Identification and petrogenesis of Wuhema highly fractionated I-type granitoids in Qinghai Province from Songpan-Ganzi Terrane
-
摘要:
为探讨松潘−甘孜地体内青海吾和玛花岗质岩石的成因类型与岩石成因,对其开展了岩相学、地球化学、锆石U−Pb年代学和Lu-Hf同位素等研究。吾和玛花岗质岩石被确定为高分异的I型花岗岩,其结晶年龄为216.6±4.3 Ma,为正长花岗岩,具有弱过铝质高钾钙碱性特征。岩石轻、重稀土元素分馏不明显 ((La/Yb)N <7), 轻稀土元素轻微富集,重稀土元素分布平缓,具有明显的负Eu异常(δEu=0.08 ~ 0.43),明显亏损Ba、Sr和高场强元素Nb 、Ta 、P 、Ti ,富集大离子亲石元素Rb、Th、U、K,εHf(t)值为−2.54~1.32。吾和玛花岗质岩石的母岩浆是岩石圈拆沉作用引起软流圈上涌,诱发中元古代地壳物质(类似于变杂砂岩的物质)部分熔融形成长英质母岩浆,后期又受到斜长石、钾长石、磷灰石等矿物分离结晶作用的控制,经历了高程度的分异形成的。
Abstract:In order to study the genetic type and petrogenesis of the Wuhema granitoids in the Songpan Ganzi Terrane, the petrography, geochemistry, zircon U−Pb chronology and Lu-Hf isotope have been studied in this paper. The Wuhema granitic rocks are identified as highly fractionated I-type granitoids with crystallization age of 216.6±4.3 Ma. The rocks are syenogranite, and have the characteristics of weakly peraluminous, high-K calc-alkaline. The fractionation of REE in the rocks is not obvious (La/Yb)N <7), light rare earth elements are slightly enriched, and heavy rare earth elements are gently distributed. The rocks have obvious negative Eu anomalies (δEu= 0.08 ~ 0.43), with obvious depletion of Ba, Sr and high field strength elements (HFSEs, e.g., Nb, Ta, P and Ti), and enrichment of large ion lithophile elements (LILEs, e.g., Rb, Th and U), εHf(t) values of the rocks range from -2.54 to 1.32. The primary magma of the Wuhema granitic rocks were formed by the upwelling of asthenosphere caused by the lithosphere delamination, and induced the partial melting of Mesoproterozoic crustal materials (similar to metagreywacke), then the magma went through a high degree of fractionation of plagioclase, potassium feldspar, apatite and other minerals.
-
-
图 1 松潘−甘孜地体及邻区大地构造单元简图(a, 据Yin et al., 2000)和吾和玛地区地质简图(b)
Figure 1.
图 4 吾和玛花岗质岩石稀土元素球粒陨石标准化配分图(a)及微量元素原始地幔标准化蛛网图(b) (标准化值据McDonough et al.,1995)
Figure 4.
图 6 吾和玛花岗质岩石源区组成判别图(a底图据Stern et al., 1996,b ~ d底图据Altherr et al., 2002;Kaygusuz et al., 2008)
Figure 6.
图 7 吾和玛高分异I型花岗岩 Sr−Ba (a)和 La−(La/Yb)N (b)关系图及分离结晶趋势(矿物分离结晶趋势线据Rudnick et al., 1995)
Figure 7.
表 1 吾和玛花岗质岩石样品(P006-1-TW1)LA-ICP-MS锆石 U−Th−Pb分析结果
Table 1. LA-ICP-MS zircon U−Th−Pb isotopic analyses for the sample (P006-1-TW1) from Wuhema granitoid rock
测点号 同位素比值 年龄/Ma 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 206Pb/238U 1σ 1 0.06784 0.00395 0.31801 0.01833 0.034 0.00066 0.01486 0.0006 215.6 4.1 2 0.05287 0.0019 0.26214 0.00959 0.03596 0.00058 0.01137 0.00031 227.7 3.58 3 0.05818 0.00189 0.29154 0.00969 0.03635 0.00058 0.01273 0.00029 230.2 3.58 4 0.05088 0.0023 0.22936 0.01042 0.0327 0.00055 0.00826 0.00035 207.4 3.46 5 0.05048 0.00162 0.24334 0.00801 0.03497 0.00055 0.00969 0.00022 221.5 3.4 6 0.05288 0.0022 0.24881 0.01043 0.03413 0.00057 0.01042 0.00028 216.3 3.53 7 0.05986 0.00209 0.27428 0.00971 0.03323 0.00054 0.01053 0.00028 210.8 3.36 8 0.05236 0.00302 0.24352 0.01396 0.03374 0.00062 0.01108 0.00039 213.9 3.86 9 0.04904 0.00201 0.22609 0.00933 0.03344 0.00055 0.00955 0.00027 212.1 3.42 10 0.05268 0.00206 0.24899 0.00984 0.03428 0.00056 0.01051 0.0003 217.3 3.49 11 0.06386 0.0023 0.27834 0.01013 0.03161 0.00052 0.01295 0.00033 200.6 3.23 12 0.09867 0.00235 0.48867 0.01222 0.03592 0.00056 0.01552 0.00029 227.5 3.48 13 0.05043 0.00351 0.2396 0.01657 0.03446 0.00066 0.0113 0.00036 218.4 4.11 14 0.05113 0.0023 0.24263 0.01099 0.03442 0.00058 0.01022 0.0003 218.2 3.59 15 0.06856 0.00256 0.2753 0.01036 0.02913 0.00048 0.01268 0.00035 185.1 3.02 16 0.05385 0.00278 0.25171 0.01297 0.03391 0.0006 0.01174 0.00037 215 3.73 17 0.05591 0.0023 0.24805 0.0103 0.03218 0.00053 0.01085 0.00032 204.2 3.31 18 0.05553 0.00258 0.2759 0.01287 0.03604 0.00062 0.01222 0.00046 228.2 3.84 19 0.05093 0.002 0.2454 0.00975 0.03495 0.00057 0.00982 0.00031 221.5 3.56 20 0.33927 0.00537 3.34562 0.05896 0.07153 0.00111 0.18423 0.00285 445.4 6.67 表 2 吾和玛花岗质岩石锆石Lu-Hf同位素分析结果
Table 2. Zircon Lu-Hf isotopic data of Wuhema granitoid rock
测点号 176Yb/177Hf 176Lu/177Hf ±2σ (176Hf/177Hf )i εHf(t) ±1σ TDM2/Ga Hf-BD02 0.023024 0.000850 0.000018 0.282764 -0.27 0.03 1.10 Hf-BD03 0.029089 0.001110 0.000022 0.282736 -1.28 0.03 1.17 Hf-BD04 0.022269 0.000861 0.000022 0.282727 -1.59 0.03 1.19 Hf-BD05 0.037337 0.001418 0.000022 0.282807 1.24 0.03 1.01 Hf-BD06 0.021790 0.000849 0.000019 0.282700 -2.54 0.03 1.25 Hf-BD07 0.036377 0.001300 0.000021 0.282809 1.32 0.03 1.00 Hf-BD08 0.037459 0.001345 0.000022 0.282765 -0.26 0.03 1.10 Hf-BD09 0.024019 0.000934 0.000021 0.282734 -1.35 0.03 1.17 Hf-BD10 0.022585 0.000857 0.000021 0.282711 -2.15 0.03 1.22 Hf-BD11 0.032601 0.001179 0.000024 0.282753 -0.68 0.03 1.13 注: εHf(t)={[(176Hf/177Hf)样品-(176Lu/177Hf)样品×(eλt-1)]/[(176Hf/177Hf)CHUR-(176Lu/177Hf)CHUR×(eλt–1)]-1)}×10000,tDM1=1/λ×ln{1 +[(176Hf/177Hf)样品-(176Lu/177Hf)DM]/[(176Lu/177Hf)样品-(176Lu/177Hf)DM]},TDM2 = TDM1-( TDM1-t)×[(fcc–f样品)/(fcc–fDM)],(176Lu/177Hf) CHUR =0. 0332,(176Hf/177Hf) CHUR= 0.282772(据Blichert-Toft et al.,1999) ; (176Lu/177Hf) DM = 0. 0384, (176Hf/177Hf)DM = 0.28325 (据Griffin et al.,2000) , fcc, f样品和fDM分别代表陆壳、样品和亏损地幔的fLu/Hf值,t表示锆石结晶年龄,λ = 1. 867 × 10−11/a 表 3 吾和玛花岗质岩石全岩主量、微量和稀土元素组成分析结果
Table 3. Whole-rock major, trace and rare earth elements of the Wuhema granitoid rock
样品编号 PM006-2-YH2 PM006-2-YH1 PM006-3-YH1 PM006-3-YH2 PM006-4-YH1 PM006-4-YH2 PM006-5-YH1 PM006-5-YH2 SiO2 75.5 74.0 76.8 76.8 76.4 77.3 76.5 76.7 TiO2 0.075 0.22 0.10 0.10 0.08 0.06 0.11 0.07 Al2O3 12.26 13.4 12.22 12.31 12.23 12.27 12.31 12.43 Fe2O3 1.50 0.34 0.14 0.05 0.23 0.09 0.05 0.03 FeO 1.30 1.40 1.4 1.30 1.4 0.80 1.50 1.10 MnO 0.02 0.04 0.03 0.03 0.03 0.02 0.04 0.04 MgO 0.16 0.25 0.12 0.11 0.11 0.06 0.15 0.07 CaO 0.65 1.2 0.80 0.70 0.70 0.50 0.70 0.70 Na2O 3.49 3.5 3.41 3.14 3.13 3.34 3.4 3.36 K2O 4.43 4.32 4.44 4.81 4.82 4.88 4.59 4.82 P2O5 0.012 0.06 0.02 0.02 0.02 0.01 0.02 0.02 H2O 4.53 4.32 4.78 4.8 4.75 4.91 4.74 4.78 总计 99.99 100 100 100.01 100 99.98 100.01 99.98 A/CNK 1.05 1.07 1.03 1.06 1.06 1.05 1.04 1.04 烧失量 0.60 1.25 0.58 0.65 0.95 0.69 0.59 0.70 Mg# 10 21 12 13 11 11 15 10 DI 92 93 93 93 93 95 90 94 Ta 1.56 0.85 0.9 0.81 0.85 0.93 1.16 0.99 U 10.33 5.38 7.08 8.73 10.9 7.78 8.53 8.81 Ba 27.3 89 100 78.3 63.4 54.6 66.2 37.9 Cs 12.74 14.6 11.6 17.7 19.1 14.5 19.8 14.2 Zr 77.95 135 88.6 104 85.2 88 95.8 76.3 Hf 3.34 4.82 3.76 4.44 4.01 4.12 4.48 3.53 Rb 317.82 258 312 348 397 418 384 429 Th 33.63 28.1 30.7 28 31.9 21.2 35.2 31.3 Sr 26.47 29 39.2 33 28.4 21.9 32.8 21.6 Sn 3.72 7.34 6.12 14.7 9.8 6.04 10.4 9.54 Nb 7.84 12.6 12.4 12.5 12.6 13 14.2 13 La 13.43 23.4 15.4 7.66 16.2 7.12 17 12.5 Ce 74.91 46.2 34.7 19.2 38.6 15.5 37.6 30.2 Pr 4.03 5.26 4.16 2.25 4.51 1.61 4.42 3.66 Nd 16.08 19.8 16.5 8.49 17.4 5.85 17 13.9 Sm 4.27 4.42 4.55 2.18 4.46 1.49 4.87 3.44 Eu 0.16 0.61 0.21 0.17 0.12 0.067 0.17 0.1 Gd 4.39 4.11 4.56 2.61 4.41 2.12 5.12 3.57 Tb 0.73 0.65 0.76 0.48 0.75 0.4 0.9 0.58 Dy 4.93 3.89 4.73 3.3 4.82 2.75 5.75 3.54 Ho 1.05 0.83 0.98 0.73 0.99 0.61 1.24 0.76 Er 3.33 2.43 2.84 2.3 3.01 1.9 3.66 2.27 Tm 0.58 0.38 0.44 0.36 0.48 0.31 0.58 0.36 Yb 4.25 2.61 2.94 2.56 3.26 2.16 4.12 2.58 Lu 0.72 0.37 0.43 0.36 0.48 0.3 0.57 0.36 Y 31.41 22.4 26.4 20.8 28 18.4 34.5 21.5 δEu 0.11 0.43 0.14 0.22 0.08 0.12 0.1 0.09 Sr/Y 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 (La/Yb)N 2.27 6.43 3.76 2.15 3.56 2.36 2.96 3.48 La/Yb 3.16 8.97 5.24 2.99 4.97 3.3 4.13 4.84 ΣREE 132.86 114.96 93.2 52.65 99.49 42.19 103 77.82 注:主量元素含量单位为%,微量和稀土元素含量单位为10−6;Mg#=100×Mg2+/(Mg2++TFe2+);A/CNK=Al2O3/(CaO+Na2O+K2O);A/NK=Al2O3/(Na2O+K2O);δEu=2×EuN/(SmN+GdN);N表示球粒陨石标准化 -
[1] Altherr R, Siebel W. 2002. I−type plutonism in a continental back−arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece[J]. Contributions to Mineralogy and Petrology, 143(4): 397−415. doi: 10.1007/s00410-002-0352-y
[2] Blichert−Toft J, Albarède F. 1999. The Lu−Hf isotope geochemistry of chondrites and the evolution of the mantle−crust system[J]. Earth and Planetary Science Letters, 148: 243−258.
[3] Cai H M, Zhang H F, Xu W C, et al. 2010. Petrogenesis of indosinian volcanic rocks in Songpan−Garze fold belt of the northeastern Tibetan Plateau: New evidence for lithospheric delamination[J]. Science China (Earth Sciences ), 53(9): 1316−1328. doi: 10.1007/s11430-010-4033-9
[4] Chappell B W. 1999. Aluminium saturation in I− and S−type granites and the characterization of fractionated haplogranites[J]. Lithos, 46: 535−551. doi: 10.1016/S0024-4937(98)00086-3
[5] Griffin W L, Pearson N J, Belousova E, et al. 2000. The Hf isotope composition of cratonic mantle: LA−MC−ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64(1): 133−147. doi: 10.1016/S0016-7037(99)00343-9
[6] Kaygusuz A, Siebel W, En C, et al. 2008. Petrochemistry and petrology of I−type granitoids in an arc setting: the composite Torul pluton, Eastern Pontides, NE Turkey[J]. International Journal of Earth Sciences, 97(4): 739−764. doi: 10.1007/s00531-007-0188-9
[7] King P L, Chappell B W, Allen C M et al. 2001. Are A−typegranites the high−temperature felsic granites? Evidence from fractionated granites of the Wangrah suite[J]. Australian Journal of Earth Sciences, 48(4): 501−514. doi: 10.1046/j.1440-0952.2001.00881.x
[8] Li X H, Li Z X, Li W X, et al. 2007. U−Pb zircon, geochemical and Sr−Nd−Hf isotopic constraints on age and origin of Jurassic I− and A−type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat−slab?[J]. Lithos, 96: 186−204.
[9] Liu L, Chu G, Li Y G, et al. 2018. Mesozoic high− and low−SiO2 adakites and A−type granites in the Lower Yangtze River Belt, Eastern China: Implications for petrogenesis and metallogeny[J]. Minerals, 8(8): 328. doi: 10.3390/min8080328
[10] Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel [M]. Berkeley Geochronology Center, California.
[11] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[12] McDonough W F, Sun S S. 1995. The composition of the Earth[J]. Chemical Geology, 120(3/4): 223−253.
[13] Middlemost E A K. 1994. Naming Materials in the Magma / igneous Rock System[J]. Earth−Science Reviews, 37(3/4): 215−224.
[14] Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247−263. doi: 10.1016/0024-4937(89)90028-5
[15] Roger F, Malavieille J, Leloup P H, et al. 2004. Timing of granite emplacement and cooling in the Songpan−Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 22: 465−481. doi: 10.1016/S1367-9120(03)00089-0
[16] Rudnick R L. 1995. Making continental crust[J]. Nature, 378(6557): 571−577. doi: 10.1038/378571a0
[17] Stern C R, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 123(3): 263−281. doi: 10.1007/s004100050155
[18] Van Achterbergh E, Ryan C G, Jackson S E, et al. 2001. Data reduction software for LA−ICP−MS[C]//Sylvester P J. Laser−Ablation−ICPMS in the Earth Sciences. Principles and Applications. Mineralogical Society of Canada Short Course Series, 29: 239–243.
[19] Wang Q, Li Z X, Chung S L, et al. 2011. Late Triassic high−Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications[J]. Lithos, 126(1/2): 54−67.
[20] Watson E B, Harrison T M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64: 295−304. doi: 10.1016/0012-821X(83)90211-X
[21] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407−419. doi: 10.1007/BF00402202
[22] Wu F Y, Liu X C, Ji W Q, et al. 2017. Highly fractionated granites: recognition and research[J]. Science China Earth Sciences, 60(7): 1201−1219. doi: 10.1007/s11430-016-5139-1
[23] Xiao L, Zhang H F, Clemens J D, et al. 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution[J]. Lithos, 96(3/4): 436−452.
[24] Yan D P, Zhou M F, Song H L, et al. 2003. Origin and tectonic significance of a Mesozoic multi−layer over−thrust system within the Yangtze Block (Yangtze Block)[J]. Tectonophysics, 361: 239−254. doi: 10.1016/S0040-1951(02)00646-7
[25] Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211−280. doi: 10.1146/annurev.earth.28.1.211
[26] Yuan C, Zhou M F, Sun M, et al. 2010. Triassic granitoids in the eastern Songpan−Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere[J]. Earth and Planetary Science Letters, 290(3/4): 481−492. doi: 10.1016/j.jpgl.2010.01.005
[27] Zhang H F, Parrish R, Zhang L, et al. 2007. A−type granite and adakitic magmatism association in Songpan−Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination[J]. Lithos, 97(3/4): 323−335.
[28] Zhang H F, Zhang L, Harris N, et al. 2006. U−Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan−Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement[J]. Contributions to Mineralogy and Petrology, 152(1): 75−88. doi: 10.1007/s00410-006-0095-2
[29] Zhang L Y, Ding L, Pullen A, et al. 2014. Age and geochemistry of western Hoh−Xil−Songpan−Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo−Tethys ocean[J]. Lithos, 190: 328−348.
[30] 边飞, 吴柏林, 高永旺. 2013. 青海扎日加花岗岩地球化学、锆石 LA−ICP−MS U−Pb定年及地质意义[J]. 矿床地质, 32(3): 625−640.
[31] 崔加伟, 郑有业, 孙祥. 2016. 松潘−甘孜造山带北段岗龙乡花岗岩岩石成因及地球动力学特征[J]. 地质科技情报, 35(2): 129−139.
[32] 国家地质实验测试中心. 2010. (GB/T 14506.28−2010)硅酸盐岩石化学分析方法 第28部分: 16个主次成分量测定[S]. 北京:中国标准出版社.
[33] 胡健民, 孟庆任, 石玉若, 等. 2005. 松潘−甘孜构造带内花岗岩锆石SHRIMP U−Pb定年及其构造意义[J]. 岩石学报, 21(3): 867−880.
[34] 李献华, 李武显, 李正祥. 2007. 再论南论燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 52(9): 981−992.
[35] 李艳广, 汪双双, 刘民武, 等. 2015. 斜锆石LA−ICP−MS U−Pb定年方法及应用[J]. 地质学报, 89(12): 2400− 2418.
[36] 吴福元, 李献华, 郑永飞, 等. 2007. Lu−Hf 同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185−220.
[37] 夏磊, 闫全人, 向忠金, 等. 2017. 松潘−甘孜地体中部晚三叠世安山质增生弧的确定及其意义[J]. 岩石学报, 33(2): 579−604.
[38] 许志琴, 侯立炜, 王宗秀. 1992. 中国松潘带的造山过程 [M]. 北京: 地质出版社.
[39] 张雪亭. 2007. 1∶100万青海省地质图及说明书[M]. 北京:地质出版社.
[40] 赵永久. 2007. 松潘−甘孜东部中生代中酸性侵入体的地球化学特征、岩石成因及构造意义[D]. 中国科学院研究生院(广州地球化学研究所)博士学位论文.
[41] 朱弟成, 莫宣学, 王立全, 等. 2009. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U−Pb年代学、地球化学和Sr−Nd−Hf同位素约束[J]. 中国科学( D辑), 39(7): 833−848.
-