Comparative study of the Lanhualing Paleoproterozoic I−type granitoids and the Liaoji A−type granitoids in eastern Liaoning
-
摘要:
辽东半岛是华北克拉通胶-辽-吉古元古代活动带的重要组成部分,古元古代经历了复杂的构造演化过程,并记录了多期岩浆-变质作用,约2.2 Ga的辽吉A型花岗岩和1.89~1.85 Ga的巨斑状花岗岩、正长岩分别标志着辽东古元古代造山作用的开端和结束。最新研究显示,2.20~2.15 Ga的岩浆作用形成了2种不同类型的花岗岩,它们可能具有不同的岩石成因和构造意义。在青城子铅锌矿集区北部采集的兰花岭、白砬子花岗闪长岩和黄泊辉绿岩,锆石U−Pb年龄分别为2177±19 Ma、2129±36 Ma、1876±29 Ma。花岗闪长岩的岩石成因类型、地球化学特征与典型的约2.2 Ga的辽吉A型花岗岩明显不同,属于弱过铝质、低钾钙碱性—碱性岩石,Zr、Hf、Nb、Rb含量较低,K2O/Na2O值、稀土元素总量极低,为典型的I型花岗岩类。根据锆石Lu−Hf同位素分析,εHf (t)值为−5.1~9.0,二阶段Hf模式年龄tDM2为2089~2817 Ma,岩浆源区为约2.5 Ga的太古宙地壳物质和少量软流圈地幔物质。兰花岭地区花岗闪长岩具备岛弧或活动大陆边缘的地球化学亲缘属性,可能形成于弧岩浆俯冲挤压环境;结合形成于伸展环境的A型条痕状花岗岩特征,认为约2.2 Ga辽东地区古元古代活动带呈现总体伸展、局部挤压的构造环境,为洋壳板块向龙岗地块俯冲碰撞过程中或碰撞后的弧后盆地。
Abstract:Liaodong Peninsula is a significant component of the Jiao-Liao-Ji belt. It experienced complex process of structural evolution with the recorded effects of magma metamorphism in multiple periods. The 2.2 Ga Liaoji A-type granite and 1.89~1.85 Ga porphyritic granite/ syenite indicate the beginning and end of the effects of mountain formation in Paleoproterozoic respectively. The latest research shows that two unique types of granites have been formed under the effects of magmatism of 2.20~2.15 Ga. These two granites have different petrogenesis mechanisms and tectonic significance. In this paper, a detailed study of the Lanhualing granodiorite, Bailazi granodiorite and Huangpo diabase collected in the North of Qingchengzi lead-zinc concentrated area was conducted. The corresponding zircon U-Pb ages are 2177±19 Ma, 2129±36 Ma and 1876±29 Ma, respectively. The rock type and geochemical characteristics of the granodiorite show obviously differences from the typical 2.2 Ga Liao-ji A-type granites. It is characterized by weak peraluminous, low potassium calc-alkaline to alkaline, low content of Zr, Hf, Nb, Rb, low K2O/Na2O value, and extremely low content of total rare earth element. Therefore, it is categorized as typical I-type granite. According to the analysis of zircon Lu-Hf isotope, the value of εHf (t) is −5.1~9.0. The age of the two-stage model(tDM2) is in a range of 2089 Ma to 2817 Ma. The magma source consists of 2.5 Ga Archean crustal materials and a small amount of asthenospheric mantle materials. The granodiorite from Lanhualing area has the affinity geochemical property of island arcs or active continental margin. It may have been formed in the subduction and compression environment of arc magma; according to the A-type granite formed in extensional settings, we believe that the Paleoproterozoic belt of eastern Liaoning had experienced a tectonic environment of overall extension and local compression in the period of 2.2 Ga, which is the back-arc basin formed during or after the collision of the oceanic plate with the Longgang block.
-
-
图 1 辽东半岛构造地质图 (据Zhang et al., 2020修改)
Figure 1.
图 6 兰花岭花岗闪长岩微量元素原始地幔标准化图解(a, b)和稀土元素球粒陨石标准化图解(c, d) (标准值据Sun et al., 1989)
Figure 6.
图 8 兰花岭花岗闪长岩成因类型判别图(底图a,c据Whalen et al.,1987;b,d据Chappell et al.,1992)
Figure 8.
表 1 兰花岭花岗闪长岩锆石LA−MC−ICP−MS U−Th−Pb测年结果
Table 1. LA−MC−ICP−MS U−Th−Pb data of the zircons from the Lanhualing granodiorite
点号 232Th/
10−6238U/
10−6Pb/
10−6Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb年龄/
Ma1σ 207Pb/235U年龄/
Ma1σ 206Pb/238U年龄/
Ma1σ TW02-01 159 246 120.20 0.64 0.1332 0.0020 7.0536 0.1231 0.3825 0.0042 2143 27 2118 16 2088 20 TW02-02 188 285 135.46 0.66 0.1363 0.0019 6.9204 0.1081 0.3667 0.0034 2181 24 2101 14 2014 16 TW02-03 118 205 104.59 0.58 0.1354 0.0017 7.4687 0.1038 0.3986 0.0031 2169 22 2169 13 2162 14 TW02-04 119 203 99.50 0.59 0.1402 0.0018 7.3367 0.1028 0.3785 0.0024 2231 24 2153 13 2069 11 TW02-05 121 210 105.61 0.58 0.1375 0.0019 7.4324 0.1060 0.3914 0.0023 2196 24 2165 13 2129 11 TW02-06 235 548 168.63 0.43 0.1207 0.0017 4.1313 0.0598 0.2480 0.0015 1969 25 1661 12 1428 8 TW02-07 150 277 127.74 0.54 0.1364 0.0019 6.7851 0.1132 0.3601 0.0034 2183 24 2084 15 1983 16 TW02-08 336 704 152.59 0.48 0.1449 0.0019 3.4202 0.0697 0.1722 0.0036 2287 22 1509 16 1024 20 TW02-09 387 602 162.91 0.64 0.1452 0.0016 5.1474 0.2286 0.2564 0.0110 2300 19 1844 38 1471 57 TW02-10 355 669 154.21 0.53 0.1427 0.0017 3.4073 0.0420 0.1729 0.0013 2261 20 1506 10 1028 7 TW02-11 631 1014 239.48 0.62 0.1671 0.0026 3.7696 0.0948 0.1614 0.0024 2529 26 1586 20 965 13 TW02-12 249 319 95.80 0.78 0.1437 0.0024 5.1286 0.1666 0.2658 0.0097 2272 30 1841 28 1520 49 TW02-13 543 1226 304.54 0.44 0.2159 0.0070 4.4131 0.1656 0.1492 0.0030 2950 52 1715 31 896 17 TW02-14 146 421 141.26 0.35 0.1154 0.0013 4.3493 0.0534 0.2725 0.0023 1887 21 1703 10 1554 12 TW02-15 305 544 177.02 0.56 0.1395 0.0017 4.8784 0.1012 0.2511 0.0033 2221 16 1799 18 1444 17 TW02-16 136 231 110.90 0.59 0.1337 0.0016 6.7904 0.0795 0.3673 0.0021 2147 21 2084 10 2017 10 TW02-17 186 282 146.63 0.66 0.1351 0.0017 7.3690 0.0942 0.3945 0.0029 2165 22 2157 12 2144 13 TW02-18 291 601 165.37 0.48 0.1284 0.0018 3.7686 0.0698 0.2115 0.0023 2077 24 1586 15 1237 12 TW02-19 609 1201 132.42 0.51 0.1228 0.0022 1.5102 0.0447 0.0878 0.0015 1998 31 935 18 542 9 TW02-20 313 485 152.62 0.64 0.1293 0.0016 4.4675 0.0749 0.2491 0.0027 2089 16 1725 14 1434 14 TW02-21 250 542 150.67 0.46 0.1149 0.0014 3.6202 0.0617 0.2274 0.0025 1880 23 1554 14 1321 13 TW02-22 835 1503 227.59 0.56 0.1248 0.0017 2.0502 0.0413 0.1186 0.0018 2028 24 1132 14 722 10 TW02-23 111 222 110.02 0.50 0.1325 0.0019 7.1925 0.1090 0.3926 0.0032 2131 25 2136 14 2135 15 TW02-24 318 636 160.83 0.50 0.1455 0.0023 3.7920 0.0736 0.1883 0.0025 2294 28 1591 16 1112 13 TW02-25 146 333 116.56 0.44 0.1308 0.0022 4.9657 0.0866 0.2745 0.0022 2109 30 1813 15 1563 11 TW02-26 416 817 191.89 0.51 0.1116 0.0017 2.8578 0.0469 0.1849 0.0014 1826 28 1371 12 1094 8 TW02-27 75.3 177 87.37 0.42 0.1359 0.0021 7.4238 0.1092 0.3949 0.0025 2176 26 2164 13 2146 12 TW02-28 106 210 99.94 0.50 0.1336 0.0021 7.0003 0.1268 0.3781 0.0038 2146 27 2111 16 2068 18 TW02-29 139 228 118.45 0.61 0.1354 0.0020 7.4930 0.1108 0.3997 0.0028 2169 26 2172 13 2168 13 TW02-30 931 1104 237.43 0.84 0.1367 0.0020 3.3535 0.1125 0.1763 0.0051 2187 26 1494 26 1047 28 TW06-01 428 758 264.25 0.56 0.1128 0.0016 4.4017 0.0766 0.2821 0.0029 1856 25 1713 14 1602 15 TW06-02 181 287 150.66 0.63 0.1358 0.0018 7.5743 0.1143 0.4035 0.0032 2176 24 2182 14 2185 15 TW06-03 231 605 208.32 0.38 0.1164 0.0014 4.5917 0.0698 0.2855 0.0028 1902 22 1748 13 1619 14 TW06-04 94.1 385 154.27 0.24 0.1178 0.0023 5.2547 0.1266 0.3209 0.0024 1924 35 1862 21 1794 12 TW06-05 814 1132 318.81 0.72 0.1082 0.0014 3.2621 0.0584 0.2186 0.0030 1769 23 1472 14 1274 16 TW06-06 497 873 279.66 0.57 0.1098 0.0015 3.8218 0.0599 0.2523 0.0022 1795 25 1597 13 1450 11 TW06-07 131 242 118.16 0.54 0.1323 0.0019 6.8924 0.1124 0.3771 0.0030 2129 25 2098 15 2063 14 TW06-08 79.1 167 82.35 0.47 0.1339 0.0019 7.0965 0.1069 0.3839 0.0027 2150 24 2124 13 2095 13 TW06-09 425 1212 305.38 0.35 0.1082 0.0012 3.0706 0.0458 0.2055 0.0020 1769 20 1425 11 1205 11 TW06-10 218 286 149.27 0.76 0.1315 0.0017 6.7702 0.0918 0.3731 0.0027 2118 22 2082 12 2044 13 TW06-11 417 675 242.08 0.62 0.1138 0.0014 4.3319 0.0591 0.2758 0.0020 1861 22 1699 11 1570 10 TW06-12 107 376 152.54 0.29 0.1118 0.0015 5.1586 0.0807 0.3342 0.0028 1829 25 1846 13 1859 13 TW06-13 101 266 123.57 0.38 0.1265 0.0018 6.5836 0.1187 0.3765 0.0042 2050 25 2057 16 2060 20 TW06-14 83.2 180 92.47 0.46 0.1301 0.0017 7.2444 0.1046 0.4033 0.0033 2100 23 2142 13 2184 15 TW06-15 312 916 245.31 0.34 0.1072 0.0012 3.2478 0.0429 0.2194 0.0016 1754 21 1469 10 1279 9 TW06-16 92.9 362 111.91 0.26 0.1133 0.0016 4.0436 0.1037 0.2597 0.0063 1854 26 1643 21 1488 32 TW06-17 528 874 294.86 0.60 0.1086 0.0015 4.1767 0.1032 0.2768 0.0049 1776 30 1669 20 1575 25 TW06-18 133 468 187.94 0.28 0.1104 0.0021 4.8970 0.0891 0.3230 0.0030 1806 36 1802 15 1804 15 TW06-19 107 304 134.81 0.35 0.1294 0.0020 6.3670 0.1114 0.3559 0.0028 2100 27 2028 15 1963 13 TW06-20 141 376 149.42 0.37 0.1214 0.0018 5.6672 0.1104 0.3369 0.0034 1977 27 1926 17 1872 17 TW06-21 391 992 280.46 0.39 0.1087 0.0014 3.5293 0.0552 0.2347 0.0019 1789 24 1534 12 1359 10 TW06-22 96.3 196 102.12 0.49 0.1370 0.0019 7.7797 0.1177 0.4112 0.0030 2191 25 2206 14 2220 14 TW06-23 1980 669 381.61 2.96 0.1107 0.0016 4.7418 0.0831 0.3097 0.0032 1813 27 1775 15 1739 16 TW06-24 197 579 176.65 0.34 0.1132 0.0019 3.8920 0.0707 0.2487 0.0025 1854 30 1612 15 1432 13 TW06-25 344 557 193.87 0.62 0.1075 0.0017 3.9993 0.0680 0.2692 0.0022 1767 30 1634 14 1537 11 TW06-26 66.3 286 113.91 0.23 0.1260 0.0022 5.6227 0.1153 0.3220 0.0026 2042 31 1920 18 1799 13 TW06-27 138 800 269.98 0.17 0.1202 0.0018 4.8607 0.0980 0.2917 0.0036 1961 27 1795 17 1650 18 TW06-28 127 371 147.18 0.34 0.1166 0.0016 5.2514 0.0794 0.3263 0.0032 1906 26 1861 13 1820 15 TW06-29 103 273 109.70 0.38 0.1246 0.0018 5.8320 0.1125 0.3377 0.0039 2033 26 1951 17 1876 19 TW06-30 317 777 297.71 0.41 0.1223 0.0016 5.2614 0.0800 0.3108 0.0023 1991 23 1863 13 1745 12 TW07-01 12.5 49.0 23.06 0.25 0.1162 0.0039 5.9843 0.2025 0.3736 0.0062 1898 61 1974 29 2046 29 TW07-02 18.4 51.0 21.22 0.36 0.1152 0.0033 5.1314 0.1465 0.3212 0.0033 1883 51 1841 24 1796 16 TW07-03 82.0 62.5 44.56 1.31 0.1541 0.0031 9.5224 0.1977 0.4461 0.0044 2392 35 2390 19 2378 19 TW07-04 5.25 45.4 17.16 0.12 0.1108 0.0031 4.8914 0.1386 0.3195 0.0034 1813 52 1801 24 1788 17 TW07-05 7.60 21.0 8.40 0.36 0.1272 0.0052 5.5731 0.2264 0.3200 0.0049 2059 72 1912 35 1790 24 TW07-06 20.8 58.8 26.83 0.35 0.1192 0.0032 5.5904 0.1589 0.3400 0.0048 1944 48 1915 25 1887 23 TW07-07 220 225 100.55 0.98 0.1212 0.0026 5.1669 0.1203 0.3081 0.0032 1976 39 1847 20 1731 16 TW07-08 1.22 33.9 12.06 0.04 0.1185 0.0039 4.8975 0.1608 0.2995 0.0041 1944 58 1802 28 1689 20 TW07-09 1.08 37.6 13.50 0.03 0.1145 0.0037 4.9255 0.1525 0.3120 0.0037 1873 59 1807 26 1751 18 TW07-10 1.58 29.2 11.44 0.05 0.1161 0.0038 5.3830 0.1661 0.3368 0.0041 1896 59 1882 26 1871 20 TW07-11 0.55 33.8 12.69 0.02 0.1096 0.0035 4.9536 0.1423 0.3281 0.0039 1794 25 1811 24 1829 19 TW07-12 0.62 28.9 11.15 0.02 0.1122 0.0040 5.2286 0.1766 0.3370 0.0042 1836 65 1857 29 1872 20 TW07-13 6.33 35.3 18.08 0.18 0.1257 0.0110 6.0648 0.2499 0.3748 0.0092 2039 155 1985 36 2052 43 TW07-14 11.7 39.7 16.18 0.30 0.1158 0.0038 5.2377 0.1676 0.3254 0.0036 1894 58 1859 27 1816 18 TW07-15 16.9 43.9 18.12 0.38 0.1130 0.0033 4.9912 0.1417 0.3187 0.0034 1850 54 1818 24 1783 17 TW07-16 0.70 25.7 9.69 0.03 0.1168 0.0039 5.1960 0.1797 0.3215 0.0043 1907 55 1852 29 1797 21 TW07-17 6.70 33.8 13.25 0.20 0.1113 0.0038 4.9707 0.1625 0.3244 0.0044 1821 62 1814 28 1811 22 TW07-18 9.71 36.1 14.32 0.27 0.1044 0.0033 4.6809 0.1527 0.3237 0.0045 1706 59 1764 27 1808 22 TW07-19 93.9 81.2 51.29 1.16 0.1182 0.0044 5.3723 0.1962 0.3299 0.0037 1931 68 1880 31 1838 18 TW07-20 93.6 80.0 37.35 1.17 0.1152 0.0033 5.0126 0.1470 0.3131 0.0033 1883 56 1821 25 1756 16 TW07-21 21.0 57.2 26.30 0.37 0.1110 0.0029 5.5083 0.1521 0.3591 0.0059 1817 46 1902 24 1978 28 TW07-22 65.2 102 43.02 0.64 0.1155 0.0028 4.9253 0.1270 0.3066 0.0034 1887 45 1807 22 1724 17 TW07-23 1.04 29.4 10.89 0.04 0.1181 0.0042 5.1230 0.1648 0.3162 0.0041 1928 64 1840 27 1771 20 TW07-24 6.08 53.8 20.69 0.11 0.1158 0.0033 5.1638 0.1454 0.3213 0.0039 1892 51 1847 24 1796 19 TW07-25 0.83 35.2 12.99 0.02 0.1095 0.0036 4.8010 0.1491 0.3171 0.0035 1791 59 1785 26 1775 17 TW07-26 2.08 34.6 13.04 0.06 0.1129 0.0036 4.9838 0.1493 0.3201 0.0037 1846 58 1817 25 1790 18 TW07-27 0.50 27.9 10.08 0.02 0.1195 0.0040 5.1045 0.1674 0.3093 0.0040 1950 60 1837 28 1737 19 TW07-28 68.4 94.9 38.39 0.72 0.1196 0.0034 5.0601 0.1421 0.3063 0.0037 1950 51 1829 24 1722 18 TW07-29 3.71 36.6 13.94 0.10 0.1143 0.0032 5.0613 0.1344 0.3212 0.0037 1933 50 1830 23 1795 18 TW07-30 8.36 37.7 14.41 0.22 0.1106 0.0035 4.8096 0.1565 0.3145 0.0044 1809 58 1787 27 1763 22 表 2 主量、微量和稀土元素分析结果
Table 2. Major, trace and rare earth elements compositions
元素 TW02-1 TW02-2 TW02-3 TW02-4 TW02-5 TW06-1 TW06-2 TW06-3 TW06-4 TW06-5 SiO2 74.51 75.45 74.89 74.99 75.09 73.19 73.01 72.63 76.93 73.25 TiO2 0.070 0.071 0.069 0.067 0.070 0.12 0.10 0.10 0.075 0.099 Al2O3 15.01 14.56 14.80 14.99 14.63 15.42 15.65 15.34 13.97 15.42 Fe2O3 0.14 0.20 0.11 0.19 0.17 0.47 0.38 0.34 0.28 0.42 FeO 0.29 0.33 0.36 0.32 0.23 0.53 0.54 0.66 0.22 0.41 MnO 0.002 0.001 0.002 0.009 0.002 0.002 0.001 0.004 0.006 0.004 MgO 0.18 0.20 0.21 0.021 0.14 0.17 0.44 0.43 0.21 0.01 CaO 0.19 0.23 0.20 0.14 0.081 0.70 0.53 0.52 0.99 0.38 Na2O 8.23 7.77 8.08 7.96 7.82 6.07 6.80 6.79 4.87 6.67 K2O 1.00 0.94 0.85 0.99 1.27 2.34 2.10 2.18 1.63 2.29 P2O5 0.11 0.11 0.090 0.085 0.088 0.035 0.033 0.030 0.026 0.031 烧失量 0.30 0.26 0.050 0.27 0.33 0.86 0.68 0.60 0.68 0.75 总计 100.03 100.12 99.71 100.02 99.91 99.89 100.27 99.62 99.89 99.73 Na2O+K2O 9.23 8.72 8.92 8.94 9.09 8.41 8.90 8.97 6.50 8.96 K2O/Na2O 0.12 0.12 0.10 0.12 0.16 0.39 0.31 0.32 0.34 0.34 A/CNK 1.00 1.02 1.02 1.04 1.02 1.12 1.08 1.06 1.21 1.09 A/NK 1.03 1.05 1.04 1.06 1.03 1.23 1.16 1.13 1.43 1.15 DI 98.1 97.5 97.7 98.1 98.6 93.2 93.8 94.0 91.5 95.8 σ43 2.70 2.34 2.49 2.50 2.57 2.33 2.63 2.70 1.24 2.64 AR 4.09 3.87 3.94 3.89 4.24 3.18 3.44 3.60 2.54 3.62 M 1.31 1.27 1.28 1.25 1.29 1.34 1.35 1.39 1.19 1.32 t 735 731 736 738 737 751 743 734 740 739 Hf 1.66 1.43 1.47 1.78 1.54 1.45 0.63 0.51 0.69 0.51 Ta 1.65 1.39 1.78 0.89 0.88 0.40 0.22 0.21 0.42 0.41 Th 1.84 1.64 1.46 1.94 2.31 9.85 4.77 2.89 2.61 1.65 U 0.74 0.83 0.67 1.05 0.86 0.60 0.22 0.18 0.21 0.19 Li 2.31 2.54 1.39 2.24 2.01 11.71 6.85 6.84 6.03 4.55 Be 1.56 1.65 1.61 1.89 1.38 1.71 0.90 0.83 0.95 0.77 Sc 3.08 2.69 2.78 2.98 2.87 3.63 3.59 3.48 3.90 3.70 Co 3.71 3.47 3.16 4.00 3.74 1.92 2.28 2.43 2.59 2.47 Ni 1.06 0.12 0.50 0.40 0.53 3.00 3.55 3.65 2.88 4.71 Ba 137.24 121.19 115.76 130.20 150.81 952.45 997.18 935.49 993.55 903.09 Cr 13.69 11.87 10.61 10.24 11.68 15.80 13.69 18.40 15.00 14.08 Ga 18.92 18.59 19.37 18.04 17.56 18.26 18.26 17.52 18.25 17.90 Nb 5.54 6.56 7.61 5.48 5.48 4.87 4.08 3.55 3.13 3.42 Rb 29.59 27.95 24.04 31.94 37.49 51.40 45.30 43.20 43.79 47.30 Sr 73.34 137.01 86.44 78.42 80.51 538.25 359.92 354.90 609.05 327.91 V 18.89 18.66 19.55 20.84 18.76 29.18 26.00 25.05 26.20 27.13 Zr 80.12 73.40 78.93 78.98 80.47 99.33 90.91 84.11 76.70 84.66 Y 3.46 3.18 3.94 3.77 2.85 2.25 1.43 1.31 1.88 1.32 Nb/Ta 3.36 4.73 4.27 6.14 6.19 12.30 18.89 16.75 7.42 8.27 Zr/Hf 48.38 51.19 53.84 44.47 52.12 68.60 143.39 165.57 110.84 164.91 La 6.89 2.66 7.45 4.85 1.24 10.14 5.72 5.76 4.64 8.01 Ce 14.40 4.85 15.04 10.23 2.41 17.85 12.44 12.23 7.98 13.68 Pr 1.69 0.62 1.88 1.24 0.33 1.63 1.13 1.12 0.92 1.28 Nd 5.95 2.36 6.68 4.46 1.30 5.06 3.82 3.78 3.31 4.14 Sm 0.97 0.56 1.12 0.87 0.32 0.83 0.59 0.60 0.63 0.68 Eu 0.15 0.10 0.14 0.13 0.11 0.76 0.71 0.68 0.69 0.68 Gd 0.71 0.44 0.78 0.60 0.29 0.71 0.49 0.47 0.51 0.51 Tb 0.11 0.09 0.13 0.12 0.07 0.10 0.07 0.06 0.08 0.06 Dy 0.59 0.58 0.71 0.67 0.43 0.47 0.31 0.25 0.38 0.29 Ho 0.11 0.11 0.13 0.13 0.09 0.08 0.05 0.05 0.06 0.05 Er 0.33 0.30 0.38 0.35 0.27 0.23 0.14 0.14 0.16 0.14 Tm 0.06 0.06 0.06 0.07 0.05 0.03 0.03 0.02 0.03 0.02 Yb 0.37 0.30 0.42 0.41 0.32 0.17 0.13 0.10 0.14 0.11 Lu 0.05 0.05 0.06 0.06 0.05 0.03 0.02 0.02 0.02 0.01 ΣREE 32.38 13.08 34.99 24.21 7.26 38.09 25.66 25.27 19.55 29.68 LREE/HREE 12.87 5.77 12.07 9.01 3.66 19.93 19.72 21.92 13.28 23.57 Eu /Eu* 0.55 0.64 0.45 0.57 1.13 3.02 4.04 3.89 3.77 3.52 注:主量元素含量单位为%,微量和稀土元素含量单位为10−6;A/CNK=n(Al2O3)/[n(CaO)+n(Na2O)+n(K2O)],DI(标准矿物组分:石英+正长石+钠长石+霞石+白榴石+六方钾霞石)。M=(Na+K+2Ca)/(Al×Si)(阳离子比率);t(°C)=12900/{ln[496000/ω(Zr)]+0.85M+2.95}−273.5,据Watson et al.,1983 表 3 LA−MC−ICP−MS锆石原位微区Lu−Hf同位素测试结果
Table 3. Lu-Hf isotopic compositions of the in-situ zircons as determined by LA-MC-ICP-MS
点位 t/Ma 176Yb/177Hf 1σ 176Lu/177Hf 1σ 176Hf/177Hf 1σ εHf(0) εHf(t) (176Hf/177Hf)i tDM1/Ma tDM2/Ma fLu/Hf TW02-01 2143 0.040995 0.000216 0.001144 0.000004 0.281476 0.000014 −45.8 0.4 0.281429 2491 2697 −0.97 TW02-02 2181 0.054097 0.000400 0.001532 0.000007 0.281507 0.000018 −44.7 1.8 0.281443 2473 2641 −0.95 TW02-03 2169 0.055792 0.000315 0.001566 0.000006 0.281511 0.000013 −44.6 1.7 0.281447 2469 2641 −0.95 TW02-04 2231 0.031158 0.000213 0.000905 0.000006 0.281491 0.000015 −45.3 3.3 0.281453 2454 2588 −0.97 TW02-05 2196 0.031834 0.000269 0.000913 0.000009 0.281475 0.000014 −45.9 1.9 0.281437 2477 2646 −0.97 TW02-06 1969 0.055747 0.000347 0.001584 0.000012 0.281604 0.000016 −41.3 0.6 0.281545 2342 2555 −0.95 TW02-07 2183 0.063574 0.000454 0.001783 0.000013 0.281588 0.000016 −41.9 4.4 0.281514 2377 2486 −0.95 TW02-08 2287 0.028489 0.000253 0.000812 0.000005 0.281487 0.000014 −45.4 4.6 0.281452 2453 2554 −0.98 TW02-09 2300 0.055521 0.000901 0.001597 0.000028 0.281687 0.000018 −38.4 10.7 0.281617 2227 2185 −0.95 TW02-10 2261 0.058411 0.000444 0.001636 0.000015 0.281545 0.000018 −43.4 4.8 0.281475 2426 2521 −0.95 TW02-11 2529 0.069246 0.001234 0.001957 0.000025 0.281628 0.000016 −40.5 13.0 0.281533 2332 2222 −0.94 TW02-12 2272 0.069513 0.001603 0.001920 0.000042 0.281555 0.000018 −43.0 4.9 0.281472 2432 2521 −0.94 TW02-13 2950 0.062463 0.000683 0.001850 0.000014 0.281625 0.000016 −40.5 22.4 0.281521 2328 1979 −0.94 TW02-14 1887 0.044467 0.001261 0.001264 0.000028 0.281749 0.000015 −36.2 4.4 0.281704 2121 2258 −0.96 TW02-15 2221 0.048248 0.000266 0.001396 0.000005 0.281557 0.000013 −43.0 4.7 0.281498 2395 2495 −0.96 TW02-16 2147 0.054066 0.000481 0.001514 0.000012 0.281507 0.000015 −44.8 1.1 0.281445 2472 2660 −0.95 TW02-17 2165 0.042279 0.001017 0.001199 0.000025 0.281496 0.000014 −45.1 1.6 0.281447 2466 2643 −0.96 TW02-18 2077 0.055973 0.000240 0.001612 0.000004 0.281641 0.000018 −40.0 4.2 0.281577 2292 2415 −0.95 TW02-19 1998 0.025269 0.000407 0.000731 0.000010 0.281480 0.000016 −45.7 −2.1 0.281452 2458 2739 −0.98 TW02-20 2089 0.038850 0.000409 0.001087 0.000008 0.281599 0.000017 −41.5 3.7 0.281556 2317 2453 −0.97 TW02-21 1880 0.046421 0.001149 0.001292 0.000025 0.281574 0.000017 −42.4 −2.1 0.281528 2365 2649 −0.96 TW02-22 2028 0.053573 0.000873 0.001471 0.000019 0.281638 0.000016 −40.1 3.2 0.281581 2287 2437 −0.96 TW02-23 2131 0.039770 0.000931 0.001106 0.000021 0.281512 0.000018 −44.6 1.5 0.281467 2439 2621 −0.97 TW02-24 2294 0.044150 0.001074 0.001204 0.000019 0.281646 0.000014 −39.8 9.8 0.281594 2260 2240 −0.96 TW02-25 2109 0.032783 0.000733 0.000929 0.000016 0.281567 0.000019 −42.6 3.3 0.281530 2351 2497 −0.97 TW02-26 1826 0.045000 0.000713 0.001245 0.000017 0.281725 0.000014 −37.0 2.2 0.281682 2153 2345 −0.96 TW02-27 2176 0.029132 0.000111 0.000825 0.000002 0.281469 0.000014 −46.1 1.4 0.281435 2479 2662 −0.98 TW02-28 2146 0.040051 0.000671 0.001113 0.000012 0.281490 0.000016 −45.3 1.1 0.281444 2469 2661 −0.97 TW02-29 2169 0.037032 0.000379 0.001058 0.000013 0.281478 0.000014 −45.7 1.3 0.281435 2481 2667 −0.97 TW02-30 2187 0.039825 0.000864 0.001097 0.000017 0.281652 0.000015 −39.6 7.8 0.281607 2245 2280 −0.97 TW06-01 1856 0.031235 0.000304 0.000861 0.000005 0.281620 0.000015 −40.7 −0.4 0.281590 2275 2528 −0.97 TW06-02 2176 0.045685 0.000848 0.001292 0.000020 0.281468 0.000016 −46.1 0.7 0.281415 2510 2706 −0.96 TW06-03 1902 0.056259 0.000335 0.001548 0.000011 0.281557 0.000017 −43.0 −2.5 0.281501 2405 2693 −0.95 TW06-04 1924 0.028278 0.000183 0.000973 0.000015 0.281566 0.000015 −42.7 −1.0 0.281530 2357 2616 −0.97 TW06-05 1769 0.046045 0.000357 0.001256 0.000013 0.281724 0.000017 −37.1 0.9 0.281682 2155 2382 −0.96 TW06-06 1795 0.030164 0.000353 0.000821 0.000006 0.281653 0.000016 −39.6 −0.5 0.281625 2228 2490 −0.98 TW06-07 2129 0.035185 0.000264 0.000962 0.000006 0.281581 0.000016 −42.1 4.1 0.281542 2335 2459 −0.97 TW06-08 2150 0.050167 0.000372 0.001391 0.000011 0.281542 0.000018 −43.5 2.6 0.281485 2416 2571 −0.96 TW06-09 1769 0.041974 0.000883 0.001081 0.000012 0.281757 0.000014 −35.9 2.3 0.281720 2100 2297 −0.97 TW06-10 2118 0.034720 0.000387 0.000993 0.000010 0.281493 0.000017 −45.2 0.7 0.281453 2458 2661 −0.97 TW06-11 1861 0.035403 0.000227 0.000976 0.000005 0.281631 0.000016 −40.4 −0.1 0.281596 2268 2511 −0.97 TW06-12 1829 0.033297 0.000201 0.000980 0.000008 0.281632 0.000017 −40.3 −0.7 0.281598 2266 2528 −0.97 TW06-13 2050 0.049070 0.000881 0.001369 0.000021 0.281504 0.000015 −44.8 −0.9 0.281450 2467 2709 −0.96 TW06-14 2100 0.048130 0.000665 0.001348 0.000019 0.281517 0.000018 −44.4 0.7 0.281463 2447 2650 −0.96 TW06-15 1754 0.041904 0.000603 0.001142 0.000020 0.281569 0.000020 −42.5 −4.8 0.281531 2362 2722 −0.97 TW06-16 1854 0.043452 0.000417 0.001207 0.000010 0.281501 0.000016 −44.9 −5.1 0.281459 2460 2817 −0.96 TW06-17 1776 0.050104 0.000396 0.001263 0.000006 0.281848 0.000015 −32.7 5.4 0.281806 1983 2105 −0.96 TW06-18 1806 0.026134 0.000917 0.000752 0.000021 0.281742 0.000015 −36.4 2.9 0.281716 2103 2284 −0.98 TW06-19 2100 0.022889 0.000742 0.000677 0.000022 0.281723 0.000016 −37.1 9.0 0.281696 2124 2139 −0.98 TW06-20 1977 0.033031 0.000843 0.000913 0.000015 0.281571 0.000018 −42.5 0.5 0.281537 2345 2566 −0.97 TW06-21 1789 0.046179 0.000323 0.001588 0.000014 0.281587 0.000017 −41.9 −3.9 0.281533 2365 2695 −0.95 TW06-22 2191 0.038285 0.000877 0.001069 0.000019 0.281532 0.000016 −43.9 3.6 0.281487 2409 2538 −0.97 TW06-23 1813 0.039088 0.000445 0.001018 0.000007 0.281758 0.000016 −35.8 3.4 0.281723 2094 2263 −0.97 TW06-24 1854 0.047984 0.001658 0.001154 0.000032 0.281759 0.000015 −35.8 4.1 0.281719 2101 2246 −0.97 TW06-25 1767 0.033966 0.000431 0.000980 0.000008 0.281620 0.000017 −40.7 −2.5 0.281587 2282 2591 −0.97 TW06-26 2042 0.039061 0.000647 0.000952 0.000013 0.281773 0.000014 −35.3 9.0 0.281736 2071 2089 −0.97 TW06-27 1961 0.028963 0.000235 0.000943 0.000005 0.281552 0.000016 −43.1 −0.6 0.281517 2373 2621 −0.97 TW06-28 1906 0.022421 0.000587 0.000608 0.000010 0.281748 0.000014 −36.2 5.6 0.281726 2087 2198 −0.98 TW06-29 2033 0.031982 0.000335 0.000909 0.000007 0.281592 0.000021 −41.7 2.5 0.281556 2317 2488 −0.97 TW06-30 1991 0.043359 0.000147 0.001225 0.000004 0.281623 0.000018 −40.6 2.2 0.281576 2293 2471 −0.96 表 4 辽东半岛古元古代花岗岩类年龄统计
Table 4. Geochronological data for the Paleoproterozoic granitoid rocks in the Liaodong Peninsula
岩体 样品 岩性 类型 年龄/Ma 分析方法 参考文献 虎皮峪 FW01-327 条痕状花岗岩 A 2161 ± 12 锆石 (LA-ICP-MS) 路孝平等,2004 LJ044 条痕状二长花岗岩 A 2150 ± 17 锆石 (SHRIMP) Li et al.,2007 NHP01 条痕状二长花岗岩 A 2173 ± 20 锆石 (LA-ICP-MS) 秦亚,2013 LZ02-1 条痕状花岗岩 A 2189 ± 10 锆石 (LA-ICP-MS) Li et al.,2014 LZ04-1 条痕状花岗岩 A 2172 ± 8 锆石 (LA-ICP-MS) Li et al.,2014 LZ19-1 条痕状花岗岩 A 2158 ± 23 锆石 (LA-ICP-MS) Li et al.,2014 HPX1 条痕状花岗岩 A 2199 ± 10 锆石 (LA-ICP-MS) 陈斌等,2016 13LJ03 条痕状花岗岩 A 2119 ± 16 锆石 (LA-ICP-MS) 任云伟等,2017 NHP-11 条痕状花岗岩 A 2180 ± 14 锆石 (LA-ICP-MS) Zhu et al., 2019b 16XY016 条痕状二长花岗岩 A 2167 ± 26 锆石 (LA-ICP-MS) Dong et al., 2019 马风 LD9822 花岗岩 A 2173 ± 4 锆石 (SHRIMP) Wan et al., 2006 LJ056 条痕状二长花岗岩 A 2176 ± 11 锆石 (SHRIMP) Li et al.,2007 LC1 条痕状二长花岗岩 A 2205 ± 6 锆石 (LA-ICP-MS) Li et al., 2017 LC26 条痕状花岗岩 A 2213 ± 6 锆石 (LA-ICP-MS) Li et al., 2017 601SDG1 二长花岗岩 A 2181 ± 6 锆石 (CAMECA) Wang et al., 2017 哈达碑 HD-2 条痕状花岗岩 A 2173 ± 20 锆石 (LA-ICP-MS) 杨明春等,2015a SSZ 片麻状二长花岗岩 A 2171 ± 6 锆石 (LA-ICP-MS) 赵岩等,2020 牧牛河 D1001-B1 二长花岗岩 A 2185 ± 29 锆石 (LA-ICP-MS) 王鹏森等,2017 NMN-5 二长花岗岩 A 2158 ± 14 锆石 (LA-ICP-MS) Zhu et al., 2019a XHG-N2 条痕状二长花岗岩 A 2171 ± 4 锆石 (LA-ICP-MS) Liu et al., 2018 MNZ 片麻状二长花岗岩 A 2167 ± 11 锆石 (LA-ICP-MS) 赵岩等,2020 大房身 LJ040 条痕状二长花岗岩 A 2143 ± 17 锆石 (SHRIMP) Li et al.,2007 D3208-B1 二长花岗岩 A 2183 ± 13 锆石 (LA-ICP-MS) 王鹏森等,2017 D5132-B2 二长花岗岩 A 2166 ± 10 锆石 (LA-ICP-MS) 王鹏森等,2017 NXK-1 条痕状二长花岗岩 A 2179 ± 4 锆石 (LA-ICP-MS) Zhu et al., 2019a DFZ 片麻状钾长花岗岩 A 2198 ± 11 锆石 (LA-ICP-MS) 赵岩等,2020 鸡冠山 LJ035 条痕状二长花岗岩 A 2175 ± 13 锆石 (SHRIMP) Li et al.,2007 顾家堡子 T02-1 碱长花岗岩 A 2169 ± 11 锆石 (SHRIMP) 宋运红等,2016 永甸-步达远 LJ010 条痕状二长花岗岩 A 2166 ± 14 锆石 (SHRIMP) Li et al.,2007 LC110 条痕状二长花岗岩 A 2178 ± 7 锆石 (LA-ICP-MS) Li et al., 2017 LC126 条痕状二长花岗岩 A 2180 ± 6 锆石 (LA-ICP-MS) Li et al., 2017 NYD-3 条痕状花岗岩 A 2180 ± 5 锆石 (LA-ICP-MS) 滕大伟等,2017 16LN13-1 条痕状二长花岗岩 A 2177 ± 15 锆石 (LA-ICP-MS) 王祥俭等,2017 16LN23-1 条痕状二长花岗岩 A 2177 ± 9 锆石 (LA-ICP-MS) 王祥俭等,2017 K86 花岗岩 2142 ± 5 锆石(TIMS) Sun et al., 1993 四门子 SM-1 条痕状二长花岗岩 A 2205 ± 1.7 锆石 (LA-ICP-MS) 杨明春等,2015b TW12 二长花岗岩 埃达克质 2153 ± 16 锆石 (SHRIMP) 宋运红等,2016 DTY-8 花岗闪长岩 A 2130 ± 24 锆石 (LA-ICP-MS) Zhu et al., 2019b SMZ 片麻状花岗闪长岩 I 2166 ± 11 锆石 (LA-ICP-MS) 赵岩等,2020 大顶子 DD-1 花岗闪长岩 埃达克质 2173 ± 11 锆石 (LA-ICP-MS) Zhu et al., 2019b 黄花甸 D1032-B1 花岗闪长岩 埃达克质 1995 ± 18 锆石 (LA-ICP-MS) 王鹏森等,2017 D5002-B1 花岗闪长岩 埃达克质 1995 ± 13 锆石 (LA-ICP-MS) 王鹏森等,2017 DHL-N1 条痕状二长花岗岩 A 2185 ± 6 锆石 (LA-ICP-MS) Liu et al., 2018 兰花岭 TW02 花岗闪长岩 I 2177±19 锆石 (LA-ICP-MS) 本文 白砬子 TW06 花岗闪长岩 I 2129±36 锆石 (LA-ICP-MS) 本文 九连城 LN3 斑状二长花岗岩 S 1872 ± 8/1851 ± 12 锆石 (LA-ICP-MS) Liu et al., 2017 LN4 斑状二长花岗岩 S 1865 ± 6/1849 ± 8 锆石 (LA-ICP-MS) Liu et al., 2017 矿洞沟 FW01-31 正长岩 A 1843 ± 23 锆石 (LA-ICP-MS) 路孝平等,2004 03JH079 正长岩 A 1879 ± 11 锆石 (LA-ICP-MS) 杨进辉等,2007 03JH080 正长岩 A 1872 ± 14 锆石 (LA-ICP-MS) 杨进辉等,2007 —— 正长岩 A 1857 ± 20 锆石 (LA-ICP-MS) 蔡剑辉等,2002 卧龙泉 FW02-62 斑状二长花岗岩 S 1848 ± 10 锆石 (LA-ICP-MS) 路孝平等,2004 RZ10 斑状二长花岗岩 S 1889 ± 5 锆石 (LA-ICP-MS) 刘文彬等,2018 鸡冠山 LN6 斑状二长花岗岩 A 1870 ± 7/1850 ± 11 锆石 (LA-ICP-MS) Liu et al., 2017 虎皮峪 11LJ65 石英二长岩 I 1850 ± 11 锆石 (LA-ICP-MS) 任云伟等,2017 13LJ11 花岗闪长岩 埃达克质 1892 ± 16 锆石 (LA-ICP-MS) 任云伟等,2017 TW13 二长花岗岩 埃达克质 1869 ± 16 锆石 (SHRIMP) 宋运红等,2016 TW11 斑状花岗岩 埃达克质 1835 ± 9 锆石 (SHRIMP) 宋运红等,2016 八河川 Lu010 斑状二长花岗岩 S 1841 ± 12 锆石 (SHRIMP) 路孝平等,2005 LJ006 斑状二长花岗岩 S 1875 ± 10 锆石 (SHRIMP) Li et al.,2007 LN5 斑状二长花岗岩 S 1864 ± 8/1844 ± 9 锆石 (LA-ICP-MS) Liu et al., 2017 振江 LN1 斑状二长花岗岩 S 1867 ± 10/1842 ± 12 锆石 (LA-ICP-MS) Liu et al., 2017 LN2 斑状二长花岗岩 S 1866 ± 6/1846 ± 13 锆石 (LA-ICP-MS) Liu et al., 2017 青城子 719FSG1 黑云母英云闪长岩 I 1891 ± 10 锆石(SIMS) Wang et al., 2017 黄泊 TW07 辉绿岩 1876 ± 29 锆石 (LA-ICP-MS) 本文 河栏 09JL29 辉绿岩 1828 ± 13 锆石 (LA-ICP-MS) 王惠初等,2011 老虎沟 15LJ33 辉绿岩 1864 ± 15 锆石 (LA-ICP-MS) 王博等,2017 矿洞沟 03JH082 闪长岩 1870 ± 18 锆石 (LA-ICP-MS) 杨进辉等,2007 -
[1] Blichert−Toft J, Albarède F. 1997. The Lu−Hf isotope geochemistry of chondrites and the evolution of the mantle−crust system[J]. Earth and Planetary Science Letters, 148(1/2): 243−258.
[2] Bonin B. 2007. A−type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 97(1/2): 1−29.
[3] Chappell B W, White A J R. 1992. I− and S−type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1/2): 1−26.
[4] Dong Y, Bi J H, Xing D H, et al. 2019. Geochronology and geochemistry of Liaohe Group and Liaoji granitoid in the Jiao−Liao−Ji Belt, North China Craton: Implications for petrogenesis and tectonic evolution[J]. Precambrian Research, 332: 1−19.
[5] Eby G N. 1992. Chemical subdivision of the A−type granitoids: petrogenetic and tectonic implications[J]. Geology, 20(7): 641−644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[6] Faure M, Lin W, Monie P, et al. 2004. Paleoproterozoic arc magmatism and collision in Liaodong Peninsula (north−east China)[J]. Terra Nova, 16: 75−80. doi: 10.1111/j.1365-3121.2004.00533.x
[7] Griffin W L, Wang X, Jackson S E, et al. 2002. Zircon chemistry and magma genesis, SE China: In−situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3): 237−269.
[8] Li C, Li Z, Yang C. 2017. Paleoproterozoic granitic magmatism in the northern segment of the Jiao−Liao−Ji Belt: implications for orogenesis along the Eastern Block of the North China Craton[J]. International Geology Review, 60: 217−241.
[9] Li S Z, Zhao G C, Sun M, et al. 2006. Are the South and North Liaohe groups of North China craton different exotic terranes? Nd isotope constraints[J]. Gondwana Research, 9(1/2): 198−208.
[10] Li S Z, Zhao G C. 2007. SHRIMP U−Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao−Liao−Ji belt in the Eastern Block of the North China Craton[J]. Precambrian Research, 158(1/2): 1−16.
[11] Li Z, Chen B. 2014. Geochronology and geochemistry of the Paleoproterozoic meta−basalts from the Jiao−Liao−Ji Belt, North China Craton: Implications for petrogenesis and tectonic setting[J]. Precambrian Research, 255: 653−667. doi: 10.1016/j.precamres.2014.07.003
[12] Li Z, Chen B, Wei C, et al. 2015. Provenance and tectonic setting of the Paleoproterozoic metasedimentary rocks from the Liaohe Group, Jiao−Liao−Ji Belt, North China Craton: Insights from detrital zircon U−Pb geochronology, whole−rock Sm−Nd isotopes, and geochemistry[J]. Journal of Asian Earth Sciences, 111: 711−732. doi: 10.1016/j.jseaes.2015.06.003
[13] Liu F L, Liu C H, Itano K, et al. 2017. Geochemistry, U−Pb dating, and Lu–Hf isotopes of zircon and monazite of porphyritic granites within the Jiao−Liao−Ji orogenic belt: implications for petrogenesis and tectonic setting[J]. Precambrian Research, 300: 78−106. doi: 10.1016/j.precamres.2017.08.007
[14] Liu J, Zhang J, Liu Z H, et al. 2018. Geochemical and geochronological study on the Paleoproterozoic rock assemblage of the Xiuyan region: new constraints on an integrated rift−and collision tectonic process involving the evolution of the Jiao−Liao−Ji Belt, North China Craton[J]. Precambrian Research, 310: 179−197. doi: 10.1016/j.precamres.2018.03.005
[15] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internalstandard[J]. Chemical Geology, 257: 34−43. doi: 10.1016/j.chemgeo.2008.08.004
[16] Loiselle M C, Wones D S. 1979. Characteristics and origin of anorogenic granites[J]. Geological Society of American, Abstracts with Programs, 11: 468.
[17] Luo Y, Sun M, Zhao G C, et al. 2004. LA−ICP−MS U−Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao−Liao−Ji Belt[J]. Precambrian Research, 134(3/4): 349−371.
[18] Luo Y, Sun M, Zhao G C, et al. 2008. A comparison of U−Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: Constraints on the evolution of the Jiao−Liao−Ji Belt, North China Craton[J]. Precambrian Research, 163(3/4): 279−306.
[19] Maniar P, Piccoli P. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[20] Meng E, Liu F L, Liu P H, et al. 2014. Petrogenesis and tectonic significance of Paleoproterozoic meta−mafic rocks from central Liaodong Peninsula, Northeast China: evidence from zircon U−Pb dating and in situ Lu−Hf isotopes, and whole−rock geochemistry[J]. Precambrian Research, 247: 92−109. doi: 10.1016/j.precamres.2014.03.017
[21] Palmer M R, Slack J F. 1989. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites[J]. Contributions to Mineralogy and Petrology, 103: 434−451. doi: 10.1007/BF01041751
[22] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956−983. doi: 10.1093/petrology/25.4.956
[23] Peccerillo R, Taylor S R. 1979. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 50: 63−81.
[24] Söderlund U, Patchett P J, Vervoort J D, et al. 2004. The 176Lu decay constant determined by Lu−Hf and U−Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219(3/4): 311−324. doi: 10.1016/S0012-821X(04)00012-3
[25] Sun M, Armstrong R L, Lambert R S, et al. 1993. Petrochemistry and Sr, Pb and Nd isotopic geochemistry of the Paleoproterozoic Kuandian Complex, the eastern Liaoning Province[J]. Precambrian Research, 62: 171−190. doi: 10.1016/0301-9268(93)90099-N
[26] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Oceanic Basins. Geological Society Special Publication, 42: 313−345.
[27] Wan Y S, Song B, Liu D Y, et al. 2006. SHRIMP U–Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Paleoproterozoic tectonothermal event[J]. Precambrian Research, 149: 249−271. doi: 10.1016/j.precamres.2006.06.006
[28] Wang X P, Peng P, Wang C, et al. 2016. Petrogenesis of the 2115 Ma Haicheng mafic sills from the Eastern North China Craton: implications for an intra−continental rifting[J]. Gondwana Research, 39: 347−364. doi: 10.1016/j.gr.2016.01.009
[29] Wang X P, Peng P, Wang C, et al. 2017. Nature of three episodes of Paleoproterozoic magmatism (2180 Ma, 2115 Ma and 1890 Ma) in the Liaoji belt, North China with implications for tectonic evolution[J]. Precambrian Research, 298: 252−267. doi: 10.1016/j.precamres.2017.06.003
[30] Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effect in avariety of crustal magmas types[J]. Earth and Planetary Science Letters, 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X
[31] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202
[32] Xie L W, Yang J H, Wu F Y, et al. 2011. Pb SL dating of garnet and staurolite: Constraints on the Paleoproterozoic crustal evolution of the Eastern Block, North China Craton[J]. Journal of Asian Earth Sciences, 42: 142−154. doi: 10.1016/j.jseaes.2011.04.016
[33] Yuan L L, Zhang X H, Xue F H, et al. 2015. Two episodes of Paleoproterozoic mafic intrusions from Liaoning Province, North China Craton: petrogenesis and tectonic implications[J]. Precambrian Research, 264: 119−139. doi: 10.1016/j.precamres.2015.04.017
[34] Zhai M G, Guo J H, Liu W J. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review[J]. Journal of Asian Earth Sciences, 24(5): 547−561. doi: 10.1016/j.jseaes.2004.01.018
[35] Zhang P, Kou L L, Zhao Y, et al. 2020. Genesis of the Wulong gold deposit, Liaoning Province, NE China: Constrains from noble gases, radiogenic and stable isotope studies[J]. Geoscience Frontiers, 11(2): 547−563. doi: 10.1016/j.gsf.2019.05.012
[36] Zhao Y, Zhang P, Li Y, et al. 2020. Geochemistry of Two Types of Paleoproterozoic Granites, and Zircon U−Pb Dating, and Lu−Hf Isotopic Characteristics in the Kuandian Area within the Jiao−Liao−Ji Belt: Implications for Regional Tectonic Setting[J]. Geological Journal, 55(11): 7564−7580.
[37] Zhu K, Liu Z H, Xu Z Y, et al. 2019a. Paleoproterozoic Granitoids on Liaodong Peninsula, North China Craton[J]. Acta Geologica Sinica (English Edition), 93(5): 1377−1396. doi: 10.1111/1755-6724.14387
[38] Zhu K, Liu Z H, Xu Z Y, et al. 2019b. Petrogenesis and tectonic implications of two types of Liaoji granitoid in the Jiao−Liao−Ji Belt, North China Craton[J]. Precambrian Research, 331: 105369. doi: 10.1016/j.precamres.2019.105369
[39] 白瑾. 1993. 华北陆台北缘前寒武纪地质及铅锌成矿作用[M]. 北京: 地质出版社: 47−89.
[40] 毕君辉, 邢德和, 葛文春, 等. 2018. 辽东地区北辽河群变酸性火山岩形成的时代及构造背景: 古元古代陆内裂谷, 还是活动大陆边缘?[J]. 地学前缘, 25(3): 295−308.
[41] 蔡剑辉, 阎国翰, 牟保磊, 等. 2002. 辽宁盖县梁屯−矿洞沟碱性正长岩杂岩体的U−Pb和Sm−Nd年龄及其地质意义[J]. 岩石学报, 18(3): 349−354.
[42] 陈斌, 李壮, 王家林, 等. 2016. 辽东半岛~2.2Ga岩浆事件及其地质意义[J]. 吉林大学学报(地球科学版), 46(2): 303−320.
[43] 陈荣度, 李显东, 张福生. 2003. 对辽东古元古代地质若干问题的讨论[J]. 中国地质, 30(2): 207−213.
[44] 陈志刚, 朱凯, 刘杰勋, 等. 2021. 胶-辽-吉活动带中段古元古代早期构造演化: 来自牧牛河和大房身岩体的证据[J]. 地球科学, 46(5): 1710−1727.
[45] 顾玉超, 赵岩, 杨中柱, 等. 2020. 辽东五龙重融型花岗质岩体锆石U−Pb年代学、岩石地球化学、Sr−Nd−Pb−Hf同位素特征及地质意义[J]. 地球科学, 45(11): 3913−3933.
[46] 郝德峰, 李三忠, 赵国春, 等. 2004. 辽吉地区古元古代花岗岩成因及对构造演化的制约[J]. 岩石学报, 20(6): 1409−1416.
[47] 李超, 陈斌, 李壮, 等. 2017. 辽东岫岩—宽甸地区古元古代条痕状花岗岩的岩石地球化学特征及其构造意义[J]. 岩石学报, 33(3): 963−977.
[48] 李三忠, 郝德峰, 韩宗珠, 等. 2003. 胶辽地块古元古代构造-热演化与深部过程[J]. 地质学报, 77(3): 328−340.
[49] 李壮, 陈斌, 刘经纬, 等. 2015. 辽东半岛南辽河群锆石U−Pb年代学及其地质意义[J]. 岩石学报, 31(6): 1589−1605.
[50] 刘福来, 刘平华, 王舫, 等. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展[J]. 岩石学报, 31(10): 2816−2846.
[51] 刘文彬, 彭游博, 赵辰, 等. 2018. 辽南盖州卧龙泉岩体LA−ICP−MS锆石U−Pb年龄及岩石地球化学特征[J]. 地质与资源, 27(6): 531−539.
[52] 路孝平. 2004. 通化地区古元古代构造岩浆事件[D]. 吉林大学博士学位论文: 1–152.
[53] 路孝平, 吴福元, 林景仟, 等. 2004. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架[J]. 地质科学, 39(1): 123−138.
[54] 路孝平, 吴福元, 郭敬辉, 等. 2005. 通化地区古元古代晚期花岗质岩浆作用与地壳演化[J]. 岩石学报, 21(3): 721−736.
[55] 孟恩, 刘福来, 施建荣, 等. 2013. 辽宁省丹东地区"前震旦纪"侵入岩的锆石U−Pb年代学、地球化学及其构造意义[J]. 岩石学报, 29(2): 421−436.
[56] 秦亚. 2013. 辽吉古元古裂谷带构造演化的年代学制约[D]. 吉林大学博士学位论文: 1–156.
[57] 任云伟, 王惠初, 康健丽, 等. 2017. 辽宁营口虎皮峪地区古元古代岩浆事件及地质意义[J]. 地质学报, 91(11): 2456−2472.
[58] 宋运红, 杨凤超, 闫国磊, 等. 2016. 辽东地区古元古代花岗岩SHRIMP U−Pb年龄、Hf同位素组成及构造意义[J]. 地质学报, 90(10): 2620−2636.
[59] 滕大伟, 王玉奎, 郝鑫健, 等. 2017. 辽宁永甸地区辽吉花岗岩成因及对辽吉活动带构造演化的制约[J]. 世界地质, 36(4): 1100−1115.
[60] 王博, 何艳红, 孟祥舒, 等. 2017. 辽宁海城地区老虎沟基性岩墙锆石U−Pb−Hf同位素、地球化学特征及其地质意义[J]. 西北地质, 50(2): 80−94.
[61] 王惠初, 陆松年, 初航, 等. 2011. 辽阳河栏地区辽河群中变质基性熔岩的锆石U−Pb年龄与形成构造背景[J]. 吉林大学学报(地球科学版), 41(5): 1322−1334.
[62] 王鹏森, 董永胜, 李富强, 等. 2017. 辽东黄花甸地区古元古代花岗质岩浆作用及其地质意义[J]. 岩石学报, 33(9): 2708−2724.
[63] 王祥俭, 刘建辉, 冀磊. 2017. 胶-辽-吉带辽东宽甸地区古元古代二长(正长)花岗质片麻岩的锆石U-Pb年代学、地球化学及成因[J]. 岩石学报, 33(9): 2689−2707.
[64] 王艺芬, 徐贵忠, 佘宏全, 等. 2005. 辽东地区早元古代火山岩特征及其形成的动力学背景[J]. 现代地质, 19(3): 315−324.
[65] 吴福元, 李献华, 郑永飞, 等. 2007. Lu−Hf 同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185−220.
[66] 吴文彬, 申亮, 李海洋, 等. 2023. 辽东清河地区晚三叠世侵入岩锆石U−Pb年龄、地球化学特征及其对华北克拉通东部构造演化的指示[J]. 地质通报, 42(7): 1118−1131.
[67] 杨进辉, 吴福元, 谢烈文, 等. 2007. 辽东矿洞沟正长岩成因及其构造意义: 锆石原位微区U−Pb年龄和Hf同位素制约[J]. 岩石学报, 23(2): 263−276.
[68] 杨明春, 陈斌, 闫聪. 2015a. 吉南地区古元古代双岔巨斑花岗岩成因及其构造意义: 岩石学、年代学、地球化学和Sr−Nd−Hf同位素证据[J]. 岩石学报, 31(6): 1573−1588.
[69] 杨明春, 陈斌, 闫聪. 2015b. 华北克拉通胶-辽-吉带古元古代条痕状花岗岩成因及构造意义[J]. 地球科学与环境学报, 37(5): 31−51.
[70] 杨玉伟, 余超, 王广伟, 等. 2020. 辽东黑沟地区古元古代碱长花岗岩年代学、地球化学、Hf同位素特征及其对辽吉造山带构造演化的制约[J]. 地质学报, 94(8): 2212−2226.
[71] 杨仲杰, 王伟, 赵岩, 等. 2019. 辽东王家堡子地区古元古代花岗岩地球化学特征、锆石U−Pb年龄、Hf同位素及其地质意义[J]. 地质通报, 38(4): 603−618.
[72] 张秋生, 杨振升, 刘连登. 1988. 辽东半岛早期地壳与矿床[M]. 北京: 地质出版社.
[73] 赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 25(8): 1772−1792.
[74] 赵凤顺, 胡平. 1989. 虎皮峪条痕状花岗质岩石特征及成因探讨[J]. 辽宁地质,(4): 298−311.
[75] 赵岩, 张朋, 毕中伟, 等. 2020. 辽东岫岩地区两类古元古代花岗岩年代学、地球化学及地质意义[J]. 地球科学, 2020,45(11): 4072−4090.
-