Deposit characteristics and potential resources of silicon material for high-purity quartz of muscovite-pegmatite-granite type in Ningdu, Jiangxi Province
-
摘要:
高纯石英以优异的物理化学性能成为战略性新兴产业的关键基础原料,中国是高纯石英消费大国,高端产品全部依赖进口。在高端高纯石英领域,中国面临着优质高纯石英用硅质原料匮乏和高端产品提纯技术短板,优质资源是提纯加工高端高纯石英的关键基础,中国迫切需要突破优质资源瓶颈。通过与美国Spruce Pine白岗岩高纯石英用硅质原料矿床对比研究,在武夷山隆起西部的江西宁都地区发现了白云母伟晶花岗岩型高纯石英用硅质原料,认为西武夷山地区是花岗岩型高纯石英用硅质原料找矿有利地区。本次在成矿地质背景和矿床地质特征基础上,开展矿石矿物特征、石英内部包裹体特征、气液包裹体成分、岩石地球化学、石英杂质元素、主要晶格杂质等研究,探讨矿床成因,评价资源潜力。宁都白云母伟晶花岗岩为亚碱性过铝质花岗岩,富含钾长石,K含量大于Na,具有较高的大离子亲石元素,较低的高场强元素和稀土元素含量,Eu既有正异常也有负异常。石英包裹体以气液为主,气液包裹体面积占比1.69%,含少量白云母等矿物包裹体,主要杂质元素Mg、Fe、Li与Spruce Pine白岗岩石英相近,杂质元素总量低,平均618.03 ×10−6。石英主要晶格杂质Al、Li、Ti元素总量低,为89.82×10−6,石英纯度达到SiO2 99.99%以上,是优质高纯石英矿物原料,预测资源规模为大型。宁都白云母伟晶花岗岩赋存于会同岩体中深根部带,为加里东期“S“型花岗岩,由伴随会同岩体同期演化的富含长英质的浅色熔体演化成岩。研究成果对西武夷地区寻找同类型矿床具有典型矿床对比意义,调查评价方法对中国同类型高纯石英用硅质原料找矿具有指导意义。
Abstract:High−purity quartz, exhibiting exceptional physical and chemical properties, has emerged as a critical raw material for strategic industries. China, being a major consumer of high−purity quartz, currently relies on imports for all its high−end products in this domain. The primary challenges faced by China in the realm of high−end high−purity quartz lie in the scarcity of resources with superior quality silica as raw materials and the dearth of advanced processing technologies. High−quality and high−purity silica are crucial prerequisites for processing high−end, high−purity quartz. Therefore, China urgently needs to break through the bottleneck of high−quality resources. By conducting a comparative analysis with alaskite−type high−purity quartz material from the Spruce Pine region in the USA, we have discovered siliceous materials suitable for producing high−purity quartz in the Ningdu County of Jiangxi Province, located west of the Wuyi Mountains. Consequently, it can be inferred that prospecting in this region offers favorable conditions for obtaining granitic siliceous materials required for manufacturing high−purity quartz. Based on the study of metallogenic geological background and deposit geology, mineral characteristics of ores, quartz inclusions, gas−liquid inclusions composition in quartz, rock geochemistry, impurity elements in quartz and major lattice impurity elements were investigated to discuss the ore genesis and evaluate their resource potential. The Ningdu muscovite granitic pegmatite is classified as subalkaline peraluminous granite with a high abundance of K−feldspar. The K content exceeds that of Na, exhibiting enrichment in large ion lithophile elements while displaying low concentrations of high field strength elements and rare earth elements. Additionally, Eu anomalies are observed both positively and negatively. Gas−liquid inclusions are the predominant type of inclusions found in quartz, constituting approximately 1.69% of the total area, with a small number of mineral inclusions such as muscovite present. The impurity elements Mg, Fe, and Li exhibit similarities to Spruce Pine quartz in alaskite, while the overall content of impurity elements is relatively low at an average value of 618.03×10−6. Within the quartz lattice structure, Al, Li, and Ti are identified as the main impurity elements with a very low total content (89.82×10−6), whereas SiO2 accounts for over 99.99% of quartz composition. This high−purity silicon material possesses excellent quality and exhibits significant potential as indicated by its abundant predicted resource quantity. Ningdu muscovite granitic pegmatite is situated within the middle−deep root zone of Huitong pluton and represents an S−type granite within the Caledonian orogenic belt that evolved from light−colored granitic magma enriched with feldspar and quartz during the same period as pluton’s evolution process. These research findings hold great significance for comparative studies on similar ore deposits within western Wuyi region, and provide valuable guidance for prospecting activities targeting high−purity quartz silicon materials across China.
-
-
图 8 微量元素原始地幔标准化图解(a)和稀土元素球粒陨石标准化图解(b)(标准化值据Sun et al,1989;*数据据张晔等,2010)
Figure 8.
表 1 矿石化学成分
Table 1. Chemical compositions of the ores
% 样号 SiO2 Al2O3 Fe2O3 FeO TFeO CaO MgO K2O Na2O P2O5 TiO2 MnO 烧失量 总计 ND-01 80.25 11.70 0.86 / / 0.35 0.056 3.06 1.725 0.047 0.052 0.101 2.0 100.2 ND-02 74.10 15.29 0.79 / / 0.032 0.051 5.16 0.226 0.018 0.078 0.046 3.92 99.711 ND-03 74.34 15.4 0.56 / / 0.1 0.1 4.52 2.74 0.01 0.026 0.044 1.68 99.73 SP-01* 75.50 15.60 0.27 0.10 0.34 1.54 0.21 1.29 6.62 0.06 0.02 0.02 0.5 100.73 SP-02* 77.60 12.95 0.15 0.19 0.32 1.15 0.19 2.49 4.76 0.05 0.02 0.02 0.42 99.99 样号 ALK K/N A/NK A/CNK 注:ALK = Na2O + K2O(%);K/N= K2O / Na2O;A/NK = Al2O3/(Na2O + K2O)(分子数比);A/CNK = Al2O3 /(CaO + Na2O + K2O)(分子数比);SP-01*、SP-02*为Spruce Pine白岗岩,数据据张晔等,2010;“/”为未测 ND-01 4.79 1.77 1.9 1.72 ND-02 5.39 22.83 2.57 2.54 ND-03 7.26 1.66 1.63 1.60 SP-01* 7.91 0.19 1.27 1.03 SP-02* 7.25 0.52 1.23 1.026 表 2 矿石稀土和微量元素含量
Table 2. Rare earth elements and trace elements of ore
10−6 样号 Rb Ba Sr ∑LILE Th Nb Ta Zr Hf Y ∑HFSE La Ce Pr ND-01 285 1140 190 1615 3.09 3.92 0.57 26.6 1.62 0.86 36.66 5.03 10.1 1.61 ND-02 170 77 12 259 6.78 29.6 3.1 30.2 2.01 20.5 92.19 9.73 13.5 2.48 ND-03 171 421 138 730 2.72 18.3 1.97 43.2 2.68 6.15 75.02 4.5 11.2 1.28 SP-01* 26.3 182 219 427.3 1.58 3.75 0.28 30 1.17 5.68 42.46 3 6 0.68 SP-02* 60.7 981 31 1072.7 0.92 2.86 0.31 3.1 0.2 2.8 10.19 1.66 5.77 0.33 样号 Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE LREE/HREE δEu ND-01 5.46 1.15 0.68 0.88 0.14 0.64 0.12 0.29 0.037 0.25 0.039 26.416 10.025 1.99 ND-02 8.26 2.13 0.37 2.1 0.46 3.06 0.65 2.22 0.45 3.26 0.52 49.19 2.867 0.529 ND-03 5.1 1.68 0.48 1.61 0.3 1.44 0.26 0.62 0.08 0.46 0.06 27.57 4.708 0.88 SP-01* 2.83 0.93 0.42 1.26 0.22 1.25 0.19 0.48 0.06 0.33 0.05 17.7 3.609 1.19 SP-02* 1.29 0.43 0.47 0.55 0.09 0.55 0.09 0.22 0.03 0.15 0.02 11.65 5.853 2.97 注:SP-01*、SP-02*为Spruce Pine白岗岩,数据据张晔等,2010 表 3 石英SiO2及主要杂质元素含量
Table 3. Content of SiO2 and impurity chemical compositions in quartz
样品
编号SiO2/% 杂质元素/10−6 Al Na K Ca Mg Fe Mn Li B Ti Cu Cr Ni 总计 ND-01 99.88 375 60 57.6 36.1 27.3 29.5 1.75 11.7 1.41 14.5 <1 1.85 <1 618.71 ND-02 99.82 307 125 54.7 50.2 28.4 29.7 2.89 1.38 1.02 12.9 <1 1.90 1.26 617.35 SP-01* / 11622 6669 347 1898 19.5 51 / 2.51 / 1.6 <0.05 0.1 <0.05 20615.83 SP-02* / 7573 4839 182 1635 28 23.4 / 1.03 / 1.29 <0.05 0.08 <0.05 14301.9 注:SP-01*、SP-02*为Spruce Pine白岗岩,数据据张晔等,2010;“/”为未测 表 4 Spruce Pine与宁都典型矿床成矿地质条件对比
Table 4. Geological conditions of mineralization from the typical deposit in Spruce Pine and Ningdu
成矿地质条件 Spruce Pine 宁 都 矿床类型 白岗岩型高纯石英矿床(包含粗粒—巨粒—伟晶花岗岩) 白云母伟晶花岗岩型高纯石英矿床 规模 特大型 预测为大型规模 成矿构造背景 阿巴拉契亚褶皱带 东南造山带武夷隆起带 成矿时代 早古生代,晚奥陶世—早志留世 早古生代、晚志留世 成矿地质体 8个白岗岩体,最大的长3.2 km,宽1.2 km。伟晶岩赋存于白岗岩中,数千条,长1~610 m,宽1~305 m 区域地质调查发现数百条伟晶岩脉,分布于岩浆岩体内外接触带,以及多处白云母花岗岩 围岩 白岗岩侵入于新元古代变质围岩中,也有伟晶岩侵入变质岩内 白云母伟晶花岗岩赋存于晚志留世斑状黑云母二长花岗岩内,斑状黑云母二长花岗岩侵入于新元古代变质岩,有较多伟晶岩侵入变质岩内 主要矿物 伟晶岩与白岗岩矿物成分一致,石英25%、长石60%、白云母15%、黑云母少量 石英30%~50%、长石55%~65%、白云母7%~10%、黑云母1%。赋存在白云母伟晶花岗岩中的伟晶岩矿物成分与白云母伟晶花岗岩一致 矿石粒度 白岗岩平均粒度12.7 mm,伟晶岩矿物粒径大于12.7 mm,极少颗粒直径达4.57 m 白云母伟晶花岗岩粒径5~50 mm,伟晶岩矿物粒径5 mm到30 cm以上,伟晶花岗岩平均15 mm 岩浆类型 S型花岗岩,亚碱性弱过铝质花岗岩 S型花岗岩,亚碱性过铝质花岗岩 石英产品品级 SiO2 99.998%、SiO2 99.999%、SiO2 99.9991%、SiO2 99.9992%* SiO2 99.991% 注:*数据据中国粉体技术网——美国尤尼明公司IOTA高纯石英技术指标介绍(杨军,2004) -
[1] Broad Hurst S D. 1954. A report on the high−silica sand resources of North Carolina [N]. North Carolina Department of Conservation and Development: 1−35.
[2] Brobst D A. 1962. Geology of the Spruce Pine District Avery, Mitchell, and Yancey Counties, North Carolina [M]. Washingyon: United States Government Printing Office, Geological Survey Bulletin, 1122−A: 1−26.
[3] Brown M, Rushmer T. 1997. The role of deformation in the movement of granite melt: Views from the laboratory and the field, in Holness M B, ed. , Deformation−Enhanced Fluid Transport in the Earth’s Crust and Mantle[M]. The Mineralogical Society Series 8: London, Chapman and Hall: 111−144.
[4] Brown M, Solar G S. 1998. Shear zone systems and melts: Feedback relations and self−organization in orogenic belts[J]. Journal of Structural Geology, 20: 211−227.
[5] Brown M. 2007. Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences[J]. Journal of the Geological Society, 164: 709−730. doi: 10.1144/0016-76492006-171
[6] Götze J. 2012. Quartz: Deposits, mineralogy and analytics[M]. Springer −Verlag Berlin Heidelberg: 1−355.
[7] Hollister L S, Crawford M L. 1986. Melt−enhanced deformation: A major tectonic process[J]. Geology, 14(7): 558−561. doi: 10.1130/0091-7613(1986)14<558:MDAMTP>2.0.CO;2
[8] Hollister L S. 1993. The role of melt in the uplift and exhumation of oroagenic belts[J]. Chemical Geology, 108: 31−48. doi: 10.1016/0009-2541(93)90316-B
[9] Sun S S, Mc Donoungh W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implication for mantle composition and processes[J]. Geological Society, London, Special Publication, 42(1): 313−345.
[10] 程裕淇, 杨崇辉, 万渝生, 等. 2004. 太行山中北段早前寒武纪地质和深熔作用对地壳岩石的改造[M]. 北京: 地质出版社: 100−143.
[11] 崔圆圆, 赵志丹, 蒋婷, 等. 2013. 赣南早古生代晚期花岗岩类年代学、地球化学及岩石成因[J]. 岩石学报, 29(11): 4011−4024.
[12] 邓晋福, 赵海玲, 赖绍聪, 等. 1994. 白云母/二云母花岗岩形成与陆内俯冲作用[J]. 地球科学—中国地质大学学报: 19(2): 139−147.
[13] 高维敬, 方宗斌, 刘邦秀. 1994. 武夷山西坡花岗岩类深成侵入体的岩石谱系[J]. 江西地质, 8(4): 281−295.
[14] 郭文达, 韩跃新, 朱一民, 等. 2019. 高纯石英砂资源及加工技术分析[J]. 金属矿山, (2): 22−28.
[15] 江西省地质矿产勘查开发局. 2017. 中国区域地质志·江西志[M]. 北京: 地质出版社: 725−738, 840−841.
[16] 金达表, 张兄明, 邹蔚蔚. 2004. 高纯石英的加工工艺研究[J]. 中国非金属矿工业导刊, (4): 44−48.
[17] 李金超 , 栗亚芝 , 孔会磊. 2023. 中国高纯石英产业链现状及发展建议[J]. 西北地质, 56(5): 214−222.
[18] 马超, 冯安生, 刘长淼, 等. 2019. 高纯石英原料矿物学特征与加工技术进展[J]. 矿产保护与利用, 39(6): 48−57.
[19] 桑隆康, 马昌前. 2001. 岩石学[M]. 北京: 地质出版社: 83−84.
[20] 汪灵, 李彩侠, 王艳, 等. 2011. 我国高纯石英加工技术现状与发展建议[J]. 矿物岩石, 31(4): 110−114.
[21] 汪灵, 李彩侠, 王艳, 等. 2013. 高纯石英质量的ICP检测技术研究与应用[J]. 光谱学与光谱分析, 33(6): 1684−1688.
[22] 汪灵, 党陈萍, 李彩侠, 等. 2014. 中国高纯石英技术现状与发展前景[J]. 地学前缘, 21(5): 267−273.
[23] 杨军. 2004. 高纯石英玻璃纯度与粘度的关系美国尤尼明高纯石英砂产品介绍[C]// 第二届高新技术用石英制品及相关材料技术与市场研讨会: 85−97.
[24] 张晔, 陈培荣. 2010. 美国Spruce Pine与新疆阿尔泰地区高纯石英伟晶岩的对比研究[J]. 高校地质学报, 16(4): 426−435. doi: 10.3969/j.issn.1006-7493.2010.04.002
[25] 张佩聪, 刘岫峰, 李峻峰, 等. 2012. 高纯石英矿物资源工程研究[J]. 矿物岩石, 32(2): 38−44.
[26] 张芳荣, 舒良树, 王德滋, 等. 2009. 华南东段加里东期花岗岩类形成构造背景探讨[J]. 地学前缘, 16(1): 248−260.
[27] 曾勇. 2000. 西武夷地区早古生代浅色花岗岩的厘定及其造山意义[J]. 江西地质, (1): 1−4.
-