Geochemical characteristics of thorium and their sedimentary environment indication of Engeriyin uranium deposit in Sunid Left Banner, Inner Mongolia
-
摘要:
恩格日音铀矿床是近年来在二连盆地马尼特坳陷内新发现的砂岩型铀矿床。对苏尼特左旗恩格日音地区31个钻孔278件岩石样品Th元素地球化学含量特征、分布和变化规律进行归纳、整理, 分析了Th元素含量影响因素和指示意义。结果表明, 研究区Th含量值为3×10−6~99.9×10−6, 加权平均值为24.03×10−6, 显示出Th含量较坳陷南部火山岩平均值富集的特征。沉积岩样品中Th含量值主要与沉积物源Th含量、沉积物分选强弱、粒度、透水性、吸附性强弱等有关, 而与深度、沉积过程中新形成的含钍矿物、岩石U含量、氧化还原环境等无明显相关性。综合分析认为,陆相盆地边缘沉积岩中Th元素的特征和相对含量的空间分布规律研究,可用于识别沉积盆地的沉积物源、建立等时地层格架、划分沉积相带及砂体连通情况、判断古水流方向及恢复古河道展布。
Abstract:Located in the Sunid Left Banner, the Engeriyin deposit is a newly discoveried sandstone–type uranium deposit. Though summarized the geochemical characteristics and distribution of thorium contents in 278 samples from 31 boreholes in Engeriyin area of Manite depression in Erenhot Basin, this paper analyzed the influencing factors and indicating significance of thorium content. The findings indicate that the thorium level in this region is higher than that of the volcanic rocks to the south of the Manite depression, ranging from 3 × 10−6 to 99.9 × 10−6 with a weighted average of 24.03 × 10−6. The primary determinants of thorium content in rock samples, as determined by data processing and analysis, are the source of the sediment, the distance and sorting of transportation, the granularity, the water permeability, and the adsorption strength of sedimentary rock, all of which affect the migration and differentiation of thorium−bearing minerals. Additionally, there is no discernible relationship with the uranium concentration, the redox reaction, sample depth, or newly generated thorium−bearing minerals during the deposition process. Numerical characterization and spatial distribution of Thorium in sedimentary rocks along the margins of terrestrial basins are useful for locating sedimentary sources within sedimentary basins, creating isochronous stratigraphic grids, defining sedimentary phases and sand connectivity, figuring out the direction of palaeocurrents, and reestablishing palaeochannel spreads.
-
Key words:
- thorium /
- geochemistry /
- provenance analysis /
- uranium deposit /
- Inner Mongolia /
- Erenhot Basin
-
-
表 1 研究区单孔Th元素加权平均值
Table 1. Weighted average value of thorium contents in single hole in Engeriyin area
地区 钻孔号 Th加权/10−6 样品数 地层 平均值/10−6 a区 ZK76 7.6 9 K1s3 20.3 ZK1 8.27 3 K1s3 ZK8 35.58 10 K1s3 ZK4 20.02 12 K1s3 ZK69 17.9 6 K1s3 ZK47 20.6 5 K1s3 ZK82 33.95 2 K1s3 ZK81 18.3 3 K1s1-2 25.2 ZK4 20.64 18 K1s1-2 ZK8 32.86 21 K1s1-2 ZK22 22.81 6 K1s1-2 ZK31 21.41 4 K1s1-2 ZK35 21.5 3 K1s1-2 ZK52 27.25 12 K1s1-2 ZK50 27.85 14 K1s1-2 ZK61 32.49 9 K1s1-2 ZK80 26.9 5 K1s1-2 ZK69 21.02 3 K1s1-2 ZK76 23.4 6 K1s1-1 ZK74 16.67 4 K1s1-1 18.8
(包含收集数据)ZK73 29.85 4 K1s1-1 ZK42 15.86 6 K1s1-1 ZK45 21.2 8 K1s1-1 ZK50 19.2 10 K1s1-1 收集a区 ZK3205 27.2 2 K1s1-2 俞礽安等,2020 ZK3201 16 2 K1s1-1 ZK3209 14.9 2 K1s1-1 b区 S21 55.87 3 K1s3 28.25 S39 40.22 6 K1s3 S63 8.86 19 K1s3 S65 6.94 19 K1s3 S61 6.71 16 K1s3 S49 41.48 4 K1s3 S25 39.6 3 K1s3 S24 97.13 3 K1s1-1 73.33 S39 49.53 3 K1s1-1 北部 ZK53 9.58 18 K1s2 9.58 注:K1s3—赛汉组上段;K1s2—赛汉组中段;K1s1—赛汉组下段 -
[1] Hu C S, Li W B, Xu C, et al. 2015. Geochemistry and zircon U–Pb–Hf isotopes of the granitoids of Baolidao and Halatu plutons in Sonidzuoqi area, Inner Mongolia: Implications for petrogenesis and geodynamic setting[J]. Journal of Asian Earth Sciences, 97: 294−306.
[2] Khan R, Mohanty S, Sengupta D. 2021. Elemental distribution in core sediments of Podampata coast, eastern Odisha, India: potentiality of rare earth elements and Th exploration[J]. Arabian Journal of Geosciences, 14(2): 1−11.
[3] Zhang X H, Yuan L L, Xue F H, et al. 2015. Early Permian A−type granites from central Inner Mongolia, North China: Magmatic tracer of post−collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 28(1): 311−327.
[4] Zhang Z C, Chen Y, Li K, et al. 2017. Geochronology and geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, China: Implications for the late Palaeozoic tectonic evolution of the south−eastern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 135(MAR.): 370−389.
[5] 曾文淇. 2018. 南方某铀矿尾矿铀、钍核素在降水淋滤过程中的浸出模拟研究[D]. 东华理工大学硕士学位论文.
[6] 崔永谦, 刘喜恒, 孙朝辉, 等. 2011. 内蒙古二连盆地深层地球物理特征和上古生界的地质结构[J]. 地质通报, 30(2/3): 235−242. doi: 10.3969/j.issn.1671-2552.2011.02.008
[7] 杜洋. 2014. 721矿尾矿库中核素(铀、钍)迁移特征及其对库区水环境影响[D]. 东华理工大学硕士学位论文.
[8] 冯云磊, 张万益, 于维满, 等. 2024. “双碳”背景下的清洁能源资源——钍[J]. 地质通报, 43(1): 101−116.
[9] 付锦, 赵宁博, 裴承凯, 等. 2014. 中国铀、钍、钾元素地球化学场特征及与铀矿化关系[J]. 物探与化探, 38(2): 200−204.
[10] 郭宏伟. 2014. 内蒙古巴彦乌拉铀矿床成矿特征及成矿规律研究[D]. 中国地质大学(北京)博士学位论文.
[11] 韩效忠, 吴兆剑, 司马献章, 等. 2018. 二连盆地马尼特坳陷南北双向供源铀成矿模式探讨[J]. 煤田地质与勘探, 46(6): 1−10. doi: 10.3969/j.issn.1001-1986.2018.06.001
[12] 胡晨钰, 胡光明, 何幼斌, 等. 2019. 放射性元素钍测井在物源分析中的应用[J]. 地质科技情报, 38(5): 54−63.
[13] 蒋喆, 韩效忠, 胡航 , 等. 2020. 二连盆地恩格日音砂岩型铀矿床地质特征及成矿作用初探[J]. 大地构造与成矿学, 44(4): 742−753.
[14] 李子颖, 刘武生, 李伟涛, 等. 2022. 内蒙古二连盆地哈达图砂岩铀矿渗出铀成矿作用[J]. 中国地质, 49(4): 1009−1047. doi: 10.12029/gc20220401
[15] 刘佳林, 刘武生, 虞航, 等. 2020. 二连盆地巴彦乌拉铀矿区花岗岩锆石U−Pb年龄和Hf同位素特征及地质意义[J]. 地质通报, 39(8): 1285−1295.
[16] 刘正义, 李西得, 孟艳宁, 等. 2016. 白云鄂博矿床钍矿化岩石类型及其控制因素[J]. 东华理工大学学报(自然科学版), 39(3): 201−209, 222.
[17] 罗旭佳. 2019. 某铀尾矿库区钍和铀的吸附迁移规律研究[D]. 东华理工大学硕士学位论文.
[18] 梅可辰, 李秋根, 王宗起, 等. 2015. 内蒙古中部苏尼特左旗大石寨组流纹岩SHRIMP锆石U−Pb年龄、地球化学特征及其构造意义[J]. 地质通报, 34(12): 2181−2194.
[19] 孟艳宁, 范洪海, 孙志富, 等. 2011. 相山矿田居隆庵矿床钍矿物特征研究[J]. 矿物岩石地球化学通报, 30(2): 180−188. doi: 10.3969/j.issn.1007-2802.2011.02.009
[20] 孟艳宁, 范洪海, 王凤岗, 等. 2013. 中国钍资源特征及分布规律[J]. 铀矿地质, 29(2): 86−92.
[21] 聂逢君, 李满根, 严兆彬, 等. 2015. 内蒙古二连盆地砂岩型铀矿目的层赛汉组分段与铀矿化[J]. 地质通报, 34(10): 1952−1963. doi: 10.3969/j.issn.1671-2552.2015.10.020
[22] 武跃勇, 姜海蛟, 寇帅. 2016. 内蒙古苏尼特左旗查干敖包地区早白垩世火山岩地质及地球化学特征[J]. 地质调查与研究, 39(1): 1−14, 23.
[23] 俞嘉嘉, 邱林飞, 周万蓬, 等. 2020. 内蒙古乌拉特中旗新忽热地区富钍岩体钍元素赋存形式及地球化学特征[J]. 铀矿地质, 36(1): 34−45.
[24] 俞礽安, 胡鹏, 曾威, 等. 2016. 内蒙古苏尼特左旗东苏A型花岗岩的锆石U−Pb年龄、地球化学特征及地质意义[J]. 岩石矿物学杂志, 35(2): 229−241. doi: 10.3969/j.issn.1000-6524.2016.02.004
[25] 俞礽安, 吴兆剑, 司马献章, 等. 2020. 二连盆地马尼特坳陷南缘赛汉塔拉组砂岩碎屑锆石年龄及其地质意义[J]. 地球科学, 45(5): 1609−1621.
[26] 张万益, 聂凤军, 江思宏, 等. 2008. 内蒙古查干敖包石英闪长岩锆石SHRIMP U−Pb年龄及其地质意义[J]. 岩石矿物学杂志, (3): 177−184. doi: 10.3969/j.issn.1000-6524.2008.03.002
[27] 张万益, 聂凤军, 刘树文, 等. 2013. 大兴安岭南段西坡金属矿床特征及成矿规律[J]. 中国地质, 40(5): 1583−1599. doi: 10.3969/j.issn.1000-3657.2013.05.022
[28] 中华人民共和国国家标准. 2010. 硅酸盐岩石化学分析方法第30部分: 44个元素量测定(GB/T 14506.30—2010)[S].
-