aequitriradites sp.−Pristinuspollenites sp.孢粉组合(3395.46~3613.62 m),孢粉组合指示的地质时代为早白垩世欧特里夫期(Hauterivian)—巴列姆期(Barremian)早期,可作为松辽盆地沙河子组上部生物地层学对比的标志;此外,孢粉组合反映的植被类型演化规律是针叶林、灌草丛—常绿阔叶林—针叶林、灌木丛—针阔叶混交林,揭示研究区沙河子组后期气候带演替规律是暖温带—南亚热带—暖温带—温带,气候干湿变化规律为湿润—半湿润—湿润—半湿润。
Abstract:Well SK-2 is located in the Anda City of Heilongjiang Province, China. A total of 4134.8 m continuous core in Well SK-2 provides a unique chance to study the Lower Cretaceous in the Songliao basin, being an important part in the continental scientific drilling program. Based on the distribution of pollen and spores in the Well SK-2, two assemblages are established for the upper part of the Shahezi Formation. They are named as Leiotriletes sp.−Cyathidites australis−Chasmatosporites sp. assemblage (at the depth of 3832.94~3901.35 m) and Klukisporites triangulus−Aequitriradites sp.−Pristinuspollenites sp. assemblage (at the depth of 3395.46~3493.24 m). The geological age of the Shahezi Formation is assigned to Hauterivian – Early Barremian (Early Cretaceous) according to the characteristics of the assemblages. The reconstructed vegetation changes from coniferous forest and tussock to evergreen broad-leaf forest, to coniferous forest and tussock, and to coniferous and broad-leaved mixed forest during the time interval. The reconstructed climate changes from humid warm temperate to semi-humid south subtropical, to humid warm temperate, and to semi-humid temperate.
-
Key words:
- Well SK-2 /
- Early Cretaceous /
- Shahezi Fomation /
- pollen and spore assemblage /
- paleoclimate /
- Songliao basin
-
-
图 1 松辽盆地松科2井地理与构造位置(据万传彪等,2009修改)
Figure 1.
图 2 松科2井沙河子组综合柱状图(据侯贺晟等,2018修改)
Figure 2.
表 1 松辽盆地松科2井沙河子组上部孢粉化石分布和比例
Table 1. Distribution and percentage occurrence of spores and pollen from the Shahezi Formation in SK-2 Well
组合 KAP组合孢粉谱/% LCC组合孢粉谱/% 井深/m 3395.46 ~
3493.243530.89 ~
3570.793595.02 ~
3613.623395.46 ~
3613.62 m3832.94 ~
3846.163879.82 ~
3901.353832.94 ~
3901.35 ma.蕨类孢子 17 40 31 27.87 ~ 46.97 101 54 60.67 ~ 90.18 Cicatricosisporites exilis 1 0 ~ 1.52 1 0 ~ 1.12 C. minutaestriatus 2 0 ~ 2.25 C. apiteretus 1 0 ~ 0.85 C. splendidus 2 0 ~ 2.25 C. australiensis 1 0 ~ 0.85 1 0 ~ 1.12 C.sp. 1 2 1 1.52 ~ 1.69 1 0 ~ 1.12 Leiotriletes sp. 3 8 4 4.92 ~ 6.78 17 10 11.24 ~ 15.18 Cyathidites australis 8 4 0 ~ 6.78 72 8 8.99 ~ 64.29 C. minor 1 0 ~ 1.12 Cyclogranisporites sp. 2 6 1 1.52 ~ 5.08 4 7 3.57 ~ 7.87 Klukisporites triangulus 2 5 2 3.03 ~ 4.24 K. variegatus 1 1 0 ~ 1.52 K. sp. 1 5 0 ~ 7.58 5 5 4.46 ~ 5.62 Punctatisporites sp. 1 0 ~ 0.89 Todisporites sp. 3 0 ~ 3.37 Verrucosisporites sp. 1 0 ~ 1.52 Converrucosisporites sp. 1 2 0 ~ 1.69 Osmundacidites sp. 1 0 ~ 1.64 Pilosisporites scitulus 2 0 ~ 3.03 P. sp. 1 0 ~ 1.64 Brochotriletes degradatus 2 0 ~ 3.28 Dictyotriletes sp. 2 0 ~ 3.03 Lycopodiumsporites sp. 1 2 0 ~ 3.03 1 0 ~ 0.89 Impardecispora sp. 1 0 ~ 1.52 Gushanispora scabrata 2 0 ~ 3.03 Levisporites wulinensis 1 0 ~ 1.52 Maculatisporites sp. 1 0 ~ 1.12 Undulatisporites sp. 1 0 ~ 1.12 Hymenophyllumsporites simplex 2 0 ~ 2.25 Triporoletes singularis 1 0 ~ 0.85 1 0 ~ 0.89 Trilobosporites humilis 1 0 ~ 1.64 T. tribotrys 4 0 ~ 4.49 Aequitriradites sp. 1 3 1 1.52 ~ 2.54 4 0 ~ 4.49 Polycingulatisporites reduncus 1 0 ~ 1.12 Laevigatosporites sp. 1 0 ~ 1.64 Schizaeoisporites sp. 1 0 ~ 0.85 b.裸子类花粉 44 78 35 53.03 ~ 72.13 11 35 9.82 ~ 39.33 Pinuspollenites divulgatus 8 3 1 1.52 ~ 13.11 P. minutus 1 0 ~ 0.85 P. alatiopllenites 1 0 ~ 1.52 P. pernobilis 2 1 0 ~ 3.28 P. sp. 5 5 0 ~ 7.58 Alisporites parvus 10 8 7 6.78 ~ 16.39 12 0 ~ 13.48 A. sp. 6 0 ~ 9.09 1 0 ~ 0.89 Pristinuspollenites quadriangulus 1 0 ~ 1.52 P. sp. 5 1 2 0.85 ~ 8.20 1 0 ~ 1.12 Podocarpidites minisculus 1 1 1 0.85 ~ 1.64 P. multicinus 1 0 ~ 1.52 P. fortis 2 0 ~ 3.28 P. sp. 1 1 1 0.85 ~ 1.64 Piceaepollenites omoriciformis 1 0 ~ 1.64 P. sp. 31 0 ~ 26.27 Protopinus sp. 2 0 ~ 2.25 Abietineaepollenites sp. 1 2 0 ~ 1.69 Parvisaccites otagoensis 1 0 ~ 1.64 P. sp. 1 1 0 ~ 1.52 1 0 ~ 1.12 Erlianpollis minisculus 1 0 ~ 0.85 2 0 ~ 2.25 E. mediocris 1 0 ~ 0.85 E. sp. 1 0 ~ 1.52 Piceites expositus 1 0 ~ 1.12 P. sp. 1 0 ~ 0.85 Pseudopicea rotundiformis 1 0 ~ 0.89 P. sp. 1 2 0.89 ~ 2.25 Abiespollenites sp. 1 0 ~ 0.85 1 0 ~ 1.12 Cedripites globulisaccatus C densireticulatus 1 0 ~ 1.64 Paleoconiferus sp. 1 0 ~ 1.12 Pseudowalchia sp. 1 0 ~ 1.12 Jiaohepollis sp. 1 0 ~ 0.85 Psophosphaera sp. 2 0 ~ 3.03 1 3 0.89 ~ 3.37 Monosulcites irroratus 1 0 ~ 0.85 M. sp. 1 1 2 0.85 ~ 3.03 1 0 ~ 1.12 Chasmatosporites sp. 9 15 2 3.03 ~ 14.75 7 6 6.25 ~ 6.74 Classopollis classoides 1 0 ~ 1.64 C. sp. 2 0 ~ 1.69 1 0 ~ 1.12 合计(粒) 61 118 66 112 89 表 2 松辽盆地松科2井沙河子组植被类型
Table 2. Classification of the vegetation of Shahezi Formation of SK-2 Well in Songliao basin based on the palynological data
井深/m 反映各植被类型的孢粉含量/% 植被类型 针叶 常绿阔叶 落叶阔叶 灌木 草本 其他 3395.46 ~ 3493.24 55.74 14.75 1.64 8.20 11.48 8.20 针阔叶混交林 3530.89 ~ 3570.79 51.71 19.49 1.70 9.33 10.17 7.62 针阔叶混交林 3595.02 ~ 3613.62 47.02 9.09 3.03 19.72 10.61 10.62 针叶林、灌木丛 3832.94 ~ 3846.16 3.56 70.54 0 4.46 16.07 5.35 常绿阔叶林 3879.82 ~ 3901.35 31.44 16.85 1.12 19.09 19.10 12.36 针叶林、灌草丛 表 3 松辽盆地松科2井沙河子组气温带类型
Table 3. Classification of Shahezi Formation temperate zone of SK-2 Well in Songliao basin based on the palynological data
井深/m 反映各气温带类型的孢粉含量/% 气温带类型 热带 热带—亚热带 亚热带 热带—温带 温带 其他 3395.46 ~ 3493.24 13.12 8.20 1.64 40.98 9.84 26.23 温带 3530.89 ~ 3570.79 17.81 11.02 0 16.95 29.67 24.57 温带 3595.02 ~ 3613.62 27.31 9.09 0 39.42 4.55 19.72 暖温带 3832.94 ~ 3846.16 68.75 15.18 0 2.67 1.78 11.60 南亚热带 3879.82 ~ 3901.35 29.2 13.48 0 21.34 10.10 25.84 暖温带 表 4 松辽盆地松科2井沙河子组干湿度类型
Table 4. Classification of Shahezi Formation humidity of SK-2 Well in Songliao basin based on the palynological data
井深/m 反映各干湿度类型的孢粉含量/% 干湿度类型 旱生 中生 湿生 沼生 水生 其他 3395.46 ~ 3493.24 1.64 40.98 29.52 3.28 0 24.59 半湿润 3530.89 ~ 3570.79 2.54 19.50 54.26 0 0 23.72 湿润 3595.02 ~ 3613.62 0 42.45 42.47 0 0 15.17 半湿润 3832.94 ~ 3846.16 0 2.67 85.71 0 0 11.6 湿润 3879.82 ~ 3901.35 1.12 20.21 51.67 3.37 0 23.59 湿润 -
[1] Hou H X, Wang H Y, Gao R, et al. 2015. Fine crustal structure and deformation beneath the Great Xing’an Ranges CAOB: Revealed by deep seismic reflection profile[J]. Journal of Asian Earth Sciences, 113: 491−500. doi: 10.1016/j.jseaes.2015.01.030
[2] Liu Y J, Li W M, Feng Z Q, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013
[3] Wan C B, Qiao X Y, Xu Y B, et al. 2005. Sporopollen assemblages from the Cretaceous Yimin Formation of the Hailar Basin, Inner Mongolia, China[J]. Acta Geologica Sinica (English Edition), 79(4): 459−470. doi: 10.1111/j.1755-6724.2005.tb00912.x
[4] Wang C L, Song L B, Yuan H Q. 2023. Zircon U-Pb age of the volcanic rock from the Huoshiling Formation in the Yingtai Fault Depression, Songliao Basin, China[J]. China Geology, 6(4): 751−752.
[5] Wang L Y, Wan C B, Sun Y W. 2014. A spore-pollen assemblage from the Damoguaihe Formation in the Tamutsag Basin, Mongolia and its geological implication[J]. Acta Geologica Sinica (English Edition), 88(1): 46−61. doi: 10.1111/1755-6724.12182
[6] Wang T, Guo L, Zhang L, et al. 2015. Timing and evolution of Jurassic–Cretaceous granitoid magmatisms in the Mongol–Okhotsk belt and adjacent areas NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 97: 365−392. doi: 10.1016/j.jseaes.2014.10.005
[7] Yang Y T, Guo Z X, Song C C, et al. 2015. A short-lived but significant Mongol–Okhotsk collisional orogeny in latest Jurassic-earliest Cretaceous[J]. Gondwana Research, 28(3): 1096−1116. doi: 10.1016/j.gr.2014.09.010
[8] 程金辉, 尚玉珂. 2015. 内蒙古满洲里扎赉诺尔煤矿早白垩世孢粉组合序列和古气候研究[J]. 古生物学报, 54(3): 316−341.
[9] 程银行, 李影, 刘永顺, 等. 2016. 松辽盆地西缘早白垩世伸展事件: 流纹岩锆石U-Pb年龄、地球化学研究[J]. 地质学报, 90(12): 3492–3507.
[10] 迟元林, 王璞君, 单玄龙, 等. 2000. 中国陆相含油气盆地深层地层研究——以松辽盆地为例[M]. 长春: 吉林科学技术出版社.
[11] 董树文, 张岳桥, 龙长兴, 等. 2007. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 81(11): 1449−1461. doi: 10.3321/j.issn:0001-5717.2007.11.001
[12] 高有峰, 翟雪娇, 蒋丽君, 等. 2017. 松辽盆地白垩系大陆科学钻探松科2井钻遇地层界面及岩性剖面预测[J]. 地学前缘, 24(1): 242−256.
[13] 高瑞祺, 赵传本, 乔秀云, 等. 1999. 松辽盆地白垩纪石油地层孢粉学[M]. 北京: 地质出版社: 1–173.
[14] 韩刚, 曹阳, 张文婧, 等. 2019. 内蒙古海拉尔盆地贝尔凹陷贝32井南屯组地层及孢粉组合[J]. 地质通报, 38(6): 916−921.
[15] 侯贺晟, 王成善, 张交东, 等. 2018. 松辽盆地大陆深部科学钻探地球科学研究进展[J]. 中国地质, 45(4): 641−657. doi: 10.12029/gc20180401
[16] 黄嫔, 张光富. 2002. 吉林延边智新盆地大拉子组孢粉组合[J]. 微体古生物学报, 19(3): 263−275. doi: 10.3969/j.issn.1000-0674.2002.03.005
[17] 李凤霞. 2005. 内蒙古开鲁盆地早白垩世阜新组孢粉组合[J]. 微体古生物学报, 22(1): 87−96. doi: 10.3969/j.issn.1000-0674.2005.01.009
[18] 李锦轶, 高立明, 孙桂华, 等. 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 23(3): 565−582. doi: 10.3969/j.issn.1000-0569.2007.03.004
[19] 黎文本. 2001. 吉林安图县早白垩世屯田营组孢粉组合[J]. 古生物学报, 40(4): 450−456. doi: 10.3969/j.issn.0001-6616.2001.04.005
[20] 刘晓文, 于婕, 胡慧婷, 等. 2023. 油气运聚影响下三维地震精细解译的砂岩型铀矿控矿因素分析——以松辽盆地大庆长垣南端铀矿为例[J]. 地质通报, 42(11): 1834−1842.
[21] 蒙启安, 万传彪, 乔秀云, 等. 2003. 内蒙古海拉尔盆地大磨拐河组孢粉组合[J]. 地层学杂志, 27(3): 173−184. doi: 10.3969/j.issn.0253-4959.2003.03.002
[22] 蒲荣干, 吴洪章. 1982. 黑龙江东部晚中生代地层的孢子花粉[J]. 中国地质科学院沈阳地质矿产研究所所刊, 5: 383−456.
[23] 蒲荣干, 吴洪章. 1985. 兴安岭地区兴安岭群和扎赉诺尔群的孢粉组合及其地层意义[J]. 中国地质科学院沈阳地质矿产研究所所刊, 11: 47−113.
[24] 任延广, 万传彪, 乔秀云, 等. 2003. 松辽盆地北部昌五地区沙河子组孢粉组合[J]. 吉林大学学报(地球科学版), 33(4): 406−412.
[25] 尚玉珂. 1991. 吉林汪清罗子沟盆地早白至世抱粉化石之发现[J]. 微体古生物学报, 8(4): 405−422.
[26] 尚玉珂, 王淑英. 1991. 吉林九台营城组孢粉组合及古植被、古气候探讨[J]. 微体古生物学报, 8(1): 91−110.
[27] 尚玉珂. 1997. 黑龙江省鸡西城子河组被子植物化石层的孢粉研究[J]. 微体古生物学报, 14(2): 161−174.
[28] 宋之琛. 1986. 我国早白垩世被子植物花粉研究之回顾[J]. 微体古生物学报, 3(4): 373−386.
[29] 宋之琛, 尚玉珂, 刘兆生, 等. 2000. 中国孢粉化石——中生代孢粉(第二卷)[M]. 北京: 科学出版社: 1–710.
[30] 孙德有, 吴福元, 张艳斌, 等. 2004. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间: 来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版), 34(2): 174−181.
[31] 万传彪, 乔秀云, 孔惠, 等. 2002. 黑龙江北安地区早白垩世孢粉组合[J]. 微体古生物学报, 19(1): 83−90. doi: 10.3969/j.issn.1000-0674.2002.01.007
[32] 万传彪, 赵传本, 乔秀云, 等. 2004. 中国早白垩世中、晚期被子植物花粉的特征及其意义[J]. 大庆石油地质与开发, 23(2): 21−24. doi: 10.3969/j.issn.1000-3754.2004.02.008
[33] 万传彪. 2006. 海拉尔盆地白垩纪孢粉植物群[D]. 吉林大学博士学位论文.
[34] 万传彪, 李延锋, 薛云飞. 2009. 松辽盆地深层侏罗系—下白垩统生物组合和沉积环境[J]. 地质科学, 44(2): 418−434. doi: 10.3321/j.issn:0563-5020.2009.02.007
[35] 王丽岩, 孙跃武, 乔秀云, 等. 2008. 海拉尔盆地早白垩世孢粉古气候特征[J]. 大庆石油地质与开发, 27(5): 39−42. doi: 10.3969/j.issn.1000-3754.2008.05.010
[36] 王璞珺, 刘海波, 任延广, 等. 2017. 松辽盆地白垩系大陆科学钻探“松科2井”选址[J]. 地学前缘, 24(1): 216−228.
[37] 王淑英. 1989. 吉林省营城组抱粉组合[J]. 地层学杂志, 13(1): 34–39.
[38] 王婷婷, 孙振轩, 戴金龙, 等. 2023. 松辽盆地中央坳陷区储层岩性智能识别方法[J]. 吉林大学学报(地球科学版), 53(5): 1611−1622.
[39] 薛云飞, 王丽岩. 2010. 海拉尔盆地查干诺尔凹陷扎赉诺尔群孢粉组合[J]. 中国煤炭地质, 22(1): 6−14. doi: 10.3969/j.issn.1674-1803.2010.01.02
[40] 余静贤, 蒲荣干, 吴洪章. 1986. 辽西热河群上亚群孢粉组合[J]. 中国地质科学院院报, (2): 93−119.
[41] 余静贤. 1990. 中国北方早白垩世被子植物花粉的研究[C]//地层古生物论文集, 23: 212–220.
[42] 张德军, 张健, 郑月娟, 等. 2020. 内蒙古自治区兴安盟突泉盆地TD-2井晚二叠世孢粉的发现及其油气地质意义[J]. 中国地质, 47(3): 798−809. doi: 10.12029/gc20200317
[43] 张剑, 刘洪涛, 吴炳伟. 2008. 彰武盆地张强凹陷早白垩世孢粉组合[J]. 微体古生物学报, 25(2): 196−203. doi: 10.3969/j.issn.1000-0674.2008.02.007
[44] 张一勇. 1999. 中国白垩纪被子植物花粉的宏演化[J]. 古生物学报, 38(4): 435−453. doi: 10.3969/j.issn.0001-6616.1999.04.003
[45] 赵传本, 乔秀云. 1993. 黑龙江宁安盆地穆棱组及其孢粉型组合新发现[J]. 微体古生物学报, 10(4): 447−458.
[46] 郑月娟, 陈树旺, 张德军, 等. 2019. 松科二井早白垩世沙河子组上部孢粉组合特征[J]. 中国地质, 46(5): 1245−1246. doi: 10.12029/gc20190527
-