-
摘要:
研究目的 针对南方煤田煤系地层岩性特征和地质构造分布,目前依靠传统方法,识别落差≤5 m小断层存在极大的局限性且难度较大,而地震物理模型是目前最有可能实现系统研究小断层的技术手段。
研究方法 以南方煤田——贵州省六盘水煤田为例,根据对研究区的实地勘探与资料收集,设计地震物理模型。由于小断层的制作难度及特殊性,采用特有的空间尺寸比例1∶2 000,速度比为1∶1.74,首次在国内实现对不同埋深5 m、3 m和1 m小断层的构建,从而制作完成了南方煤系地层小断层地震物理模型,对地震数据进行采集,并对模型原始地震数据进行分析及处理,得到模型叠加剖面。
研究结果 可以通过相似比原理选取特定比例因子,进行原料配比,完成包含落差≤5 m小断层地震物理模型的制作,为后续采集地震数据对煤田小断层进行识别及研究小断层波场特征提供试验平台。
结论 本次研究建立了一套适用于南方煤田小断层识别的地震物理模型实验体系,验证了相似比原理与小断层模型构建的可行性,突破了传统方法难以识别小断层的技术局限。该模型为研究小断层的波场特征、地震响应机制及后续小断层精细识别提供了实验平台与理论支撑,对提升南方煤系构造精细解释能力具有重要意义。
Abstract:Objective Given the lithological characteristics and geological structure distribution of coal−bearing strata in southern coalfields, traditional methods face significant limitations and challenges in identifying small faults with a displacement of ≤5 m. Seismic physical modeling is currently the most promising technique for systematically studying small faults.
Methods Taking the southern coalfield—Liupanshui Coalfield in Guizhou Province, as an example, a seismic physical model was designed based on field exploration and data collection. Due to the complexity and specificity of constructing small faults, a unique spatial scale ratio of 1∶2000 and a velocity ratio of 1∶1.74 were adopted. For the first time in China, small faults at different burial depths of 5 m, 3 m, and 1 m were successfully simulated, leading to the completion of a seismic physical model of small faults in coal−bearing strata. Seismic data were then acquired, and the raw seismic data from the model were analyzed and processed to obtain the stacked seismic profile.
Results By applying similarity principles and selecting specific scaling factors, raw materials were proportioned to successfully construct a seismic physical model incorporating small faults with a displacement of ≤5 m. This model provides an experimental platform for acquiring seismic data, identifying small faults in coalfields, and studying their wavefield characteristics.
Conclusions This study establishes a seismic physical modeling system suitable for identifying small faults in southern coalfields, demonstrating the feasibility of constructing fault models based on the similarity principle. The developed model overcomes the technical limitations of conventional methods in detecting small faults, and offers a reliable experimental foundation for investigating wavefield responses and seismic recognition mechanisms. It provides theoretical support for the refined interpretation of geological structures in southern coal-bearing stratas.
-
Key words:
- seismic physical modeling /
- coal measure of southern /
- model making /
- data acquisition /
- small fault
-
-
图 1 山脚树矿区构造纲要图(地层代号注释同表1)
Figure 1.
表 1 煤田三维地震物理模型参数
Table 1. Three-dimensional seismic physical model parameters of the coalfield
层数 地层 综合岩性 厚度/m 密度加权平均/(g·cm−3) 层速度/(m·s−1) 第一层 永宁镇组(T1yn) 白云质灰岩 585 2.393 4530 第二层 飞仙关组第二段( ${\mathrm{T}}_{1}f^{2} $ )细砂岩 385 2.434 4290 第三层 飞仙关组第一段( ${\mathrm{T}}_{1}f^{1} $ )泥质粉砂岩 155 2.442 4580 第四层 长兴组、龙潭组 含煤粉砂岩 103.23 2.519 4350 第五层 煤 2.82 1.75 3000 第六层 含煤粉砂岩 123.95 2.567 4420 第七层 峨眉山玄武岩组(P1e) 火成岩 550 3.009 5540 表 2 几种相似比组合
Table 2. Several combination of similarity ratio
参数 γ γ γ γ γ 比例 模型比例因子 模型比例因子 模型比例因子 模型比例因子 模型比例因子 1 2 3 4 5 空间长度 1∶10000 1∶20000 1∶10000 1∶5000 1∶1000 时间 1∶10000 1∶10000 1∶5000 1∶5000 1∶1000 速度 1∶1 1∶2 1∶1 1∶1 1∶1 频率 10000∶1 10000∶1 5000∶1 5000∶1 1000∶1 采样率 1∶10000 1∶10000 1∶10000 1∶5000 1∶1000 适合情况 面积中 面积大、埋深大 面积中、频率高 面积小 面积小 表 3 物理模型比例参数
Table 3. Scale parameters of physical model
比例因子 模型 野外 物 理 模 型 大 小/mm 尺度L 1 m 2000 m 长 宽 高 速度V 1 m/s 1.74 m/s 1200 500 500 时间T 1.74 s 2000 s 水层深 60 (无地表) 41 (加地表) 频率f 240 kHz 208 Hz 模拟区块/m 采样率t 0.2 us 0.23 ms 纵向 横向 深 采样点 4096 4096 2400 1000 1000 表 4 相似模拟材料
Table 4. Similar simulation materials
地层 模拟材料 砂岩 砂与环氧树脂 煤层 环氧树脂与硅橡胶 灰岩 石灰粉与环氧树脂 泥岩 滑石粉与环氧树脂 起伏地表 普通硅酸盐水泥、砂、石膏粉、水 模型左侧、右侧边界 环氧树脂、橡胶、稀释剂与除泡剂等 基底 有机玻璃 表 5 物理模型测量参数
Table 5. Physical model measurement parameters
层位 层名 试块密度/
(g·cm−3)试块纵波
速度/(m·s−1)转换实际纵波
速度/(m·s−1)转换实际
密度/(g·cm−3)1 地表 1.082 1256 2185 1.883 2 细砂岩 1.1525 2433 4233 2.005 3 粉砂岩 1.183 2625 4568 2.058 4 含煤粉
砂岩1.1604 2492 4336 2.019 5 煤层 1.122 1785 3106 1.952 6 含煤粉
砂岩1.1695 2561 4456 2.035 7 玄武岩 1.602 2857 4971 2.787 -
[1] Balch A H, Karazincir H, Wang Y R. 1991. Diffraction imaging of oil−producing layers using crosswell seismic: A physical elastic model study[J]. Proceedings of the 61st Annual Meeting of the Society of Exploration Geophysicists. Colorado School of Mines: 268−272 (in Chinese).
[2] Blacquière G, Volker A, Ongkiehong L. 1999. 3−D physical modeling for acquisition geometry studies[C]//SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists: 665−668.
[3] Dai S X, Hu P, Dong Y J, et al. 2022. Patterns of small fault with different placing depth in typical coal fields in southern China[J]. Journal of Mining Science and Technology, 7(1): 123−133 (in Chinese with English abstract).
[4] Dai S X, Zhu G W, Zhang P, et al. 2011. Study on seismic physical model and seismic numerical model for deep coal measure strata[J]. China Mining Magazine, 20(8): 115−118 (in Chinese with English abstract).
[5] Dai S X, Zhu G W, Zhang P, et al. 2012. Technology of disturbing wave filtering in seismic model and its application[J]. Journal of Mining and Strata Control Engineering, 17(1): 21−25, 29 (in Chinese with English abstract).
[6] Di B R, Wei J X, Xia Y G. 2002. Study on effects and precision of 3−D seismic physical model technique[J]. Oil Geophysical Prospecting, 37(6): 562−568 (in Chinese with English abstract).
[7] Lawton D C, Nazar Brad, Chen Taiwen, et al. 1991. Thin−Bedded channel sandstone: A physical seismic modeling study[C]//Proceedings of the 61st Annual Meeting of the Society of Exploration Geophysicists. Univ. of Calgary: 264−268 (in Chinese).
[8] Gui W C. 2011. Wire−line coring drilling drill tool combination for "South" Coalfields[J]. Coal Geology of China, 23(2): 64−67 (in Chinese with English abstract).
[9] Han T H, Dai S X, Li X H, et al. 2011. Seismic physical modeling research on coal measure strata in Huainan[J]. Journal of China Coal Society, 36(4): 588−592 (in Chinese with English abstract).
[10] House L, Roberts P, Yang X, et al. 1999. Imaging and modeling seismic data from a physical model of the SEG/EAGE salt structure[C]//SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists: 1017−1020.
[11] Li Y, Zhou Y B, Fu Z Y, et al. 2017. Wave−field characteristic of geophysical model experiment[J]. Mineralogy and Petrology, 37(3): 107−112 (in Chinese with English abstract).
[12] McDonald J A, Gardner G H F, Hilterman F J (Xu D K (translator)). 1988. Seismic physical modeling [M]. Beijing: Petroleum Industry Press (in Chinese).
[13] Mou Y G. 2003. Seismic physical modeling of 3D complex media [M]. Beijing: Petroleum Industry Press (in Chinese).
[14] Schneider W A, Jr, Balch A H, Yu F Y. 1991. Seismic crosswell imaging of 2D and 3D physical elastic models using prestack reverse time migration[C]// Proceedings of the 61st Annual Meeting of the Society of Exploration Geophysicists. Exxon Production Research. Colorado School of Mines: 256−260 (in Chinese).
[15] Si W M, Di B R, Wei J X. 2015. Analysis of multiple−converted interference wave in seismic physical modeling data[J]. Geophysical Prospecting for Petroleum, 54(1): 17−23 (in Chinese with English abstract).
[16] Sun J Z, Guo T Q, Tang W B, et al. 1997. Theoretical research and practice of ultrasonic seismic model experiments in China[J]. Chinese Journal of Geophysics, (S1): 266−274 (in Chinese).
[17] Tang H F, Wang P J, Jiang C J, et al. 2007. Physical model and seismic recognition of concealed volcanic edifices of Yingcheng Formation in Songliao Basin, Cretaceous, NE China[J]. Progress in Geophysics, (2): 530−536 (in Chinese with English abstract).
[18] Wang L L, Wei J X, Huang P, et al. 2019. Fracture−sensitive poststack seismic attribute optimization based on the physical model[J]. Oil Geophysical Prospecting, 54(1): 127−136, 9−10 (in Chinese with English abstract).
[19] Wei J X, Di B R. 2006. Properties of materials forming the 3−D geological model in seismic physical model[J]. Geophysical Prospecting for Petroleum, 45(6): 586−590, 15−16 (in Chinese with English abstract).
[20] Wei J X, Di B R, Mou Y G. 2002. Research on materials and construction of 3D complex physical model [C]//Annual of the Chinese Geophysical Society 2002—Proceedings of the 18th Annual Meeting of the Chinese Geophysical Society. China University of Petroleum: 252−253 (in Chinese).
[21] Wei J X, Mou Y G, Di B R. 2002. Study of 3−D seismic physical model[J]. Oil Geophysical Prospecting, (6): 556−561, 660 (in Chinese with English abstract).
[22] Wu Y H, Tao X Y, Zhao Z Y, et al. 2025. Discovery and significant implication of the strike−slip faults in Kaijiang−Liangping trough of the Sichuan Basin[J]. Geological Bulletin of China, 44(1): 117−128 (in Chinese with English abstract).
[23] Yang K Y. 1997. New Discoveries on acoustic wave propagation velocity[J]. Modern Physics, (2): 26 (in Chinese).
[24] Yang R Q, Tang X G. 2014. Coal−bearing strata characteristic analysis in Lupanshui coalfield, Guizhou Province[J]. Coal Geology of China, 26(7): 28−32 (in Chinese with English abstract).
[25] Yang S A, Zhang Y B, Xu H Y. 2004. The application and development trend of the three−dimensional seismic exploration technology in the coalfield[J]. Geophysical and Geochemical Exploration, (6): 500−503 (in Chinese with English abstract).
[26] Yi T S, Gao W. 2018. Reservoir formation characteristics as well as co−exploration and co−mining orientation of Upper Permian coal−bearing gas in Liupanshui Coalfield[J]. Journal of China Coal Society, 43(6): 1553−1564 (in Chinese with English abstract).
[27] Zhou S, Wang Y L, Han T B, et al. 2012. Minor fault joint−interpretation[J]. Oil Geophysical Prospecting, 47(S1): 50−54, 165−166, 162 (in Chinese with English abstract).
[28] Zhuang Y M. 2018. Study on the fine interpretation method of seismic multiattribute of small fault in coal seam[D]. Doctoral Dissertation of China University of Mining and Technology (in Chinese with English abstract).
[29] Balch A H, Karazincir H, 王友仁. 1991. 利用井间地震对产油层绕射成象: 物理弹性模型研究[C]//美国勘探地球物理学家学会第61届年会论文集. Colorado School of Mines: 268−272.
[30] McDonald J A, Gardner G H F, Hilterman F J(许大坤译). 1988. 地震物理模拟[M]. 北京: 石油工业出版社.
[31] Schneider W A, Jr Balch A H, 于锋玉. 1991. 用叠前逆时偏移做二维和三维物理弹性模型的地震井间成象[C]//美国勘探地球物理学家学会第61届年会论文集. Exxon Production Research. Colorado School of Mines: 256−260.
[32] Lawton D C, Nazar B, Chen T W, 等. 1991. 薄层河道砂岩: 一项物理地震模拟研究[C]//美国勘探地球物理学家学会第61届年会论文集. Univ. of Calgary: 264−268.
[33] 戴世鑫, 胡盼, 董艳娇, 等. 2022. 南方典型煤田不同埋深小断层识别规律研究[J]. 矿业科学学报, 7(1): 123−133.
[34] 戴世鑫, 朱国维, 张鹏, 等. 2011. 深部煤系地质条件地震物理与数值模型研究[J]. 中国矿业, 20(8): 115−118. doi: 10.3969/j.issn.1004-4051.2011.08.033
[35] 戴世鑫, 朱国维, 张鹏, 等. 2012. 地震模型干扰波去除技术的研究与应用[J]. 煤矿开采, 17(1): 21−25, 29. doi: 10.3969/j.issn.1006-6225.2012.01.007
[36] 狄帮让, 魏建新, 夏永革. 2002. 三维地震物理模型技术的效果与精度研究[J]. 石油地球物理勘探, 37(6): 562−568. doi: 10.3321/j.issn:1000-7210.2002.06.003
[37] 桂望成. 2011. 南方煤田绳索取心钻进的配套问题[J]. 中国煤炭地质, 23(2): 64−67. doi: 10.3969/j.issn.1674-1803.2011.02.13
[38] 韩堂惠, 戴世鑫, 李小华, 等. 2011. 淮南煤系地层地震物理模型研究[J]. 煤炭学报, 36(4): 588−592.
[39] 李勇, 周钰邦, 付争妍, 等. 2017. 基于地球物理模型实验的波场特征[J]. 矿物岩石, 37(3): 107−112.
[40] 牟永光. 2003. 三维复杂介质地震物理模拟[M]. 北京: 石油工业出版社.
[41] 司文朋, 狄帮让, 魏建新. 2015. 地震物理模型实验数据中多次转换干扰波的分析[J]. 石油物探, 54(1): 17−23. doi: 10.3969/j.issn.1000-1441.2015.01.003
[42] 孙进忠, 郭铁栓, 唐文榜, 等. 1997. 我国超声地震模型试验的理论研究与实践[J]. 地球物理学报, (S1): 266−274. doi: 10.3321/j.issn:0001-5733.1997.z1.024
[43] 唐华风, 王璞珺, 姜传金, 等. 2007. 松辽盆地白垩系营城组隐伏火山机构物理模型和地震识别[J]. 地球物理学进展, (2): 530−536. doi: 10.3969/j.issn.1004-2903.2007.02.027
[44] 王玲玲, 魏建新, 黄平, 等. 2019. 依托物理模型的叠后裂缝敏感地震属性优选与应用[J]. 石油地球物理勘探, 54(1): 127−136, 9−10. doi: 10.13810/j.cnki.issn.1000-7210.2019.01.015
[45] 魏建新, 狄帮让. 2006. 地震物理模型中三维地质模型材料特性研究[J]. 石油物探, 45(6): 586−590. doi: 10.3969/j.issn.1000-1441.2006.06.006
[46] 魏建新, 狄帮让, 牟永光. 2002a. 三维复杂物理模型材料和制作研究[C]//中国地球物理学会年刊2002——中国地球物理学会第十八届年会论文集. 石油大学: 252−253.
[47] 魏建新, 牟永光, 狄帮让. 2002b. 三维地震物理模型的研究[J]. 石油地球物理勘探, (6): 556−561, 660. doi: 10.3321/j.issn:1000-7210.2002.06.002
[48] 吴永宏, 陶夏妍, 赵忠宇, 等. 2025. 四川盆地开江-梁平海槽走滑断层的发现与启示[J]. 地质通报, 44(1): 117−128. doi: 10.12097/gbc.2023.05.011
[49] 杨揆一. 1997. 关于声波传递速度的新发现[J]. 现代物理知识, (2): 26.
[50] 杨瑞琴, 唐显贵. 2014. 贵州省六盘水煤田含煤地层特征分析[J]. 中国煤炭地质, 26(7): 28−32. doi: 10.3969/j.issn.1674-1803.2014.07.07
[51] 杨双安, 张胤彬, 许鸿雁. 2004. 煤田三维地震勘探技术的应用及发展前景[J]. 物探与化探, (6): 500−503.
[52] 易同生, 高为. 2018. 六盘水煤田上二叠统煤系气成藏特征及共探共采方向[J]. 煤炭学报, 43(6): 1553−1564.
[53] 中华人民共和国国土资源部. 2017. 中华人民共和国地质矿业行业标准地震勘探规范(DZ/T0300—2017)[S]. 北京: 地质出版社.
[54] 周赏, 王永莉, 韩天宝, 等. 2012. 小断层综合解释技术及其应用[J]. 石油地球物理勘探, 47(S1): 50−54, 165−166, 162.
[55] 庄益明. 2018. 煤层小断层地震多属性精细解释方法研究[D]. 中国矿业大学博士学位论文.
-