Occurrence of cadmium and ore genesis in the Bijiashan lead-zinc deposit: Evidence from LA−ICP−MS trace elements and in-situ sulfur isotope of sulfide
-
摘要:
甘肃毕家山铅锌矿床是西秦岭造山带西成矿田发现的首个铅锌矿床,累计探明铅锌资源量120×104t,Pb和Zn的品位分别为1.86%和5.42%。矿床中发育2类矿体,分别是赋存于灰岩中的灰岩型和赋存于千枚岩中的千枚岩型。2类矿体的矿石矿物组合均为闪锌矿+方铅矿±黄铁矿±黄铜矿。毕家山铅锌矿床镉的赋存状态尚不明确。通过激光剥蚀电感耦合等离子质谱仪(LA−ICP−MS)分别对灰岩型和千枚岩型矿石中的硫化物(闪锌矿、方铅矿、黄铁矿和黄铜矿)进行了微量元素及原位S同位素分析。研究结果显示,灰岩型和千枚岩型矿石中闪锌矿的Cd平均含量分别为2076×10−6和1695×10−6,高于矿产工业一般标准(1000×10−6),而方铅矿、黄铁矿和黄铜矿中的Ga、Ge、Se、In、Tl含量均低于矿产工业一般标准(100×10−6)。结合岩相学和LA−ICP−MS分析发现,毕家山铅锌矿床无Cd的独立矿物和以吸附形式存在的Cd,Cd主要以Cd2+↔Zn2+类质同象形式赋存于闪锌矿中,其次为Cd2+ +Fe2+ ↔ 2Zn2+。通过闪锌矿微量元素温度计获得灰岩型和千枚岩型矿石中闪锌矿的形成温度分别为198~254℃(平均值为227℃)和203~245℃(平均值为230℃),与前人通过流体包裹体和矿物对温度计的研究结果一致,表明其成矿温度为中温。此外,原位硫同位素分析结果显示,该矿床中灰岩型和千枚岩型矿石的δ34S平均值分别为+13.64‰和+17.72‰,表明硫来源于海相硫酸盐。综合闪锌矿微量元素数据、同位素地球化学、成矿温度、岩相古地理和矿床地质特征对比分析,推测毕家山铅锌矿床的成因类型属于SEDEX型。
Abstract:The Bijiashan deposit is the first lead−zinc deposit discovered in the Xicheng ore field in the West Qinling Orogenic Belt (WQOB), with reserves of 1.2 million tons of lead and zinc, and grades of 1.86% and 5.42%, respectively. This deposit is characterised by the presence of two distinct types of orebodies: limestone−type and phyllite−type, which are located within limestone and phyllite formations, respectively. The mineral assemblages present in both ore types include sphalerite, galena, pyrite, and chalcopyrite. Previous investigations have primarily concentrated on the geological characteristics, petrography, isotope geochemistry, and fluid inclusions associated with the deposit; however, the occurrence of cadmium (Cd) is still uncertain. In this study, laser ablation inductively coupled plasma mass spectrometry (LA−ICP−MS) was employed to analyse various sulfide minerals (sphalerite, galena, pyrite, and chalcopyrite) from both ore types. The analytical results indicate that the average Cd content in sphalerite from the limestone−type and phyllite−type ores is 2076×10−6 and 1695×10−6, respectively, exceeding the general industry standard of 1000×10−6. Conversely, the concentrations of gallium (Ga), germanium (Ge), selenium (Se), indium (In), and thallium (Tl) in galena, pyrite, and chalcopyrite from both ore types are below the mineral industry standard of 100×10−6. Based on petrographic observations and LA−ICP−MS analyses, it is proposed that there are no independent Cd minerals present in the Bijiashan lead−zinc deposit. Instead, Cd is primarily incorporated into sphalerite through the substitution mechanism of Cd2+ ↔ Zn2+, with a minor substitution pathway of Cd2+ + Fe2+ ↔ 2Zn2+. The estimated formation temperature for sphalerite in the limestone type and phyllite type ores are 198–254°C (mean of 227°C) and 203–245°C (mean of 230°C), respectively. These findings are consistent with previous studies utilising fluid inclusion thermometry, suggesting a moderate temperature for ore−forming mineralisation. In−situ sulfur isotope analysis reveals average δ34S values of 13.64‰ and 17.72‰ for the respective ore types, indicating a marine sulfate source. Drawing upon the evidence from LA−ICP−MS trace element data of sphalerite, petrography, geological characteristics of the deposit, isotope geochemistry, and metallogenic temperature, we propose that the Bijiashan lead−zinc deposit is classified as a sedimentary−exhalative (SEDEX) deposit.
-
Key words:
- Bijiashan lead-zinc deposit /
- cadmium /
- occurrence /
- LA−ICP−MS /
- sulfur isotope /
- Xicheng ore field /
- ore genesis
-
-
图 1 西成矿田地质图(据王集磊等,1996修改)
Figure 1.
图 2 毕家山矿区地质图(据王集磊等,1996修改)
Figure 2.
图 3 毕家山铅锌矿床14号勘探线地质剖面(据王集磊等,1996修改)
Figure 3.
表 1 毕家山铅锌矿床中闪锌矿、方铅矿、黄铁矿和黄铜矿电子探针成分含量分析结果
Table 1. The analytical results of sphalerite, galena, pyrite and chalcopyrite from the Bijiashan Pb−Zn deposit using electron probe
% 类型 矿物 点号 Zn S Pb Fe Cu Cd Ga Ge Tl Cr Se In Te 总和 灰岩型矿石 闪锌矿 4-1 65.6 32.2 <Bdl 1.13 <Bdl 0.21 0.06 <Bdl <Bdl <Bdl <Bdl 0.03 0.03 98.2 4-2 65.6 32.3 <Bdl 1.15 <Bdl 0.22 <Bdl <Bdl <Bdl <Bdl <Bdl 0.03 0.02 99.4 5-1 65.7 32.8 <Bdl 1.97 <Bdl 0.25 <Bdl 0.02 <Bdl 0.01 <Bdl <Bdl <Bdl 100.7 5-2 64.2 32.5 <Bdl 3.77 <Bdl 0.21 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 0.01 100.7 6-1 65.7 32.1 <Bdl 1.20 <Bdl 0.17 <Bdl 0.04 <Bdl 0.02 <Bdl <Bdl <Bdl 99.3 6-2 63.9 32.3 <Bdl 2.81 <Bdl 0.17 0.03 <Bdl <Bdl <Bdl 0.01 <Bdl <Bdl 99.3 12-1 64.5 32.6 0.02 4.75 <Bdl 0.24 <Bdl <Bdl <Bdl 0.02 0.01 0.02 0.04 102.2 12-2 65.0 32.4 0.04 5.33 0.01 0.18 0.03 0.02 <Bdl 0.01 <Bdl 0.02 0.01 103.0 14-1 65.7 32.2 0.01 1.75 <Bdl 0.28 <Bdl <Bdl <Bdl 0.01 <Bdl <Bdl 0.02 100.0 14-2 66.3 32.1 <Bdl 1.26 <Bdl 0.24 <Bdl <Bdl <Bdl 0.01 <Bdl <Bdl 0.03 100.0 16-1 65.4 32.3 <Bdl 2.62 0.02 0.19 <Bdl <Bdl <Bdl 0.01 <Bdl 0.01 0.01 100.5 16-2 65.4 32.3 <Bdl 2.63 0.02 0.18 <Bdl <Bdl <Bdl 0.01 <Bdl 0.01 0.01 100.5 21-1 66.4 32.3 <Bdl 1.41 <Bdl 0.30 0.10 <Bdl 0.01 <Bdl <Bdl <Bdl 0.04 100.5 21-2 64.9 32.4 <Bdl 2.82 0.03 0.25 0.04 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 100.5 23-1 66.3 32.5 <Bdl 1.79 <Bdl 0.19 0.10 <Bdl <Bdl <Bdl <Bdl <Bdl 0.01 100.8 23-2 65.8 32.4 <Bdl 3.21 0.02 0.22 <Bdl 0.02 <Bdl <Bdl <Bdl <Bdl 0.01 101.7 千枚岩型矿石 闪锌矿 25-1 63.0 32.5 <Bdl 3.90 <Bdl 0.17 <Bdl <Bdl <Bdl 0.01 <Bdl <Bdl 0.01 99.6 25-2 62.9 32.5 <Bdl 3.86 <Bdl 0.17 <Bdl <Bdl <Bdl 0.01 <Bdl <Bdl 0.01 99.4 28-1 63.5 32.4 <Bdl 5.83 0.01 0.20 0.07 <Bdl <Bdl <Bdl <Bdl 0.02 0.01 102.1 28-2 62.0 32.5 <Bdl 5.76 0.01 0.21 0.06 <Bdl <Bdl <Bdl <Bdl 0.02 0.01 100.5 30-1 62.0 32.7 <Bdl 6.94 0.02 0.22 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 0.01 101.9 30-2 62.4 32.5 0.04 4.41 0.32 0.25 <Bdl <Bdl <Bdl 0.01 <Bdl <Bdl 0.02 100.0 31-1 62.4 32.7 <Bdl 4.58 <Bdl 0.18 0.02 <Bdl <Bdl <Bdl <Bdl <Bdl 0.04 99.9 31-2 62.4 32.5 <Bdl 4.57 <Bdl 0.19 0.02 <Bdl <Bdl <Bdl <Bdl <Bdl 0.04 99.7 灰岩型矿石 方铅矿 5-1 0.08 13.4 85.5 <Bdl <Bdl 0.13 <Bdl 0.07 <Bdl <Bdl <Bdl <Bdl 0.04 99.2 8-1 0.11 13.2 84.7 0.02 <Bdl 0.18 <Bdl 0.01 <Bdl <Bdl <Bdl <Bdl 0.12 98.3 9-1 0.08 13.2 85.4 0.02 0.01 0.11 <Bdl 0.02 <Bdl <Bdl <Bdl <Bdl 0.08 98.9 12-1 0.11 13.2 85.6 <Bdl 0.04 0.11 <Bdl 0.03 <Bdl 0.06 <Bdl <Bdl 0.05 99.2 12-2 0.04 13.2 84.7 <Bdl <Bdl 0.17 0.01 <Bdl <Bdl <Bdl <Bdl <Bdl 0.06 98.2 14-1 0.06 13.5 85.4 0.01 <Bdl 0.12 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 0.05 99.1 14-2 0.07 13.5 85.4 0.01 <Bdl 0.13 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 0.05 99.1 千枚岩型矿石 方铅矿 22-1 0.10 13.0 84.8 0.02 <Bdl 0.19 <Bdl 0.03 <Bdl <Bdl <Bdl <Bdl 0.12 98.2 27-1 0.08 13.0 84.9 0.01 <Bdl 0.14 <Bdl 0.05 <Bdl <Bdl <Bdl <Bdl 0.03 98.3 27-2 0.07 13.0 85.0 0.01 <Bdl 0.14 <Bdl 0.05 <Bdl <Bdl <Bdl <Bdl 0.25 98.5 灰岩型矿石 黄铁矿 4-1 0.09 53.0 <Bdl 46.5 <Bdl 0.01 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 0.02 99.6 4-2 0.08 53.1 <Bdl 46.5 <Bdl 0.01 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 0.02 99.7 10-1 0.01 52.8 0.01 46.3 <Bdl 0.01 <Bdl <Bdl <Bdl 0.01 <Bdl <Bdl 0.05 99.2 13-1 0.03 53.0 <Bdl 43.5 4.25 0.02 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 0.02 100.9 13-2 0.02 53.0 <Bdl 43.5 <Bdl 0.02 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 0.02 96.6 13-3 0.04 53.3 <Bdl 46.5 0.17 0.04 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 100.1 千枚岩型矿石 黄铁矿 30-1 0.01 51.9 0.01 48.8 0.07 0.02 <Bdl <Bdl <Bdl 0.01 <Bdl <Bdl <Bdl 100.8 30-2 0.01 53.0 0.01 48.7 0.07 0.02 <Bdl <Bdl <Bdl 0.01 <Bdl <Bdl <Bdl 101.8 灰岩型矿石 黄铜矿 13-1 0.09 34.8 0.01 30.9 34.5 0.04 <Bdl <Bdl <Bdl 0.03 0.01 <Bdl 0.03 100.5 13-2 2.47 34.6 0.04 30.0 33.3 0.05 <Bdl <Bdl <Bdl 0.04 <Bdl <Bdl <Bdl 100.4 千枚岩型矿石 黄铜矿 27-1 0.01 34.9 0.06 30.8 34.5 0.03 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 100.4 27-2 0.05 35.0 0.07 30.8 34.6 0.03 <Bdl <Bdl <Bdl <Bdl <Bdl <Bdl 0.01 100.5 27-3 0.17 34.8 <Bdl 30.9 34.4 0.03 0.06 <Bdl 0.07 <Bdl 0.10 <Bdl 0.03 100.6 27-4 0.12 34.8 0.02 30.9 34.4 0.02 0.05 <Bdl 0.06 <Bdl 0.02 <Bdl 0.01 100.5 注:“<Bdl”代表低于仪器检测限 表 2 毕家山铅锌矿床中闪锌矿、方铅矿、黄铁矿及黄铜矿LA−ICP−MS微量元素成分含量分析结果
Table 2. Analytical results of trace element of sphalerite, galena, pyrite and chalcopyrite analyzed by LA−ICP−MS from the Bijiashan Pb−Zn deposit
10−6 矿石类型 矿物 样号 Li Be Mg P Sc Ti V Cr Mn Co Ni Cu Ga Ge Se Mo Cd In Sn W Tl Pb Bi T/℃ 灰岩型 闪锌矿 4-1 0.01 0.08 0.94 17.3 <Bdl 0.72 0.03 <Bdl 350 5.91 1.58 32.8 2.17 1.17 0.35 0.58 2004 0.23 0.96 <Bdl 0.01 2.72 0.02 254 4-2 <Bdl <Bdl 0.35 19.6 0.83 1.60 0.06 <Bdl 355 6.06 1.80 37.1 2.65 1.10 0.25 0.19 1779 0.20 1.77 0.02 0.02 4.22 0.03 252 5-1 0.16 <Bdl 0.21 26.0 0.35 1.41 0.07 <Bdl 48.3 9.10 1.15 6.20 3.02 0.85 0.02 <Bdl 2085 0.04 0.94 0.01 0.04 0.49 0.01 233 5-2 0.20 0.23 0.27 8.16 <Bdl 0.56 0.05 0.69 52.6 9.59 0.90 8.36 3.12 0.82 <Bdl <Bdl 2648 0.04 1.98 <Bdl 0.01 10.9 0.02 248 6-1 0.05 0.13 0.09 16.5 <Bdl 0.28 0.05 0.43 36.4 12.4 11.1 12.6 8.10 3.01 1.02 0.03 1877 0.36 0.95 0.01 <Bdl 0.16 0.04 206 6-2 0.07 <Bdl <Bdl 26.4 <Bdl 0.29 0.05 1.72 33.3 13.4 13.3 15.5 5.11 3.14 1.43 0.38 2354 0.36 1.56 0.01 <Bdl 0.82 <Bdl 228 12-1 6.61 <Bdl 52.9 16.1 <Bdl 1.37 0.53 0.08 38.5 5.49 1.87 21.6 4.47 2.23 1.02 <Bdl 2178 0.02 0.79 <Bdl <Bdl 11.6 0.05 229 12-2 0.09 <Bdl 0.50 9.5 <Bdl 0.08 0.06 1.01 33.3 5.81 2.25 13.3 4.48 1.98 0.98 0.06 2397 0.03 0.92 0.02 <Bdl 5.02 0.01 232 14-1 <Bdl <Bdl <Bdl 26.7 0.10 <Bdl 0.07 1.84 45.0 6.17 0.61 39.0 2.37 2.01 <Bdl <Bdl 2066 0.11 2.31 0.07 <Bdl 8.95 0.02 229 14-2 <Bdl 0.14 <Bdl 18.1 <Bdl <Bdl <Bdl <Bdl 45.5 5.92 2.11 17.0 1.39 2.10 <Bdl <Bdl 1739 0.10 1.78 <Bdl <Bdl 1.90 0.03 228 16-1 0.18 0.29 0.95 14.3 0.15 2.35 0.08 <Bdl 42.0 10.2 5.45 17.1 1.20 6.90 0.01 <Bdl 1645 0.08 0.62 0.01 0.01 6.14 0.04 228 16-2 0.35 0.03 0.03 34.7 <Bdl 0.34 0.11 2.38 46.2 10.4 4.42 18.9 1.64 7.88 <Bdl <Bdl 1866 0.08 2.06 0.01 0.01 18.1 <Bdl 223 21-1 <Bdl <Bdl 0.84 23.4 <Bdl 1.48 0.18 <Bdl 34.8 3.40 0.08 12.2 2.81 5.24 0.62 <Bdl 2196 0.05 0.94 0.02 <Bdl 6.73 0.04 204 21-2 <Bdl <Bdl 0.20 26.2 0.06 0.41 0.08 <Bdl 38.0 3.96 0.25 11.5 3.92 31.13 0.45 0.02 2649 0.11 1.14 0.01 <Bdl 2.54 <Bdl 198 23-1 <Bdl <Bdl 0.44 15.3 <Bdl 0.41 0.06 <Bdl 27.5 15.7 4.75 4.91 2.82 2.26 0.01 0.03 1769 0.06 1.28 <Bdl <Bdl 0.53 0.01 217 23-2 <Bdl 0.14 <Bdl 11.6 0.10 <Bdl 0.11 0.20 29.8 15.3 3.81 6.10 2.90 2.08 <Bdl <Bdl 1960 0.05 1.45 <Bdl <Bdl 2.16 0.01 228 千枚岩型 闪锌矿 25-1 <Bdl 0.44 <Bdl 18.2 <Bdl <Bdl 0.04 <Bdl 59.3 41.6 3.48 15.9 5.14 1.26 2.02 0.05 1579 <Bdl 3.03 <Bdl <Bdl 6.92 <Bdl 217 25-2 <Bdl 0.18 1.30 11.8 <Bdl <Bdl 0.05 <Bdl 59.7 40.9 3.81 14.6 5.19 1.18 2.26 0.02 1670 <Bdl 1.71 <Bdl <Bdl 1.53 <Bdl 203 28-1 0.33 <Bdl <Bdl 22.4 0.20 0.70 0.09 0.19 26.0 30.7 1.77 16.4 14.6 1.43 4.68 0.07 1495 0.55 1.42 <Bdl <Bdl 0.11 <Bdl 239 28-2 0.07 <Bdl 1.77 14.6 0.03 0.56 0.01 0.33 26.9 34.3 2.46 39.7 16.0 1.28 4.71 0.02 1675 0.61 1.45 <Bdl <Bdl 0.76 0.02 240 30-1 <Bdl 0.08 3.48 19.0 0.10 <Bdl 0.11 <Bdl 32.4 45.9 0.19 1117 10.7 2.08 1.71 0.07 1919 0.65 1.65 0.02 0.01 53.6 0.01 245 30-2 0.54 0.47 4.70 19.4 0.53 <Bdl 0.08 1.82 41.7 46.4 0.41 122 15.6 2.25 1.64 0.03 1796 0.67 1.37 0.01 0.01 45.1 <Bdl 233 31-1 <Bdl <Bdl 0.54 23.3 <Bdl <Bdl 0.15 0.71 31.2 58.2 7.13 19.6 10.2 1.83 3.20 0.04 1633 0.24 2.32 <Bdl <Bdl 0.37 0.02 232 31-2 <Bdl <Bdl <Bdl 16.0 <Bdl <Bdl 0.01 0.55 32.3 62.8 7.34 16.3 8.92 1.70 3.25 0.02 1790 0.15 1.63 <Bdl <Bdl 0.34 0.04 232 灰岩型 方铅矿 5-1 <Bdl 0.11 1.65 4.84 0.14 0.01 0.01 <Bdl 0.01 <Bdl 0.04 0.24 <Bdl 0.44 0.06 <Bdl 24.9 0.03 4.97 0.01 1.95 --- 0.19 --- 8-1 0.27 0.03 0.05 3.29 0.01 0.23 0.04 1.39 <Bdl 0.03 0.01 1.62 <Bdl 0.52 0.09 <Bdl 40.8 0.05 8.30 <Bdl 2.02 --- 0.61 --- 9-1 0.13 0.04 0.05 9.01 <Bdl <Bdl <Bdl 0.37 <Bdl 0.03 0.04 0.74 <Bdl 0.56 0.55 <Bdl 11.2 0.07 2.13 0.01 1.23 --- 0.13 --- 12-1 0.08 0.07 <Bdl 12.3 <Bdl <Bdl 0.02 2.42 0.08 0.04 0.02 <Bdl <Bdl 0.45 0.76 <Bdl 19.2 <Bdl 0.92 <Bdl 1.60 --- 0.08 --- 12-2 0.29 <Bdl 0.44 24.1 0.07 0.47 0.09 3.03 <Bdl <Bdl 0.14 0.80 <Bdl 0.53 0.79 <Bdl 30.9 <Bdl 3.41 0.01 1.58 --- 0.11 --- 14-1 0.17 <Bdl <Bdl 10.3 0.43 0.59 0.02 0.09 <Bdl 0.07 0.18 0.22 0.02 0.98 2.00 <Bdl 12.2 0.02 2.33 <Bdl 0.45 --- 0.42 --- 14-2 <Bdl 0.04 0.02 9.48 <Bdl <Bdl 0.01 <Bdl <Bdl 0.01 0.06 1.46 0.01 0.96 2.09 <Bdl 12.0 0.01 1.46 0.01 0.41 --- 0.38 --- 千枚岩型 方铅矿 22-1 0.07 0.11 1.03 9.44 <Bdl <Bdl 0.01 <Bdl <Bdl 0.03 <Bdl 14.4 0.01 0.60 43.46 0.01 23.6 0.03 6.09 0.01 2.87 --- 6.52 --- 27-1 <Bdl 0.15 1.10 10.2 <Bdl 0.63 <Bdl 2.75 <Bdl 0.02 <Bdl 0.43 <Bdl 1.13 5.11 0.02 24.3 0.05 7.17 0.01 0.12 --- 5.15 --- 27-2 0.02 0.13 0.66 5.40 <Bdl <Bdl 0.10 2.14 <Bdl 0.07 <Bdl 1.37 0.04 1.00 5.93 0.07 26.4 0.04 12.2 <Bdl 0.15 --- 6.23 --- 灰岩型 黄铁矿 4-1 <Bdl <Bdl 0.45 0.05 0.12 0.17 0.02 <Bdl 0.04 7.45 35.8 599 0.89 2.99 0.45 <Bdl 0.61 0.13 1.74 <Bdl 0.01 232 13.7 --- 4-2 <Bdl 0.09 0.67 8.76 <Bdl 1.10 0.01 0.09 0.03 14.4 40.1 1144 0.96 2.56 0.45 0.05 0.65 0.13 4.14 <Bdl 0.01 105 5.82 --- 10-1 <Bdl 0.01 0.71 1.31 0.08 0.06 0.05 <Bdl 0.07 37.5 24.0 15.7 0.01 2.89 1.48 0.07 1.30 0.06 0.07 0.01 0.01 61.9 2.60 --- 13-1 <Bdl <Bdl <Bdl 2.19 0.03 0.13 0.04 <Bdl <Bdl 113 315 355 0.05 2.90 1.38 0.01 0.27 0.06 2.19 0.02 0.01 19.1 0.36 --- 千枚岩型 黄铁矿 13-2 0.30 <Bdl 0.15 <Bdl <Bdl <Bdl 0.07 0.56 0.02 635 1013 522 0.08 2.00 3.02 0.03 0.06 0.04 0.92 <Bdl <Bdl 140 0.26 --- 13-3 0.06 <Bdl <Bdl 0.50 <Bdl <Bdl 0.01 <Bdl <Bdl 1475 35.5 217 0.01 2.20 2.98 0.01 0.01 0.03 <Bdl <Bdl <Bdl 115 0.11 --- 30-1 <Bdl 0.03 2.95 4.17 0.28 0.69 0.06 1.05 0.13 0.04 40.0 81.2 0.02 2.33 1.12 0.18 0.04 <Bdl <Bdl 0.01 1.22 156 0.01 --- 30-2 0.25 <Bdl 36.5 6.45 0.02 0.78 0.23 0.53 0.84 0.66 136 250 0.45 2.44 1.20 0.78 0.63 0.01 0.16 <Bdl 1.19 517 0.05 --- 灰岩型 黄铜矿 13-1 0.16 0.23 0.53 2.09 0.04 0.34 0.04 <Bdl 0.01 <Bdl <Bdl --- <Bdl 3.04 0.74 <Bdl 0.49 0.13 1.25 0.01 <Bdl 1.05 <Bdl --- 13-2 <Bdl <Bdl 2.21 13.94 <Bdl <Bdl 0.17 <Bdl <Bdl 0.13 0.51 --- 0.81 3.00 0.71 <Bdl 2.70 0.32 15.94 <Bdl <Bdl 10.96 <Bdl --- 22-1 0.31 <Bdl 3.21 4.86 0.93 <Bdl 0.10 4.63 0.92 1.07 0.19 --- 3.16 5.60 1.00 <Bdl 368.20 0.25 38.89 <Bdl 0.51 19.38 0.10 --- 22-2 0.69 <Bdl 21.17 <Bdl <Bdl <Bdl 0.07 <Bdl 0.57 0.52 0.19 --- 1.10 5.82 1.04 0.04 184.87 0.21 36.98 <Bdl 0.57 32.54 0.10 --- 千枚岩型 黄铜矿 27-1 <Bdl 0.12 1.84 8.41 1.09 4.51 0.14 <Bdl <Bdl 0.02 0.91 --- 1.61 5.53 0.01 0.06 4.35 0.52 48.82 0.01 0.03 8.59 <Bdl --- 27-2 <Bdl <Bdl 2.24 <Bdl <Bdl <Bdl 0.03 <Bdl 0.18 <Bdl 0.04 --- 1.23 5.52 <Bdl <Bdl 20.82 0.47 53.04 <Bdl 0.02 6.36 <Bdl --- 27-3 0.51 0.45 2.59 12.16 0.65 <Bdl 0.19 4.77 <Bdl <Bdl <Bdl --- 1.19 3.80 <Bdl <Bdl 3.83 0.50 40.63 0.01 0.06 3.48 0.04 --- 27-4 0.05 0.19 <Bdl 10.81 0.90 <Bdl 0.06 5.77 0.13 0.09 0.62 --- 1.22 3.78 <Bdl 0.04 3.13 0.53 49.10 <Bdl 0.07 12.69 0.03 --- 注:“<Bdl”表示低于检测限;“---”表示无数据 表 3 毕家山铅锌矿床中硫化物硫同位素数据
Table 3. Sulfur isotope compositions of sulfides in the Bijiashan lead-zinc deposit
类型 样号 矿物 δ34SV-CDT/‰ 灰岩型矿石 22-1 闪锌矿 +13.60 22-3 闪锌矿 +13.69 千枚岩型矿石 30-1 闪锌矿 +18.04 30-2 闪锌矿 +17.40 30-3 黄铜矿 +15.75 30-4 黄铁矿 +15.59 表 4 毕家山铅锌矿床相关特征
Table 4. Relevant characteristics of Bijiashan Pb−Zn deposit
类型 密西西比河谷型(MVT)铅锌矿床 喷流沉积型(SEDEX)铅锌矿床 毕家山铅锌矿床 定义 指赋存于台地碳酸盐岩中,成因与岩浆岩无关的浅成后生层状铅锌矿床,是在50~250℃条件下从密度较高的盆地卤水中沉淀形成的 在水温70~350℃或更高的热水介质(海水、湖水、热泉等)中形成的主体,以沉积的方式形成于水−岩石界面之上水体中的层状、似层状矿体,也包括此界面之下可能存在的以充填和交代形成的筒状、锥状或面型热液矿化蚀变体 —— 成矿构
造背景形成与全球板块汇聚事件相一致,主要分布于相对稳定的克拉通边缘或浅水碳酸盐台地边缘,有利构造环境为俯冲碰撞环境靠近克拉通一侧的部位,克拉通边缘沉积盆地内古隆起带之上或附近,与板块俯冲形成的局部伸展环境有关,前陆逆冲推覆环境,大陆伸展的裂谷或裂谷环境 主要形成于拉张性构造环境:离散板块动力学背景下陆内裂谷、坳拉槽、被动大陆边缘裂谷;汇聚板块动力学背景下远离弧后的拉张断陷盆地 中泥盆世秦岭地槽拉张环境 成矿
物质Pb上地壳来源;
δ34S=−25‰~+30‰,沉积地层和海水,壳源特征;
含硫酸盐的蒸发岩、同生海水、成岩期的硫酸盐、含硫有机质、H2S气体储库、盆地中缺氧水中的还原硫Pb受成矿流体控制,总体壳源特征;
δ34S=−8‰~+30‰(深源S,海水SO4,生物S),
主要介于−5‰~+15‰之间,
S主要来自于海相硫酸盐206Pb/204Pb=18.131,206Pb/204Pb=15.633,206Pb/204Pb=38.284,与赋矿地层一致,来自壳源;闪锌矿:δ34S=+9.2‰~+22.8‰(平均值:+14.6‰),方铅矿:δ34S=+4.7‰~+22.3‰(平均值:+14.6‰),黄铁矿:δ34S=+11.0‰~+24.1‰(平均值:+19.5‰),具有与围岩地层一致的S同位素组成,来自于海相硫酸盐 成矿
流体均一温度(50~250℃)主要为75~150℃,盐度NaCleq=15%~30%,成分与油田卤水相似 均一温度(70~350℃)主要为140~280℃,众值225℃,
盐度NaCleq=15%~20%微量元素温度计:灰岩型闪锌矿189~254℃(平均值218℃),千枚岩型闪锌矿193~245℃(平均值229℃);硫化矿物对温度计:230℃;成矿温度以中温为主;流体包裹体:140~292℃(平均值219℃),盐度NaCleq= 10.6%~19.8% 流体
来源盆地卤水(主要溶质源于海水蒸发或地下蒸发矿物(石盐) 盆地中被埋藏的沉积物在压实过程中释放出多种形式的水及其他组分 流体以原生沉积建造水为主,可能有少量其他水分参与 成矿
能量构造挤压运动产生的动能使成矿流体运移,重力引起的梯度热能以及有机生物能促使硫的还原 沿构造从壳源深部传导出的热扩散,可能受地幔柱的影响 西成矿田内礼县−白云−山阳区域性同沉积深大断裂为区域内热水活动提供了通道 成矿流
体通道张性断层 同生断裂和长期活动的断裂 礼县−白云−山阳区域性同生沉积断裂 成矿堆
积场所以碳酸盐岩为主,碳酸盐岩溶塌角砾岩、断层及构造裂隙、岩相过渡界面、生物礁及障壁体系、 盆地基底的组成了成矿堆积场 以较细粒的碎屑沉积物为主的岩石,其顶部的页岩、粉砂岩和碳酸盐岩及其变质后的产物有效地形成了成矿的地球物理化学障 由礁灰岩、硅质岩、千枚岩构成“礁硅岩套”组合屏障 矿石矿物 方铅矿、闪锌矿、黄铁矿、黄铜矿为主 方铅矿、闪锌矿、黄铁矿为主 方铅矿、闪锌矿、黄铁矿为主 脉石矿物 白云石、方解石、少量矿床具有萤石、重晶石 石英、白云石、方解石、重晶石 石英、方解石、少量重晶石 结构构造 块状、浸染状、脉状 层状、纹层状、条带状、角砾状和致密块状为主,脉状浸染状和星点状 条带状、团块状 成矿阶段 热液期+表生期 喷流沉积期+后期变形变质 喷流沉积+后期变形变质 参考文献 Cook et al., 2000; Bradley et al., 2003; Leach et al., 2001, 2005, 2010, 2017, 2019 Cook et al., 2000; Bradley et al., 2003; Goodfellow, 2004; McGoldrick et al., 2010; Maier, 2011; Gadd et al., 2015; Mukherjee et al., 2017; Cugerone et al., 2018; Yuan et al., 2018 陈建民,1986;李英,1986;戴问天,1987;吴廷祥,1991;林兵等,1992;孙省利1992;鲁燕伟,2009;刘红丽,2015 -
[1] Basori M B I, Gilbert S, Large R R, et al. 2018. Textures and trace element composition of pyrite from the Bukit Botol volcanic−hosted massive sulphide deposit, Peninsular Malaysia[J]. Journal of Asian Earth Sciences, 158: 173−185. doi: 10.1016/j.jseaes.2018.02.012
[2] Belissont R, Boiron M C, Luais B. et al. 2014. LA−ICP−MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge−rich sphalerites from the Noailhac−Saint−Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes[J]. Geochimica et Cosmochimica Acta, 126: 518−540. doi: 10.1016/j.gca.2013.10.052
[3] Bonnet J, Regine M R, Caumon M C, et al. 2016. Trace element distribution (Cu, Ga, Ge, Cd and Fe) in sphalerite from the Tennessee MVT deposits, USA, by combined EMPA, LA−ICP−MS, Raman spectroscopy, and crystallography[J]. Canadian Mineralogist, 54(5): 1261−1284. doi: 10.3749/canmin.1500104
[4] Bradley D C, Leach D L. 2003. Tectonic controls of Mississippi Valley−type lead−zinc mineralization in orogenic forelands[J]. Mineralium Deposita, 38(6): 652−667. doi: 10.1007/s00126-003-0355-2
[5] Chen J M. 1986. Research on basic geological characteristics and metallogenic reason of Xicheng Pb−Zn deposits[J]. Mineral Resources and Geology, (3): 10−18 (in Chinese).
[6] Chen L, Chen K Y, Bao Z A, et al. 2017. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC−ICP−MS[J]. Journal of Analytical Atomic Spectrometry, 32(1): 107−116. doi: 10.1039/C6JA00270F
[7] Cook N J, Ciobanu C L, Pring A, et al. 2009. Trace and minor elements in sphalerite: A LA−ICP−MS study[J]. Geochimica et Cosmochimica Acta, 73(16): 4761−4791. doi: 10.1016/j.gca.2009.05.045
[8] Cook D R, Bull S W, Large R R, et al. 2000. The importance of oxidised brines for the formation of Australian Proterozoic stratiform, sediment−hosted Pb−Zn (SEDEX) deposits[J]. Economic Geology, 95: 1−18. doi: 10.2113/gsecongeo.95.1.1
[9] Cugerone A, Cenki−Tok B, Chauvet A, et al. 2018. Relationships between the occurrence of accessory Ge−minerals and sphalerite in Variscan Pb−Zn deposits of the Bossost anticlinorium, French Pyrenean Axial Zone: Chemistry, microstructures and ore−deposit setting[J]. Ore Geology Reviews, 95: 1−19. doi: 10.1016/j.oregeorev.2018.02.016
[10] Dai W T. 1987. Geology and genesis of the Pb–Zn deposit in Bijiashan, S. Gansu[J]. Journal of Chang’an University (Earth Science edition), 9(2): 47−54 (in Chinese with English abstract).
[11] Deng H J, Zhu D L. 2010. Metallogenic series and ore−searching prospect in the Xicheng mineralization area of Gansu Province[J]. Geology and Prospecting, 46(6): 1045−1050 (in Chinese with English abstract).
[12] Fan Y, Zhou T F, Yuan F, et al. 2007. Mode of occurrence of thallium in the Xiangquan thallium deposit, Hexian County, Anhui[J]. Acta Petrologica Sinica, 23(10): 2530−2540 (in Chinese with English abstract).
[13] Frenzel M, Hirsch T, Gutzmer J. 2016. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type−A meta−analysis[J]. Ore Geology Reviews, 76: 52−78. doi: 10.1016/j.oregeorev.2015.12.017
[14] Frenzel M, Voudouris P, Cook N J, et al. 2022. Evolution of a hydrothermal ore−forming system recorded by sulfide mineral chemistry: A case study from the Plaka Pb–Zn–Ag deposit, Lavrion, Greece[J]. Mineralium Deposita, 57(3): 417−438. doi: 10.1007/s00126-021-01067-y
[15] Gadd G, Matthews D L, Peter J M, et al. 2015. The world−class Howard’s Pass SEDEX Zn−Pb district, Selwyn Basin, Yukon. Part I: trace element compositions of Pyrite record input of hydrothermal, diagenetic and metamorphic fluids to mineralisation[J]. Mineral Deposita, 3: 319−342.
[16] George L L, Cook N J, Ciobanu C L. 2016. Partitioning of trace elements in Co−crystallized sphalerite – galena – chalcopyrite hydrothermal ores[J]. Ore Geology Reviews, 77: 97−116. doi: 10.1016/j.oregeorev.2016.02.009
[17] Goodfellow W D. 2004. Sediment hosted lead−zinc sulphide deposits geology, genesis and exploration of SEDEX deposits, with emphasis on the Selwyn Basin, Canada[C]//Deb M, Goodfelloow W D. Sediment−hosted Lead−Zinc Deposits. Narosa Publishing house, New Delhi, 24–99.
[18] Hao D C, Gao Z K, Han Y Q, et al. 2021. Zircon U−Pb age and its geological significance of the Anjiacha Formation in Xicheng lead−zinc ore field, western Qinling[J]. Geoscience, 35(2): 552−567 (in Chinese with English abstract).
[19] Huo F C, Li Y J. 1995. Construction and geological evolution of west Qinling Orogenic belt[M]. Xi’an: Northwest University Press: 24–66 (in Chinese).
[20] Jiang K, Yan Y F, Zhu C W, et al. 2014. The research on distributions of thallium and cadmium in the Jinding lead−zine deposit, Yunnan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5): 753–758 (in Chinese with English abstract).
[21] Leach D L, Song Y C. 2019. Sediment−hosted zinc−lead and copper deposits in China[J]. Society of Economic Geologists, Special Publication, 22: 325–409.
[22] Leach D L, Bradley D C, Huston D, et al. 2010. Sediment−hosted lead−zinc deposits in earth Earth history[J]. Economic Geology, 105(3): 593−625. doi: 10.2113/gsecongeo.105.3.593
[23] Leach D L, Bradley D, Lewchuk M T, et al. 2001. Mississippi Valley−type lead−zinc deposits through geological time: Implications from recent age−dating research[J]. Mineralium Deposita, 36(8): 711−740. doi: 10.1007/s001260100208
[24] Leach D L, Sangster D F, Kelley K D, et al. 2005. Sediment−hosted lead−zinc deposits: A global perspective[J]. Economic Geology, 100 Anniversary Volume: 561–607.
[25] Leach D L, Song Y C, Hou Z Q. 2017. The world−class Jinding Zn−Pb deposit: Ore formation in an evaporite dome, Lanping Basin, Yunnan, China[J]. Mineralium Deposita, 52(3): 281−296. doi: 10.1007/s00126-016-0668-6
[26] Leng C B, Qi Y Q. 2017. Genesis of the Lengshuikeng Ag−Pb−Zn orefield in Jiangxi: Constraint from in−situ LA−ICP−MS analyses of minor and trace elements in sphalerite and galena[J]. Acta Geologica Sinica, 91(10): 2256−2272 (in Chinese with English abstract).
[27] Li Y J, Wei J H. 2014. A review of trace elements enrichment in sulfides from Pb−Zn deposits and associated critical testing technology[J]. Bulletin of Geological Science and Technology, 33(1): 191 (in Chinese with English abstract).
[28] Li Y. 1986. The study on stable isotope and fluid inclusion of lead−zinc ore deposits in Xicheng orefield[J]. Journal of Chang’an University (Earth Science edition), 8(2): 40−50 (in Chinese with English abstract).
[29] Li Z C, Pei X Z, Li R B, et al. 2013. LA−ICP−MS zircon U−Pb dating, geochemistry of the Mishuling intrusion in western Qinling and their tectonic significance[J]. Acta Petrologica Sinica, 29(8): 2017−2029 (in Chinese with English abstract).
[30] Li Z L, Ye L, Hu Y S, et al. 2019. The trace (dispersed) elements in pyrite from the Fule Pb−Zn deposit, Yunnan Province, China, and its genetic information: A LA−ICP MS study[J]. Acta Petrologica Sinica, 35(11): 3370−3384 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.07
[31] Lin B, Chen H S, Su W M. 1992. Geochemical characteristics of metallisation of Bijiashan lead−zinc deposit, Gansu Province[J]. Geoscience, 6(2): 150−159 (in Chinese with English abstract).
[32] Liu G X, Yuan F, Deng Y F, et al. 2022. Critical metal enrichment in carbonate−hosted Pb−Zn systems: Insight from the chemistry of sphalerite within the Hehuashan Pb−Zn deposit, Middle−Lower Yangtze River Metallogenic Belt, East China[J]. Ore Geology Reviews, 151: 105209. doi: 10.1016/j.oregeorev.2022.105209
[33] Liu H L. 2015. Geological characteristics of the Bijiawan lead−zinc deposit in Cheng County, Gansu Province[J]. Gansu Science and Technology, 31(17): 31–33 (in Chinese with English abstract).
[34] Liu H, Zhang C Q, Ji X J, et al. 2022. Differential enrichment of germanium in sphalerite from Huize lead−zinc deposit, Yunnan Province[J]. Mineral Deposits, 41(5): 1057−1072 (in Chinese with English abstract).
[35] Liu M, Wang Z L, Xu D R, et al. 2018. Mineralogy of chlorite, pyrite and chalcopyrite in the Jingchong Co−Cu polymetallic deposit in northeastern Hunan Province, South China: Implications for ore genesis[J]. Geotectonica et Metallogenia, 42(5): 862−879 (in Chinese with English abstract).
[36] Liu S Y, Liu Y P, Ye L, et al. 2021. LA−ICPMS trace elements of pyrite from the super−large Dulong Sn−Zn polymetallic deposit, southeastern Yunnan, China[J]. Acta Petrologica Sinica, 37(4): 1196−1212 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.04.14
[37] Liu T G, Zhang Q, Ye L, et al. 2004. Discovery of primary greenockite in nature, as exemplified by the Niujiaotang cadmium−zinc deposit, Guizhou[J]. Acta Mineralogica Sinica, 24(2): 191−196 (in Chinese with English abstract).
[38] Liu W S, Zhao R Y, Zhang X, et al. 2019. The EPMA and LA− ICP− MS in−situ geochemical features of pyrrhotite and pyrite in Dabaoshan Cu−polymetallic deposit, North Guangdong Province, and their constraint on genetic mechanism[J]. Acta Geoscientica Sinica, 40(2): 291−306 (in Chinese with English abstract).
[39] Liu Y C, Hou Z Q, Yue L L, et al. 2022. Critical metals in sediment−hosted Pb−Zn deposits in China[J]. Science Bulletin, 67(Z1): 406−424 (in Chinese with English abstract).
[40] Lu Y W. 2009. Geological characteristics and prospecting direction of the Bijiashan lead−zinc deposit in Cheng County, Gansu, China[J]. Gansu Metallurgy, 31(1): 56−58 (in Chinese with English abstract).
[41] Luo K, Zhou J X, Xu C, et al. 2021. The characteristics of the extraordinary germanium enrichment in the Wusihe large−scale Ge−Pb−Zn deposit, Sichuan Province, China and its geological significance[J]. Acta Petrologica Sinica, 37(9): 2761−2777 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.09.10
[42] Maier R C. 2011. Pyrite Trace Element Haloes to Northern Australian SEDEX Deposits[D]. Ph. D. Dissertation, University of Tasmania.
[43] McGoldrick P, Winefield P, Bull S, et al. 2010. Sequences, syn−sedimentary structures, and subbasins: the where and when of SEDEX zinc systems in the Southern Mc Arthur Basin, Australia[J]. Soc. Econ. Geol. Inc. Spec. Publ. 15: 367–389.
[44] Moskalyk R R. 2003. Gallium: the backbone of the electronics industry[J]. Minerals Engineering, 16: 921−929. doi: 10.1016/j.mineng.2003.08.003
[45] Mukherjee I, Large R. 2017. Application of pyrite trace element chemistry to exploration for SEDEX style Zn−Pb deposits: McArthur Basin, Northern Territory, Australia[J]. Ore Geology Reviews, 81: 1249−1270. doi: 10.1016/j.oregeorev.2016.08.004
[46] Murakami H, Ishihara S. 2013. Trace elements of Indiumindium−bearing sphalerite from tin−polymetallic deposits in Bolivia, China and Japan: A femtosecond LA−ICP−MS study[J]. Ore Geology Reviews, 53: 223−243. doi: 10.1016/j.oregeorev.2013.01.010
[47] Qin J F. 2010. Petrogenesis and geodynamic implications of the Late Triassic granitoids from the Qinling Orogenic Belt[J]. Ph. D. Dissertation. Northwest University (in Chinese with English abstract).
[48] Sun S L, Wang G A, Yuan M K. 1992. Studies on lead−sulfur isotope geochemical characteristics and material source in Xicheng Pb−Zn orefield, Gansu, China[J]. Acta Geologica Gansu, 1(2): 51–65 (in Chinese with English abstract).
[49] Taylor S R, Mc Lennan S M. 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific.
[50] Tu G Z, Gao Z M, Hu R Z, et al. 2004. Geochemistry and metallogenic mechanism of dispersed elements[M]. Beijing: Geological Publishing House: 1–424 (in Chinese).
[51] Wang F Y, Ge C, Ning S Y, et al. 2017. A new approach to LA−ICP−MS mapping and application in geology[J]. Acta Petrologica Sinica, 33(11): 3422−3436 (in Chinese with English abstract).
[52] Wang H Y, Ye L, Hu YS, et al. 2021. Trace element characteristics in sphalerites from the Laochangping Pb−Zn deposit in the southeastern Chongqing[J]. Acta Mineralogica Sinica, 41(6): 623−634 (in Chinese with English abstract).
[53] Wang J L, He B C, Li J Z, et al. 1996. Qinling−type lead−zinc deposits in China[M]. Beijing: Geological Publishing House: 1–264 (in Chinese).
[54] Wang P. 1987. Systematic mineralogy (third volume) [M]. Beijing: Geological Publishing House: 541−542 (in Chinese).
[55] Wang T G, Ni P, Sun W D, et al. 2010. Zircon U−Pb ages of granites at Changba and Huangzhuguan in western Qinling and implications for source nature[J]. Chinese Science Bulletin, 55(36): 3493−3505 (in Chinese). doi: 10.1360/csb2010-55-36-3493
[56] Wen H J, Zhou Z B, Zhu C W, et al. 2019. Critical scientific issues of super−enrichment of dispersed metals[J]. Acta Petrologica Sinica, 35(11): 3271−3291(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.01
[57] Wu T X. 1991. The geological characteristics of sulfur isotope ratios in lead and zinc ores from Bijiashan deposit, Gansu Province[J]. Northwestern Geology, 12(4): 29−36 (in Chinese with English abstract).
[58] Wu Y, Kong Z G, Chen M H, et al. 2019. Trace elements in sphalerites from the Mississippi Valley−type lead−zinc deposits around the margins of Yangtze Block and its geological implications: A LA−ICP−MS study[J]. Acta Petrologica Sinica, 35(11): 3443−3460 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.12
[59] Xu J, Li X F. 2018. Spatial and temporal distributions, metallogenic backgrounds and processes of indium deposits[J]. Acta Petrologica Sinica, 34(12): 3611−3626 (in Chinese with English abstract).
[60] Yang L. 2022. Occurrence and source of Cd elements in Jinding Pb−Zn deposit, Yunnan Province, China[D]. Master’s Degree Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
[61] Ye L, Liu T G. 2001. Distribution features and existing forms of cadmium in the Niujiaotang Cd−rich zinc deposit, Guizhou, China[J]. Acta Mineralogica Sinica, 21(1): 115−118 (in Chinese with English abstract).
[62] Ye L, Cook N J, Ciobanu C L, et al. 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA−ICP−MS study[J]. Ore Geology Reviews, 39(4): 188−217. doi: 10.1016/j.oregeorev.2011.03.001
[63] Ye L, Cook N J, Liu T G, et al. 2012. The Niujiaotang Cd−rich zinc deposit, Duyun, Guizhou province, southwest China: Ore genesis and mechanisms of cadmium concentration[J]. Mineralium Deposita, 47: 683−700. doi: 10.1007/s00126-011-0386-z
[64] Ye L, Li Z L, Hu Y S, et al. 2016. Trace elements in sulfide from the Tianbaoshan Pb−Zn deposit, Sichuan Province, China: A LA−ICP−MS study[J]. Acta Petrologica Sinica, 32(11): 3377−3393 (in Chinese with English abstract).
[65] Yuan B, Zhang C Q, Yu H J, et al. 2018. Element enrichment characteristics: insights from element geochemistry of sphalerite in Daliangzi Pb–Zn deposit, Sichuan, Southwest China[J]. Journal of Geochemical Exploration, 186: 187−201. doi: 10.1016/j.gexplo.2017.12.014
[66] Yuan X, Wu Y, Duan D F, et al. 2022. Trace (Dispersed) elements in sphalerite from the giant Huoshaoyun lead−zinc deposit, Xinjiang and their geological implications[J]. Geology and Exploration, 58(3): 545−560 (in Chinese with English abstract).
[67] Zhai Y L, Wei J H, Li Y J, et al. 2017. Present situation and research progress of the SEDEX deposit[J]. Geophysical and Geochemical Exploration, 41(3): 392−401 (in Chinese with English abstract).
[68] Zhang G W, Zhang B R, Yuan X C, et al. 2001. Qinling Orogenic belt and continental dynamics[M]. Beijing: Science Press: 1–806 (in Chinese).
[69] Zhang S X. 2019. Study on Prospecting model and metallogenic prediction of hidden lead−zinc deposit in Xicheng ore field[D]. Ph. D. Dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).
[70] Zhang T J, Zeng G L, Li Y G. 2015. Characteristics and genesis model of SEDEX lead−zinc deposit: A case study of Xicheng ore field[J]. Acta Mineralogica Sinica, 35(S1): 186−187 (in Chinese with English abstract).
[71] Zhang Y X, Liao S L, Tao C H, et al. 2021. Ga isotopic fractionation in sulfides from the Yuhuang and Duanqiao hydrothermal fields on the Southwest Indian Ridge[J]. Geoscience Frontiers, 12(4): 126−134.
[72] 陈建民. 1986. 西成铅锌矿床基本地质特征及成因探讨[J]. 矿产与地质, (3): 10−18.
[73] 戴问天. 1987. 甘南毕家山铅锌矿床地质特征与成因[J]. 长安大学学报(地球科学版), 9(2): 47−54.
[74] 邓海军, 朱多录. 2010. 甘肃西成矿集区成矿系列及找矿前景[J]. 地质与勘探, 46(6): 1045−1050.
[75] 翟玉林, 魏俊浩, 李艳军, 等. 2017. SEDEX型矿床研究现状及进展[J]. 物探与化探, 41(3): 392−401.
[76] 范裕, 周涛发, 袁峰, 等. 2007. 安徽和县香泉独立铊矿床铊的赋存状态研究[J]. 岩石学报, 23(10): 2530−2540. doi: 10.3969/j.issn.1000-0569.2007.10.021
[77] 浩德成, 丁振举, 高兆奎, 等. 2021. 西秦岭西成铅锌矿田赋矿安家岔组碎屑锆石U−Pb年龄及其地质意义[J]. 现代地质, 35(2): 552−567.
[78] 霍福臣, 李永军. 1995. 西秦岭造山带的建造与地质演化[M]. 西安: 西北大学出版社: 24–66.
[79] 姜凯, 燕永锋, 朱传威, 等. 2014. 云南金顶铅锌矿床中铊、镉元素分布规律研究[J]. 矿物岩石地球化学通报, 33(5): 753−758. doi: 10.3969/j.issn.1007-2802.2014.05.010
[80] 冷成彪, 齐有强. 2017. 闪锌矿与方铅矿的 LA−ICP−MS 微量元素地球化学对江西冷水坑银铅锌矿田的成因制约[J]. 地质学报, 91(10): 2256−2272. doi: 10.3969/j.issn.0001-5717.2017.10.008
[81] 李艳军, 魏俊浩. 2014. 铅锌矿床中微量元素富集及关键测试技术研究新进展[J]. 地质科技情报, 33(1): 191–198.
[82] 李英. 1986. 西成矿田层控铅锌矿床稳定同位素和包裹体研究[J]. 长安大学学报(地球科学版), 8(2): 40−50.
[83] 李珍立, 叶霖, 胡宇思, 等. 2019. 云南富乐铅锌矿床黄铁矿微量(稀散)元素组成及成因信息: LA−ICP−MS研究[J]. 岩石学报, 35(11): 3370−3384. doi: 10.18654/1000-0569/2019.11.07
[84] 李佐臣, 裴先治, 李瑞保, 等. 2013. 西秦岭糜署岭花岗岩体年代学、地球化学特征及其构造意义[J]. 岩石学报, 29(8): 2017−2029.
[85] 林兵, 程海生, 苏文明. 1992. 甘肃毕家山铅锌矿床成矿地球化学特征[J]. 现代地质, 6(2): 150−159.
[86] 刘红丽. 2015. 甘肃省成县毕家湾铅锌矿床地质特征[J]. 甘肃科技, 31(17): 31−33. doi: 10.3969/j.issn.1000-0952.2015.17.011
[87] 刘欢, 张长青, 吉晓佳, 等. 2022. 云南会泽铅锌矿床闪锌矿中稀散元素锗的差异性富集规律研究[J]. 矿床地质, 41(5): 1057−1072.
[88] 刘萌, 王智琳, 许德如, 等. 2018. 湖南井冲钴铜多金属矿床绿泥石、黄铁矿和黄铜矿的矿物学特征及其成矿指示意义[J]. 大地构造与成矿学, 42(5): 862−879.
[89] 刘仕玉, 刘玉平, 叶霖, 等. 2021. 滇东南都龙超大型锡锌多金属矿床黄铁矿LA−ICP−MS微量元素组成研究[J]. 岩石学报, 37(4): 1196−1212. doi: 10.18654/1000-0569/2021.04.14
[90] 刘铁庚, 张乾, 叶霖, 等. 2004. 贵州牛角塘镉锌矿床中发现原生硫镉矿[J]. 矿物学报, 24(2): 191−196. doi: 10.3321/j.issn:1000-4734.2004.02.017
[91] 刘武生, 赵如意, 张熊, 等. 2019. 粤北大宝山铜多金属矿区黄铁矿与磁黄铁矿EPMA和LA−ICP−MS原位微区组分特征及其对矿床成因机制约束[J]. 地球学报, 40(2): 291−306. doi: 10.3975/cagsb.2019.013001
[92] 刘英超, 侯增谦, 岳龙龙, 等. 2022. 中国沉积岩容矿铅锌矿床中的关键金属[J]. 科学通报, 67(Z1): 406−424.
[93] 鲁燕伟. 2009. 甘肃成县毕家山铅锌矿床地质特征及找矿方向[J]. 甘肃冶金, 31(1): 56−58. doi: 10.3969/j.issn.1672-4461.2009.01.017
[94] 罗开, 周家喜, 徐畅, 等. 2021. 四川乌斯河大型锗铅锌矿床锗超常富集特征及其地质意义[J]. 岩石学报, 37(9): 2761−2777. doi: 10.18654/1000-0569/2021.09.10
[95] 秦江锋. 2010. 秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D]. 西北大学博士毕业论文: 20−65.
[96] 孙省利, 王国安, 袁明坤. 1992. 西成铅锌矿田铅、硫同位素特征及成矿物质来源的研究[J]. 甘肃地质学报, 1(2): 51−65.
[97] 涂光炽, 高振敏, 胡瑞忠, 等. 2004. 分散元素地球化学及成矿机制[M]. 北京: 地质出版社: 1−424.
[98] 汪方跃, 葛粲, 宁思远, 等. 2017. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 33(11): 3422−3436.
[99] 王皓宇, 叶霖, 胡宇思, 等. 2021. 渝东南老厂坪铅锌矿床闪锌矿微量元素组成特征[J]. 矿物学报, 41(6): 623−634.
[100] 王集磊, 河伯墀, 李健中, 等. 1996. 中国秦岭型铅锌矿床[M]. 北京: 地质出版社: 1−264.
[101] 王濮. 1987. 系统矿物学(下册) [M]. 北京: 地质出版社: 541–542.
[102] 王天刚, 倪培, 孙卫东, 等. 2010. 西秦岭勉略带北部黄渚关和厂坝花岗岩锆石U−Pb年龄及源区性质[J]. 科学通报, 55(36): 3493−3505.
[103] 温汉捷, 周正兵, 朱传威, 等. 2019. 稀散金属超常富集的主要科学问题[J]. 岩石学报, 35(11): 3271−3291. doi: 10.18654/1000-0569/2019.11.01
[104] 吴廷祥. 1991. 甘肃毕家山铅、锌矿硫同位素地质特征[J]. 西北地质, 12(4): 29−36.
[105] 吴越, 孔志岗, 陈懋弘, 等. 2019. 扬子板块周缘MVT型铅锌矿床闪锌矿微量元素组成特征与指示意义: LA−ICP−MS研究[J]. 岩石学报, 35(11): 3443−3460. doi: 10.18654/1000-0569/2019.11.12
[106] 徐净, 李晓峰. 2018. 铟矿床时空分布、成矿背景及其成矿过程[J]. 岩石学报, 34(12): 3611−3626.
[107] 杨黎. 2022. 云南金顶铅锌矿床Cd元素赋存形式与来源[D]. 中国地质大学(北京)硕士学位论文: 1−79.
[108] 叶霖, 刘铁庚. 2001. 贵州都匀牛角塘富镉锌矿床中镉的分布及赋存状态探讨[J]. 矿物学报, 21(1): 115−118. doi: 10.3321/j.issn:1000-4734.2001.01.019
[109] 叶霖, 李珍立, 胡宇思, 等. 2016. 四川天宝山铅锌矿床硫化物微量元素组成: LA−ICP−MS研究[J]. 岩石学报, 32(11): 3377−3393.
[110] 袁鑫, 吴越, 段登飞, 等. 2022. 新疆火烧云超大型铅锌矿床闪锌矿微量(稀散)元素组成特征与指示意义[J]. 地质与勘探, 58(3): 545−560.
[111] 张国伟, 张本仁, 袁学诚, 等. 2001. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社: 1–806.
[112] 张世新. 2019. 西成矿田隐伏铅锌矿床找矿模型及成矿预测研究[D]. 中国地质大学(武汉)博士学位论文: 1−203.
[113] 张腾蛟, 曾广亮, 李佑国. 2015. SEDEX铅锌矿床特征和成因模式—以中国西成矿田为例[J]. 矿物学报, 35(S1): 186−187.
-