Zircon U−Pb age and tectonic setting of the shoshonitic volcanic rocks in the Xirenbudun area, Inner Mongolia
-
摘要:
内蒙古希仁布敦地区钾玄质火山岩出露于贺根山缝合带梅劳特乌拉−迪彦庙蛇绿混杂岩带内,岩性为玄武粗安岩和粗安岩,研究其形成时代、岩石成因和构造环境,对探讨贺根山缝合带构造演化具有重要启示。粗安岩锆石LA−ICP−MS U−Pb同位素测年获得206Pb/238U年龄加权平均值为176.3±0.8 Ma,形成时代为早侏罗世。岩石相对富碱Na2O+K2O(5.28%~7.19%, >5%)、高Al2O3(16.13%~17.42%)、高K2O/Na2O值(0.66~1.14, >0.5)、高Fe2O3/FeO值(0.82~1.50, > 0.5)、低TiO2(0.91%~1.16%, <1.3%),富集Th、U、Sr等大离子亲石元素和轻稀土元素, 亏损 Nb、Ta、Ti等高场强元素。稀土元素含量为168.53×10−6~233.03×10−6,稀土元素配分曲线为右倾式分布。岩石学和岩石地球化学特征表明,希仁布敦地区玄武粗安岩−粗安岩为后造山钾玄质岩石,与古亚洲洋俯冲作用有关,形成于古亚洲洋俯冲板片后撤−断离−后造山伸展构造环境。晚古生代末古亚洲洋俯冲洋壳+俯冲深积物析出流体交代上覆地幔楔,形成贺根山缝合带富集地幔,中生代早期古亚洲洋俯冲板片断离−后造山伸展作用诱发富集地幔部分熔融,产生该区钾玄质岩浆。
Abstract:The shoshonitic volcanic rocks in the Xirenbudun area of Inner Mongolia occur in the Meilaotewula − Diyanmiao ophiolitic melange belt of the Hegenshan suture zone. The volcanic rocks include basaltic trachyandesite and trachyandesite. The study of the formation age,petrogenesis, and tectonic setting in the volcanic rocks has important implications for the tectonic evolution of the Hegenshan suture zone. The zircon LA−ICP−MS U−Pb dating for the trachyandesite yielded a weighted mean 206Pb/238U age of 176.3±0.8 Ma, suggesting that its formation age is Early Jurassic. The volcanic rocks are rich in Na2O+K2O(5.28%~7.19%,>5%), Al2O3(16.13%~17.42%) and high K2O/Na2O ratio (0.66~1.14,>0.5), Fe2O3/FeO ratio (0.82~1.50,>0.5) but low in TiO2 (0.91%~1.16%,<1.3%). The rocks are obviously enriched in Th, U, Sr and LREEs, and depleted in Nb, Ta and Ti,with remarkably negative Nb,Ta,P and Ti anomalies on primitive mantle−normalized incompatible element patterns. The contents of rare earth elements range from 168.53×10−6 to 233.03×10−6. The chondrite normalized REE distribution patterns are of right−inclined shape. The basaltic trachyandesite−trachyandesite belong to post orogenic shoshonitic rocks, were related to the subduction of the Palaeo−Asian Ocean (PAO), and formed in the subsequent subducted slab roll back−break off−post orogenic extension tectonic setting. In the end of Late Paleozoic, the fluids dehydrated from the subducted oceanic crust+sediments of the PAO metasomatized the overlying mantle wedge to form the enriched mantle of the Hegenshan suture. In the Early Mesozoic, the PAO subducted slab break off−the post orogenic extension triggered partial melting of the enriched mantle to produce the shoshonitic magma in this area.
-
-
图 4 希仁布敦钾玄质火山岩TAS分类图解(a,底图据Middlemost,1994)和Na2O–K2O图解(b,底图据Miller et al.,1999)
Figure 4.
图 5 希仁布敦钾玄质火山岩SiO2−K2O分类图解(底图据Peccerillo et al., 1976)
Figure 5.
图 6 希仁布敦钾玄质火山岩稀土元素球粒陨石标准化配分模式(标准化值据Boynton, 1984)
Figure 6.
图 7 希仁布敦钾玄质火山岩微量元素原始地幔标准化蛛网图(标准化值据Sun et al., 1989)
Figure 7.
图 8 希仁布敦钾玄质火山岩Ta/Yb−Th/Yb图解(底图据Mueller et al., 1992)
Figure 8.
图 9 希仁布敦钾玄质火山岩Ce/Yb−Cs/Rb(a)、Ce/Yb−Pb/Ce(b)和 (La/Sm)N−(Ba/La)N(c)图解(a, b底图据 Sun et al. , 2001; c底图据 Othman et al., 1989)
Figure 9.
图 10 希仁布敦钾玄质火山岩TiO2/Al2O3−Zr/Al2O3(a)和3Zr−50Nb−Ce/P2O5(b)判别图解(底图据 Mueller et al., 1992)
Figure 10.
表 1 希仁布敦钾玄质火山岩(PT134)LA−ICP−MS 锆石U−Th−Pb测试结果
Table 1. LA−ICP−MS U−Th−Pb dating results of zircons from the Xirenbudun shoshonitic volcanic rocks
点号 元素含量/10−6 Th/U
同位素比值 表面年龄/Ma Pb U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 206Pb/238U 1 85 2092 1.9399 0.0497 1.12 0.1897 1.42 0.0277 1.06 176 ±2 2 40 1009 1.7461 0.0482 2.08 0.1849 2.47 0.0278 0.95 177 ±2 3 67 1638 1.8170 0.0477 1.15 0.1856 1.44 0.0282 1.22 179 ±2 4 108 2909 1.5326 0.0483 1.08 0.1839 1.52 0.0276 1.06 176 ±2 5 44 1173 1.5199 0.0512 1.23 0.1958 1.45 0.0277 1.13 176 ±2 6 51 1336 1.5992 0.0542 1.14 0.2088 1.36 0.0280 1.06 178 ±2 7 80 2084 1.4926 0.0487 6.29 0.1880 5.63 0.0280 0.88 178 ±2 8 64 1597 1.9786 0.0496 1.02 0.1876 1.22 0.0274 1.18 174 ±2 9 40 997 1.5956 0.0513 2.60 0.2017 2.90 0.0285 1.00 181 ±2 10 82 2190 1.4508 0.0494 6.90 0.1891 3.86 0.0278 1.09 177 ±2 11 37 994 1.7245 0.0485 1.87 0.1814 1.72 0.0271 1.26 173 ±2 12 129 3189 1.8387 0.0514 1.66 0.1991 2.18 0.0281 1.02 179 ±2 13 58 1461 1.8778 0.0497 1.09 0.1915 1.37 0.0280 1.38 178 ±2 14 44 1070 1.9406 0.0507 1.63 0.1941 2.33 0.0277 1.29 176 ±2 15 56 1061 1.9523 0.0505 4.67 0.1900 5.11 0.0273 1.10 173 ±2 16 112 2176 1.9426 0.0539 9.40 0.2083 9.92 0.0280 0.85 178 ±2 17 75 2057 1.5861 0.0511 1.13 0.1960 1.12 0.0278 1.18 177 ±2 18 106 2653 2.1731 0.0508 1.19 0.1908 1.86 0.0273 0.97 173 ±2 19 4 140 0.7880 0.0498 5.57 0.1838 6.20 0.0268 1.02 170 ±2 20 45 1122 1.9914 0.0528 4.94 0.1997 6.59 0.0274 1.19 174 ±2 21 46 1221 1.8398 0.0521 1.34 0.1978 1.67 0.0275 1.14 175 ±2 22 78 2147 1.6415 0.0488 1.12 0.1861 1.14 0.0277 1.08 176 ±2 23 28 821 1.2241 0.0534 1.82 0.2030 1.85 0.0276 1.03 175 ±2 24 32 863 1.7207 0.0488 1.74 0.1871 1.81 0.0278 0.93 177 ±2 25 85 2082 2.2431 0.0480 1.46 0.1847 1.37 0.0279 0.92 177 ±2 注:实验测试在天津地质矿产研究所完成 表 2 希仁布敦钾玄质火山岩的主量、微量和稀土元素分析结果
Table 2. Major, trace element and REE analyses of the Xirenbudun shoshonitic volcanic rocks
样品号
岩性PT131
玄武粗安岩PT132
玄武粗安岩PT133
玄武粗安岩PT134
粗安岩PT135
粗安岩PT136
粗安岩PT137
粗安岩SiO2 54.34 56.47 57.05 58.18 59.35 60.67 61.30 Al2O3 17.42 16.58 17.05 16.13 16.67 16.99 17.14 TiO2 1.16 0.98 1.01 0.97 0.97 0.93 0.91 Fe2O3 3.78 3.15 2.92 3.58 3.51 3.42 3.46 FeO 3.09 3.69 3.54 2.49 2.51 2.39 2.30 CaO 7.12 6.61 5.51 5.96 3.87 3.41 3.37 MgO 2.44 2.30 2.87 2.91 2.34 2.07 1.87 K2O 2.31 2.19 2.47 2.60 3.26 3.76 3.83 Na2O 3.52 3.09 3.07 3.66 3.64 3.33 3.36 MnO 0.12 0.09 0.16 0.10 0.08 0.09 0.09 P2O5 0.33 0.26 0.27 0.27 0.31 0.28 0.27 烧失量 4.17 4.42 3.84 2.95 3.05 2.47 1.96 总计 99.80 99.83 99.77 99.80 99.56 99.83 99.86 La 40.59 33.88 34.05 29.73 34.58 38.12 37.13 Ce 86.90 72.21 72.50 63.24 67.50 68.60 63.14 Pr 12.00 10.10 10.42 8.84 9.76 9.84 10.13 Nd 49.66 41.75 42.78 36.54 39.92 41.23 37.10 Sm 10.07 8.42 8.42 7.12 7.82 8.23 7.54 Eu 2.41 1.92 2.09 1.89 1.94 2.15 1.92 Gd 8.37 6.97 7.11 5.88 6.51 6.99 6.30 Tb 1.38 1.28 1.17 0.97 1.07 1.22 1.12 Dy 7.89 7.04 6.42 5.32 5.74 6.00 5.35 Ho 1.58 1.44 1.29 1.06 1.15 1.22 1.13 Er 4.93 4.50 3.77 3.34 3.47 3.21 3.63 Tm 0.76 0.68 0.56 0.50 0.52 0.63 0.50 Yb 5.24 4.84 3.67 3.28 3.36 3.59 3.34 Lu 1.23 1.12 0.81 0.82 0.87 0.67 0.77 ΣREE 233.03 196.15 195.05 168.53 184.21 191.70 179.09 Y 33.18 30.95 26.75 22.34 24.19 24.81 24.33 Cr 37.07 53.17 66.62 81.70 47.39 52.14 48.57 Co 20.40 18.64 21.20 19.50 16.18 17.43 16.52 Ni 13.11 15.00 19.41 18.90 15.14 16.12 15.42 Rb 57.94 51.57 51.27 53.52 51.83 41.60 40.26 Sr 822.12 570.73 756.13 675.40 696.21 711.30 629.96 Zr 259.00 252.00 227.60 228.80 265.80 249.60 254.90 Nb 11.75 10.42 10.36 10.94 11.84 11.45 11.73 Cs 4.21 12.64 6.16 1.93 8.55 11.43 9.16 Ba 426.10 483.60 859.80 631.50 566.18 489.40 432.05 Hf 6.82 7.28 6.25 6.06 7.14 6.81 6.98 Ta 0.85 0.80 0.79 0.85 0.88 0.83 0.85 Pb 26.47 32.32 16.49 13.51 37.31 42.22 46.57 Th 15.90 14.64 9.99 8.71 12.61 11.19 13.26 U 3.05 3.22 2.74 2.76 2.23 2.73 2.45 注:主量元素含量单位为%,稀土、微量元素含量单位为10−6 -
[1] Aftabi A, Atapour H. 2000. Regional aspects of shoshonitic volcanism in iran[J]. Episodes, 23(2): 119−125.
[2] Andersen T. 2002. Correction of commen lead U–Pb analyses that do not report 204Pb[J]. Chemical Geology, 192: 59−79. doi: 10.1016/S0009-2541(02)00195-X
[3] Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies/Henderson P. Rare earth element geochemistry[M]. Elsevier: 63−114.
[4] Chakrabarti R, Basu A R, Santo A P, et al. 2009. Isotopic and geochemical evidence for a heterogeneous mantle plume origin of the Virunga volcanics, Western Rift, East African Rift system[J]. Chemical Geology., 259: 273−289. doi: 10.1016/j.chemgeo.2008.11.010
[5] Chen B, Jahn B M, Wilde S, et al. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications[J]. Tectonophysics, 328: 157−182. doi: 10.1016/S0040-1951(00)00182-7
[6] Claesson S, Vetrin V, Bayanova T. 2000. U–Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 51: 95−108. doi: 10.1016/S0024-4937(99)00076-6
[7] Conticelli S, Avanzinelli R, Ammannati E, et al. 2015. The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the central mediterranean[J]. Lithos, 232: 174−196. doi: 10.1016/j.lithos.2015.07.002
[8] Corfu F, Hanchar J M, Hoskin P W O. 2003. Atlas of Zircon Textures[J]. Reviews in Mineralogy & Geochemistry, 53(1): 469−500.
[9] Ebert E, Grove T L. 2004. Phase relationships of a Tibetan shoshonite lava: Constraints on the melting conditions and the source rock[J]. Lithos, 73(1/2): S31.
[10] Elliott T, Plank T, Zindler A, et al. 1997. Element transport from slab to volcanic front at the Mariana arc[J]. J. Geophys Re. S., 102(B7): 14991−15019. doi: 10.1029/97JB00788
[11] Foley S, Peccerillo A. 1992. Potassic and ultrapotassic magmas and their origin[J]. Lithos, 28(3/6): 181−185.
[12] Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province[J]. Developments in Geotectonics, 24: 237−262.
[13] Jahangiri A, Fadaeian M, Songjian A. 2016. Geochemistry and emplacement of post–collisional shoshonitic dyke swarms, NW of Iran[J]. Acta Geologica Sinica(English Edition), 90(S1): 99. doi: 10.1111/1755-6724.12909
[14] Jian P, Krner A, Windley B F, et al. 2012. Carboniferous and Cretaceous mafic−ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral Hegenshan ophiolite[J]. Lithos, 142/143: 48−66.
[15] Li Y J, Wang J F, Wang G H, et al. 2018. Discovery of the plagiogranites in the Diyanmiao ophiolite, southeastern Central Asian Orogenic Belt, Inner Mongolia, China and its tectonic significance[J]. Acta Geologica Sinica(English Edition), 92(2): 568−585. doi: 10.1111/1755-6724.13543
[16] Li Y J, Wang G H, Santosh M, et al. 2020. Subduction initiation of the SE Paleo−Asian Ocean: Evidence from a well preserved intra−oceanic forearc ophiolite fragment in central Inner Mongolia, North China[J]. Earth and Planetary Science Letters, 535: 116087. doi: 10.1016/j.jpgl.2020.116087
[17] Liu J F, Li J Y, Chi X G, et al. 2013. A late−Carboniferous to early early−Permian subduction−accretion complex in Daqing pasture, southeastern Inner Mongolia: Evidence of northward subduction beneath the Siberian paleoplate southern margin[J]. Lithos, 77(2): 285−296.
[18] Massonne H J. 1992. Evidence for low−temperature ultrapotassic siliceous fluids in subduction zone environments from experiments in the system K2O−MgO−Al2O3−SiO2−H2O(KMASH)[J]. Lithos, 28: 421−434. doi: 10.1016/0024-4937(92)90017-S
[19] Miao L C, Fan W M, Liu D Y. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late−stage tectonic evolution of the Inner Mongolia−Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 32(5/6): 348−370.
[20] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Sci. Rev., 37: 215−224. doi: 10.1016/0012-8252(94)90029-9
[21] Miller C, Schuster R, Klotzli U, et al. 1999. Post–collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis[J]. J. Petrol., 40(9): 1399−1424. doi: 10.1093/petroj/40.9.1399
[22] Morrison G W. 1980. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 13(1): 97−108.
[23] Mueller D, Rock N M S, Groves D I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study[J]. Mineralogy & Petrology, 46(4): 259−289.
[24] Othman D B, White W M, Patchett J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust− mantle recycling[J]. Earth Planet. Sci. Lett., 94(1/2): 1−21.
[25] Pe−Piper G, Zhang Y, Piper D J W, et al. 2014. Relationship of mediterranean type lamproites to large shoshonite volcanoes, miocene of lesbos, ne aegean sea[J]. Lithos, 184/187(1): 281−299.
[26] Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas[J]. Ann. Rev. Earth Planet Sci., 23: 251−285. doi: 10.1146/annurev.ea.23.050195.001343
[27] Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc−alkaline volcanic rocks from the Kastamonu Area, NorthernTurkey[J]. Contributions to Mineralogy and Petrology, 58: 63−81. doi: 10.1007/BF00384745
[28] Sengor A M C, Natalin B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 364: 299−307. doi: 10.1038/364299a0
[29] Sun C H, Stern R J. 2001. Genesis of Mariana shoshonites: Contribution of the subduction component[J]. J. Geophys. Res., 106(B1): 589−608. doi: 10.1029/2000JB900342
[30] Sun W D, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implication for mantle composition and processes[J]. Geol. Soc. London Spec. Pub., 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
[31] Turner S, Arnaud N, Liu J, et al. 1996. Post–collisional shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. J. Petrol., 37: 45−71. doi: 10.1093/petrology/37.1.45
[32] Wang J F, Li Y J, Li H Y. 2017. Zircon LA−ICP−MS U−Pb age and island−arc origin of the Bayanhua gabbro in the Hegenshan suture zone, Inner Mongolia[J]. Acta Geologica Sinica(English Edition), 91(6): 2316−2317. doi: 10.1111/1755-6724.13470
[33] Wang J F, Li Y J, Li H Y, et al. 2020. Intra–oceanic subduction of the Paleo–Asian Oceanic slab: New evidence from the Early Carboniferous quartz diorite in the Diyanmiao ophiolite[J]. Acta Geologica Sinica(English Edition), 94(2): 565−567. doi: 10.1111/1755-6724.14507
[34] Williams H M, Turner S P, Pearce J A, et al. 2004. Nature of the source regions for post−collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling[J]. J. Petrol., 45: 555−607. doi: 10.1093/petrology/egg094
[35] Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022
[36] Wyborn D. 1992. The tectonic significance of Ordovician magmatism in the eastern Lachlan Fold Belt[J]. Tectonophysics, 214(1/4): 177−192.
[37] Xiao W J, Windley B F, Hao J. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 22(6): 1069−1089.
[38] Xiao W J, Windley B F, Huang B C. 2009. End−Permian to mid−Triassic termination of the accretionary processes of the southern Altaids;implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. Int. J. Earth Sci., 98: 1189−1217. doi: 10.1007/s00531-008-0407-z
[39] Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo–Triassic collage systerns in Central Asia: oroclines, Sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43(1): 477−507. doi: 10.1146/annurev-earth-060614-105254
[40] 陈斌, 赵国春, Wilde S. 2001. 内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J]. 地质论评, 47(4): 361−367. doi: 10.3321/j.issn:0371-5736.2001.04.005
[41] 程天赦, 杨文静, 王登红. 2014. 内蒙古西乌旗阿鲁包格山A型花岗岩锆石U−Pb年龄、地球化学特征及地质意义[J]. 大地构造与成矿学, 38(3): 718−728.
[42] 程天赦, 杨文静, 滕超, 等. 2023. 内蒙古西乌旗早泥盆世I型石英闪长岩的发现及其地质意义[J]. 现代地质, 37(6): 1624−1633.
[43] 程杨, 肖庆辉, 李廷栋, 等. 2019. 中亚造山带东缘迪彦庙俯冲增生杂岩带早二叠世洋内弧岩浆作用及构造背景[J]. 地球科学, 44(10): 3454−3468.
[44] 邓晋福, 冯艳芳, 狄永军, 等. 2015a. 岩浆弧火成岩构造组合与洋陆转换[J]. 地质论评, 61(3): 473−484.
[45] 邓晋福, 冯艳芳, 狄永军, 等. 2015b. 古亚洲构造域侵入岩时−空演化框架[J]. 地质论评, 2015,61(6): 1211−1224.
[46] 董培培, 李英杰, 许展, 等. 2021. 内蒙古查干拜兴晚石炭世埃达克岩的成因及其洋内俯冲作用的约束[J]. 地质学报, 95(12): 3676−3690. doi: 10.3969/j.issn.0001-5717.2021.12.007
[47] 范玉须, 李廷栋, 肖庆辉, 等. 2019. 内蒙古西乌珠穆沁旗晚二叠世花岗岩的锆石U–Pb年龄、地球化学特征及其构造意义[J]. 地质论评, 65(1): 248−266.
[48] 贾小辉, 王晓地, 杨文强, 等. 2017. 钾玄质系列岩石的研究现状[J]. 地质论评, 63(6): 1587−1601.
[49] 李钢柱, 王玉净, 李成元. 2017. 内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义[J]. 科学通报, 62(5): 400−406.
[50] 李红英, 周志广, 张达, 等. 2015. 内蒙古西乌旗格尔楚鲁晚三叠世流纹岩年代学、地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 34(3): 546−555. doi: 10.3969/j.issn.1007-2802.2015.03.011
[51] 李锦轶, 高立明, 孙桂华, 等. 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 23(3): 0565−0582.
[52] 李锦轶, 刘建峰, 曲军峰, 等. 2019a. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报, 35(10): 2989−3016.
[53] 李锦轶, 刘建峰, 曲军峰, 等. 2019b. 中国东北地区古生代构造单元: 地块还是造山带?[J]. 地球科学, 44(10): 3157−3177.
[54] 李可, 张志诚, 李建锋, 等. 2012. 内蒙古西乌珠穆沁旗地区中生代中酸性火山岩SHRIMP锆石U−Pb年龄和地球化学特征[J]. 地质通报, 31(5): 671−685. doi: 10.3969/j.issn.1671-2552.2012.05.004
[55] 李英杰, 王金芳, 李红阳, 等. 2012. 内蒙古西乌旗迪彦庙蛇绿岩的识别[J]. 岩石学报, 28(4): 1282−1290.
[56] 李英杰, 王金芳, 李红阳, 等. 2015. 内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J]. 岩石学报, 31(5): 1461−1470.
[57] 李英杰, 王金芳, 王根厚, 等. 2018. 内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义[J]. 岩石学报, 34(2): 469−482.
[58] 李英杰, 王金芳, 董培培, 等. 2023. 内蒙古西乌旗米斯庙蛇绿岩的识别及其地质意义[J]. 岩石学报, 39(5): 1305−1321. doi: 10.18654/1000-0569/2023.05.06
[59] 刘建峰, 迟效国, 张兴洲. 2009. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 83(3): 365−376. doi: 10.3321/j.issn:0001-5717.2009.03.006
[60] 刘建峰, 李锦轶, 赵硕, 等. 2022. 中亚造山带东南部晚古生代—早中生代地壳增生和古亚洲洋演化: 来自内蒙古东南部林西—东乌旗地区岩浆岩的证据[J]. 岩石学报, 38(8): 2181−2215.
[61] 刘锐, 杨振, 徐启东, 等. 2016. 大兴安岭南段海西期花岗岩类锆石U−Pb年龄、元素和Sr−Nd−Pb同位素地球化学: 岩石成因及构造意义[J]. 岩石学报, 32(5): 1505−1528.
[62] 刘志斌, 李英杰, 曹侃, 等. 2023. 内蒙古迪彦庙蛇绿岩带早石炭世闪长岩成因与古亚洲洋洋内俯冲作用[J]. 地质学报, 97(10): 3265−3277.
[63] 内蒙古自治区地质局区域地质测量队.1976.L-50-XXIX (罕乌拉幅) 1: 200000地质图[R].
[64] 尼玛次仁, 王国灿, 顿都, 等. 2015. 西藏狮泉河地区高钾−钾玄质火山岩的岩石学、地球化学及锆石U−Pb年龄[J]. 地质通报, 34(9): 1656−1667.
[65] 邱检生, 刘亮, 李友连, 等. 2013. 沂沭断裂带中南段钾质火山岩的元素地球化学与Sr−Nd−Hf同位素组成及其对岩石成因的制约[J]. 地质学报, 87(9): 1193−1210.
[66] 邱检生, 王德滋, 刘洪, 等. 2002. 大别造山带北缘后碰撞富钾火山岩: 地球化学与岩石成因[J]. 岩石学报, (3): 319−330.
[67] 邱检生, 徐夕生, 蒋少涌. 2003. 地壳深俯冲与富钾火山岩成因[J]. 地学前缘, 10(3): 191−200. doi: 10.3321/j.issn:1005-2321.2003.03.018
[68] 沈阳地质矿产研究所. 2005. L50 C 004003(西乌珠穆沁旗幅)1: 250000地质图[R].
[69] 石玉若, 刘敦一, 张旗, 等. 2007. 内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U−Pb年龄及其区域构造意义[J]. 地质通报, 26(2): 183−189.
[70] 孙巍, 许逢明, 吴大天, 等. 2023. 大兴安岭中部扎赉特旗晚三叠世A型花岗岩的发现及其地质意义[J]. 西北地质, 56(2): 80−91.
[71] 王金芳, 李英杰, 李红阳, 等. 2019. 贺根山缝合带白音呼舒奥长花岗岩锆石U−Pb年龄、地球化学特征及构造意义[J]. 地质论评, 65(4): 857−872.
[72] 王金芳, 李英杰, 李红阳, 等. 2020a. 古亚洲洋晚石炭世俯冲作用: 梅劳特乌拉蛇绿岩中扎嘎音高镁安山岩证据[J]. 地质论评, 66(2): 289−306.
[73] 王金芳, 李英杰, 李红阳, 等. 2020b. 古亚洲洋俯冲板片断离与后造山伸展: 贺根山缝合带火山岩年代学和地球化学证据[J]. 地质学报, 94(12): 3561−3580.
[74] 王金芳, 李英杰, 李红阳, 等. 2021a. 贺根山缝合带晚石炭世TTG岩浆事件: 奥长花岗岩锆石U−Pb年龄和地球化学制约[J]. 地质学报, 95(2): 396−412.
[75] 王金芳, 李英杰, 李红阳, 等. 2021b. 二连—贺根山缝合带晚石炭世埃达克岩的发现及古亚洲洋洋内俯冲作用[J]. 中国地质, 48(2): 520−535.
[76] 王金芳, 李英杰, 李红阳, 等. 2021c. 贺根山缝合带阿萨格图钾玄质火山岩锆石LA−ICP−MS U−Pb年龄、地球化学特征及构造意义[J]. 地质论评, 67(4): 918−935.
[77] 王金芳, 宋宇桐, 李康硕, 等. 2024. 冀北古元古代东瓦窑杂岩体的发现及其对华北克拉通伸展事件的制约[J]. 地质通报, 43(1): 46−60.
[78] 王良玉, 廖群安, 江云川, 等. 2016. 内蒙古锡林浩特早白垩世晚期钾玄质火山岩成因及构造环境[J]. 地质通报, 35(6): 919−931. doi: 10.3969/j.issn.1671-2552.2016.06.009
[79] 王树庆, 胡晓佳, 杨泽黎, 等. 2018. 兴蒙造山带中段锡林浩特跃进地区石炭纪岛弧型侵入岩年代学、地球化学、Sr−Nd−Hf同位素特征及其地质意义[J]. 地球科学, 43(3): 1−31.
[80] 王帅, 李英杰, 王金芳, 等. 2021. 内蒙古西乌旗晚石炭世马尼塔埃达克岩的发现及其对古亚洲洋东段洋内俯冲的约束[J]. 地质通报, 40(1): 82−94.
[81] 杨宾, 张彬, 张庆奎, 等. 2018. 内蒙古东部马鞍山地区早石炭世高镁安山岩特征及地质意义[J]. 地质通报, 37(9): 1760−1770.
[82] 杨华本, 王文东, 闫永生, 等. 2016. 大兴安岭北段新林区塔术兰沟组火山岩成因及地幔富集作用[J]. 地质论评, 62(6): 1471−1486.
[83] 袁建国, 顾玉超, 肖荣阁, 等. 2017. 内蒙古锡林浩特东部地区早白垩世花岗岩地球化学、锆石U−Pb年龄及地质意义[J]. 现代地质, 31(1): 20−32.
[84] 章邦桐, 吴俊奇, 凌洪飞, 等. 2011. 板内橄榄玄粗岩(shoshonite)地幔流体交代作用及成因的元素地球化学证据: 以赣南会昌橄榄玄粗岩为例[J]. 地球化学, 40(5): 443−453.
[85] 张庆奎, 杨宾, 邵学峰, 等. 2018. 内蒙古巴拉格歹地区构造混杂岩带中浊积岩、震积岩特征及意义——以内蒙古哈拉黑等八幅1∶5万区域地质调查为例[J]. 地质通报, 37(9): 1731−1735.
[86] 张祥信, 高永丰, 雷世和. 2016. 内蒙古中部红格尔地区玛尼吐组钾玄质火山岩锆石U−Pb年龄、地球化学及其地质意义[J]. 地球化学, 45(4): 356−373.
[87] 张晓飞, 周毅, 曹军, 等. 2018. 内蒙古西乌旗罕乌拉地区双峰式侵入体年代学、地球化学特征及其对古亚洲洋闭合时限的制约[J]. 地质学报, 92(4): 665−686.
[88] 张晓晖, 张宏福, 汤艳杰, 等. 2006. 内蒙古中部锡林浩特−西乌旗早三叠世A型酸性火山岩的地球化学特征及其地质意义[J]. 岩石学报, 22(11): 2769−2780.
[89] 张学斌, 周长红, 来林, 等. 2015. 锡林浩特东部早白垩世白音高老组岩石地球化学特征、LA−MC−ICP−MS锆石U−Pb年龄及地质意义[J]. 地质与勘探, 51(2): 290−302.
-