准噶尔盆地西北缘断裂带构造变形机制

豆方鹏, 李江海, 彭谋. 2024. 准噶尔盆地西北缘断裂带构造变形机制——基于物理实验模拟研究. 地质通报, 43(4): 527-535. doi: 10.12097/gbc.2022.03.044
引用本文: 豆方鹏, 李江海, 彭谋. 2024. 准噶尔盆地西北缘断裂带构造变形机制——基于物理实验模拟研究. 地质通报, 43(4): 527-535. doi: 10.12097/gbc.2022.03.044
DOU Fangpeng, LI Jianghai, PENG Mou. 2024. Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation. Geological Bulletin of China, 43(4): 527-535. doi: 10.12097/gbc.2022.03.044
Citation: DOU Fangpeng, LI Jianghai, PENG Mou. 2024. Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation. Geological Bulletin of China, 43(4): 527-535. doi: 10.12097/gbc.2022.03.044

准噶尔盆地西北缘断裂带构造变形机制

  • 基金项目: 国家重点研发计划项目《重点含盐盆地钾盐成矿规律、勘查技术与增储示范》(编号:2023YFC2906500)
详细信息
    作者简介: 豆方鹏(1997− ),男,在读硕士生,从事地质学研究。E−mail:2001210125@stu.pku.edu.cn
    通讯作者: 李江海(1965− ),男,教授,从事全球构造教学与研究。E−mail:jhli@pku.edu.cn
  • 中图分类号: P542.3; P554

Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation

More Information
  • 准噶尔盆地西北缘发育以红车(红山嘴、车排子)、克白(克拉玛依、百口泉)和乌夏(乌尔河、夏子街)为代表的边缘断裂系统,是影响石炭纪—三叠纪地层发育特征和控制油气聚集的关键因素。准噶尔盆地西北缘断裂带属性及形成机制是地球科学界广泛讨论的问题,并一直存在争议。基于区域地质背景和前人研究成果,采用物理砂箱实验模拟准噶尔盆地西北缘断裂带构造变形机制。实验结果表明,乌夏、克白断裂带主要由一条西倾的主断裂控制,两侧断裂不对称分布,为不对称状花状断裂。红车断裂带主要由2条主断裂控制,呈雁列状分布,整体表现为近似对称的花状构造。通过物理模拟正演,认为准噶尔盆地西北缘早石炭世—晚三叠世演化过程可分为2个阶段,即残余洋盆俯冲阶段和右旋走滑阶段。准噶尔盆地西北缘构造石炭纪—三叠纪地层圈闭发育,可能是逆冲断裂和褶皱形成的断鼻、断块和排列背斜,这些伴生构造圈闭是准噶尔盆地西北缘油气成藏的关键因素。

  • 加载中
  • 图 1  北疆地区数字高程模型(a, 显示了主要断裂和构造单元)、西北缘断裂体系简化构造图(b)、A-A’剖面地层结构图(c,据王鹤华等, 2015修改)和B-B’剖面地层结构图(d,据Tang et al.,2021修改)

    Figure 1. 

    图 2  实验模型示意图

    Figure 2. 

    图 3  实验结果俯视图

    Figure 3. 

    图 4  弧形压扭性边界物理模拟结果(A-A’、B-B’、C-C’、D-D’)和直线压扭性边界物理模拟结果(E-E’、F-F’、G-G’)(字母的含义说明见正文,剖面位置见图3

    Figure 4. 

    图 5  准噶尔地区早石炭世—晚石炭世(约310 Ma)和早二叠世—晚三叠世(约250 Ma)构造演化简图

    Figure 5. 

    表 1  本研究使用的物理参数和地质原型与实验模型之间的比例因子

    Table 1.  The physical parameters and scale factors between geological prototypes and experimental models used in this study

    参数 地质原型 实验模型 比例因子
    长度$ \left(l\right)/\mathrm{m} $ $ \text{4.5×}{\text{10}}^{\text{4}\text{}}\;\mathrm{m} $ $ 5\times{10^{-1}}\;\mathrm{m} $ $ {{l}}_{\mathrm{M}}/{{l}}_{\mathrm{N}}=\text{9×}{\text{10}}^{{-4}} $
    石英砂密度$ \left(\rho \right) $ $ \text{2.4×}{\text{10}}^{\text{3}\text{}}\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $ $ \text{1.35×}{\text{10}}^{\text{3}}\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $ $ {\mathrm{\rho }}_{\mathrm{M}}/{\mathrm{\rho }}_{\mathrm{N}}=0.65 $
    重力加速度$ \left(\text{g}\right) $ $ 9.81\;\mathrm{m}/{\mathrm{s}}^{2} $ $ 9.81\;\mathrm{m}/{\mathrm{s}}^{2} $ $ {\text{g}}_{\text{M}}/{\text{g}}_{\mathrm{N}}=\text{1.0} $
    摩擦系数$ \left(\mu \right) $ $ 0.73 $ $ 0.58 $ $ {\mathrm{\mu }}_{\mathrm{M}}/{\mathrm{\mu }}_{\mathrm{N}}=0.65 $
    旋转角度$ \left(\theta \right) $ 70° 40° $ {\mathrm{\theta }}_{\mathrm{M}}/{\mathrm{\theta }}_{\mathrm{N}}=0.65 $
    时间尺度(T) 50 Myr 9 min $ {{T}}_{\mathrm{M}}/{{T}}_{\mathrm{N}}=3.5\times {10}^{-13} $
      注:实验模型密度数据据王鹤华等, 2015;旋转角度数据据Wang et al.,2007;Yi et al.,2015
    下载: 导出CSV
  • [1]

    Ablimiti I, Zha M, Ding X J, et al. 2020. Identification of a Permian foreland basin in the western Junggar Basin(NW China) and its impact on hydrocarbon accumulation[J]. Journal of Petroleum Science and Engineering, 187: 920−4105.

    [2]

    Carroll A R, Liang Y, Graham S A, et al. 1990. Junggar basin, northwest China: Trapped Late Paleozoic ocean[J]. Tectonophysics, 181(1/4): 1−14. doi: 10.1016/0040-1951(90)90004-R

    [3]

    Deng B, Jiang L, Zhao G, et al. 2017. Insights into the velocity−dependent geometry and internal strain in accretionary wedges from analogue models[J]. Geological Magazine, 155(5): 1089−1104.

    [4]

    Ding X J, Gao C H, Zha M, et al. 2017. Depositional environment and factors controlling β−carotane accumulation: A case study from the Jimsar Sag, Junggar Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 833−842.

    [5]

    Ding X J, Qu J H, Ablimit I, et al. 2019. Organic matter origin and accumulation in tuffaceous shale of the lower Permian Lucaogou Formation, Jimsar Sag[J]. Journal of Petroleum Science and Engineering, 179: 696−706. doi: 10.1016/j.petrol.2019.05.004

    [6]

    Hoshino K. 1972. Mechanical properties of Japanese Tertiary sedimentary rocks under high confining pressures[R]. Geological Survey of Japan.

    [7]

    Konstantinovskaya E, Malavieille J. 2011. Thrust wedges with decollement levels and syntectonic erosion: A view from analog models[J]. Tectonophysics, 502(3/4): 336−350.

    [8]

    Liang Y Y, Zhang Y Y, Chen S, et al. 2020. Controls of a strike−slip fault system on the tectonic inversion of the Mahu depression at the northwestern margin of the Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 198: 104229. doi: 10.1016/j.jseaes.2020.104229

    [9]

    Meng J, Guo Z, Fang S. 2009. A new insight into the thrust structures at the northwestern margin of Junggar Basin[J]. Earth Science Frontiers, 16(3): 171−180.

    [10]

    Oncken A O. 2003. The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges[J]. Journal of Structural Geology, 25(10): 1691−1711. doi: 10.1016/S0191-8141(03)00005-1

    [11]

    Souloumiac P, Maillot B, Leroy Y M. 2012. Bias due to side wall friction in sand box experiments[J]. Journal of Structural Geology, 35(2): 90−101.

    [12]

    Tang W B, Zhang W W, Pe−Piper G, et al. 2021. Permian to early Triassic tectono−sedimentary evolution of the Mahu sag, Junggar Basin, western China: sedimentological implications of the transition from rifting to tectonic inversion[J]. Marine and Petroleum Geology, 123: 104730. doi: 10.1016/j.marpetgeo.2020.104730

    [13]

    Tao K Y, Cao J, Wang Y, et al. 2016. Geochemistry and origin of natural gas in the petroliferous Mahu sag, northwestern Junggar Basin, NW China: Carboniferous marine and Permian lacustrine gas systems[J]. Organic Geochemistry, 100: 62−79. doi: 10.1016/j.orggeochem.2016.08.004

    [14]

    Wang B, Chen Y, Zhan S, et al. 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J]. Earth Planet, 263: 288−308. doi: 10.1016/j.jpgl.2007.08.037

    [15]

    Weijermars R, Schmeling H. 1986. Scaling of Newtonian and non−Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity)[J]. Physics of the Earth & Planetary Interiors, 43(4): 316−330.

    [16]

    Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022

    [17]

    Xu Q Q, Ji J Q, Zhao L, et al. 2013. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: Remnant ocean model[J]. Earth−Science Reviews, 126: 178−205. doi: 10.1016/j.earscirev.2013.08.005

    [18]

    Yh A, Gza B. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo−Asian Ocean−ScienceDirect[J]. Earth−Science Reviews, 186: 129−152. doi: 10.1016/j.earscirev.2017.09.012

    [19]

    Yi Z, Huang B C, Xiao W J, et al. 2015. Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): Implications for the tectonic evolution of the western Altaids[J]. Gondwana Research, 27(2): 862−877. doi: 10.1016/j.gr.2013.11.006

    [20]

    Zhao S, Li S, Xin L, et al. 2014. Intracontinental orogenic transition: Insights from structures of the eastern Junggar Basin between the Altay and Tianshan orogens[J]. Journal of Asian Earth Sciences, 88(6): 137−1484.

    [21]

    Zhou Y C, Chen Q H, Wu K Y, et al. 2019. The basin and range systems and their evolution of the northwestern margin of Junggar Basin, China: Implications for the hydrocarbon accumulation[J]. Energy Exploration & Exploitation, 37(5): 1577−1598.

    [22]

    陈石, 郭召杰, 漆家福, 等. 2016. 准噶尔盆地西北缘三期走滑构造及其油气意义[J]. 石油与天然气地质, 37(3): 322−331. doi: 10.11743/ogg20160304

    [23]

    邓洪菱, 张长厚, 李海龙, 等. 2009. 褶皱相关断裂构造及其地质意义[J]. 自然科学进展, 19(3): 285−296. doi: 10.3321/j.issn:1002-008X.2009.03.007

    [24]

    管树巍, 李本亮;侯连华, 等. 2008. 准噶尔盆地西北缘下盘掩伏构造油气勘探新领域[J]. 石油勘探与开发, 35(1): 17−22. doi: 10.3321/j.issn:1000-0747.2008.01.004

    [25]

    韩宝福, 季建清, 宋彪, 等. 2006. 新疆准噶尔晚古生代陆壳垂向生长—后碰撞深成岩浆活动的时限[J]. 岩石学报, 22(5): 1077−1086. doi: 10.3321/j.issn:1000-0569.2006.05.003

    [26]

    况军, 张越迁, 侯连华. 2008. 准噶尔盆地西北缘克百掩伏带勘探领域分析[J]. 新疆石油地质, 29(4): 431−434.

    [27]

    杨庚, 王晓波, 李本亮, 等. 2011. 准噶尔盆地西北缘斜向挤压构造与走滑断裂[J]. 地质科学, 46(3): 696−708. doi: 10.3969/j.issn.0563-5020.2011.03.007

    [28]

    谭开俊, 张帆, 吴晓智, 等. 2008. 准噶尔盆地西北缘盆山耦合与油气成藏[J]. 天然气工业, 28(5): 10−13. doi: 10.3787/j.issn.1000-0976.2008.05.003

    [29]

    王鹤华, 吴孔友, 裴仰文, 等. 2015. 扎伊尔山冲断-走滑构造演化特征与物理模拟[J]. 地质力学学报, 21(1): 56−65. doi: 10.3969/j.issn.1006-6616.2015.01.007

    [30]

    蔚远江, 何登发, 雷振宇, 等. 2004. 准噶尔盆地西北缘前陆冲断带二叠纪逆冲断裂活动的沉积响应[J]. 地质学报, 78(5): 612−625. doi: 10.3321/j.issn:0001-5717.2004.05.005

    [31]

    张元元, 曾宇轲, 唐文斌. 2021. 准噶尔盆地西北缘二叠纪原型盆地分析[J]. 石油科学通报, 6(3): 333−343. doi: 10.3969/j.issn.2096-1693.2021.03.027

    [32]

    孙自明, 洪太元, 张涛. 2008. 新疆北部哈拉阿拉特山走滑-冲断复合构造特征与油气勘探方向[J]. 地质科学, 43(2): 309−320. doi: 10.3321/j.issn:0563-5020.2008.02.007

    [33]

    张越迁, 张年富. 2006. 准噶尔大型叠合盆地油气富集规律[J]. 中国石油勘探, 11(1): 59−64. doi: 10.3969/j.issn.1672-7703.2006.01.009

    [34]

    张越迁, 汪新, 刘继山, 等. 2011. 准噶尔盆地西北缘乌夏走滑构造及油气勘探意义[J]. 新疆石油地质, 32(5): 447−450.

    [35]

    支东明, 唐勇, 郑孟林, 等. 2018. 玛湖凹陷源上砾岩大油区形成分布与勘探实践[J]. 新疆石油地质, 39(1): 1−1. doi: 10.7657/XJPG20180101

  • 加载中

(5)

(1)

计量
  • 文章访问数:  890
  • PDF下载数:  84
  • 施引文献:  0
出版历程
收稿日期:  2022-03-23
修回日期:  2022-07-25
刊出日期:  2024-04-15

目录