Neogene volcanic rock sequence and its reconstruction of Daruo-Zhuangla volcanoes in the western segment of Gangdise igneous rock belt, Xizang Plateau
-
摘要:
青藏高原的新生代火山岩地层、岩相(岩石)与构造是高原演化过程的重要记录。针对青藏高原南部冈底斯岩浆岩带西段近南北向展布的达若−壮拉火山构造洼地内新近纪火山作用过程,在1∶5万遥感解译和地质调查基础上,结合1∶2000岩石地层剖面测制、锆石U−Pb同位素定年等方法开展了火山地层序列及活动时序重塑研究。结果发现,该新近纪火山活动包含了锆石U−Pb年龄分别为11 Ma、10 Ma的早、晚2期喷发沉积序列,其中早期火山活动以单纯中心式喷溢为主,伴有小规模的爆发作用,形成了盾状熔岩穹隆或熔岩台地,火山喷发物主要为粗面安山岩、粗安质熔结凝灰岩和粗安质凝灰熔岩等;而晚期火山活动以侵出、侵入活动和小规模爆发作用为主,形成了熔岩和火山渣组成的火山锥,火山喷发物主要为粗安质熔结凝灰岩、粗安质凝灰熔岩、粗安质火山碎屑岩、玻基粗面斑岩等。该套新近纪火山序列的爆发指数整体较低,喷发方式属于斯特朗博利型或夏威夷型,空间上与区内的早期古近纪火山机构呈切割式、叠套式组合,反映新近纪与古近纪火山活动中心存在空间迁移特征。同时发现,该区火山作用时代与区域伸展构造的发育时间基本重叠,表明该区新近纪火山活动应形成于青藏高原碰撞后的陆内拉张环境,发育过程可能受到青藏高原晚新生代近东西向伸展作用控制,从而与区域上的近南北向裂谷系伴生。
Abstract:The volcanic strata, lithofacies (rocks), and structures of the Cenozoic volcanoes in the Xizang Plateau are important records to decipher the evolution process of the plateau. In order to reconstruct the Neogene volcanism process in the Daruo-Zhuangla volcano-tectonic depression, a "three-facies geological survey" was carried out for the volcanic rocks in the study area using 1∶50000 geological survey, 1∶50000 remote sensing geological interpretation, 1∶2000 lithostratigraphic section, zircon U−Pb isotope dating and other methods. It is found that the Neogene volcanic activities in the
study area are characterized by early and late stages, in which the early volcanic activity is dominated by simple central-type eruption accompanied by small-scale eruption, forming a shield lava dome or lava platform, and the volcanic eruptions are trachyandesite, trachyandesitic ignimbrite, and trachyandesitic tufflava, etc; the late volcanic activity is dominated by small-scale eruption, invasion and intrusion, forming a volcanic cone composed of lava and volcanic cinder. The volcanic eruptions are trachyandesitic ignimbrite, trachyandesitic tufflava, trachyandesitic volcaniclastic and vitroporphyric rocks. On the whole, the Neogene volcanic eruption index in the study area is low. The eruption style belongs to the Stromboli type or Hawaiian type. The distribution scale is small, and the spatial and Early Paleogene volcanic edifice are cross-cutting and stacked, which reflects the local migration characteristics of the volcanic activity center. New zircon U−Pb dating ages of the two stages of volcanic products are 11 Ma and 10 Ma, respectively. The ages of the rocks overlap with the development time of the regional extensional structure, indicating that the Neogene volcanic activity was formed in the intracontinental extensional environment after the collision of the Xizang Plateau, and its formation and distribution are controlled by the nearly N-S graben generated by the Late Cenozoic detachment and extension of the Xizang Plateau.
-
-
图 8 达若地区新近纪区域构造岩浆演化示意图(据谢国刚等,2014修改)
Figure 8.
图 9 冈底斯岩浆岩带新近纪火山活动年龄与南北向裂谷启动年龄对比图(南北向裂谷和启动时间据Blisniuk et al., 2002;卞爽等,2021;火山岩位置和年龄数据据赵志丹等,2006;刘栋等,2011;尼玛次仁等,2015,2016;杨硕等,2016)
Figure 9.
表 1 火山岩LA-ICP-MS锆石U−Th−Pb同位素数据
Table 1. LA-ICP-MS zircon U−Th−Pb isotopic data from the volcanic rocks
样品及测点 含量/10−6 Th/U 同位素比值 年龄/Ma Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ PM017-TW1-1 1393.7 1435.6 0.97 0.04851 0.00229 0.01047 0.00047 0.00156 0.00003 10.1 0.17 PM017-TW1-2 1039.7 677.1 1.54 0.04803 0.00289 0.0103 0.00059 0.00159 0.00003 10.2 0.22 PM017-TW1-3 496.0 381.7 1.30 0.05242 0.00383 0.01156 0.00079 0.0016 0.00004 10.3 0.28 PM017-TW1- 4 605.8 1629.9 0.37 0.04558 0.00194 0.01057 0.00043 0.00166 0.00003 10.7 0.16 PM017-TW1-5 761.1 674.0 1.13 0.04867 0.0027 0.01074 0.00056 0.00161 0.00003 10.3 0.2 PM017-TW1-6 2019.6 852.3 2.37 0.04887 0.005 10100 0.00099 0.00152 0.00005 9.8 0.32 PM017-TW1-7 1253.8 1028.2 1.22 0.05301 0.00282 0.01131 0.00057 0.00153 0.00003 9.9 0.19 PM17-TW1- 8 862.4 760.4 1.13 0.06064 0.00333 0.01301 0.00067 0.00156 0.00003 10.1 0.21 PM017-TW1- 9 1054.9 2337.4 0.45 0.04969 0.00231 0.0108 0.00048 0.00153 0.00003 9.9 0.16 PM017-TWI-10 482.4 292.4 1.65 0.04874 0.00441 0.01146 0.00098 0.00174 0.00005 11.2 0.35 PM017-TW1-11 843.2 1052.9 0.80 0.04351 0.00251 0.00995 0.00055 0.00162 0.00003 10.4 0.2 PM017-TWI-12 851.6 567.7 1.50 0.0479 0.00422 0.01033 0.00086 0.00156 0.00005 10 0.3 PM017-TW1-13 1228.1 1183.8 1.04 0.0503 0.0023 0.01095 0.00047 0.00161 0.00003 10.3 0.17 PM017-TW1-14 654.6 1798.1 0.36 0.04515 0.00191 0.01118 0.00045 0.00177 0.00003 11.4 0.17 PM017-TW1-15 1076.8 860.7 1.25 0.04752 0.00263 0.01065 0.00056 0.00164 0.00003 10.5 0.2 PM017-TW1-16 898.8 811.1 1.11 0.0642 0.00258 0.01466 0.00055 0.00168 0.00003 10.8 0.18 PM017-TW1-17 506.9 390.0 1.30 0.05064 0.00379 0.01091 0.00076 0.00158 0.00005 10.2 0.3 PM017-TW1-18 1015.5 1365.7 0.74 0.04443 0.00228 0.01011 0.0005 0.00164 0.00003 10.5 0.17 PM017-TW1-19 1049.8 764.8 1.37 0.05234 0.00282 0.01112 0.00056 0.00156 0.00003 10.1 0.2 PM017-TW1-20 1100.6 1188.3 0.93 0.04102 0.00301 0.00896 0.00064 0.00159 0.00003 10.3 0.2 2917-TW1-1 1191.5 1067.2 1.12 0.05242 0.0022 0.01174 0.00046 0.0016 0.00003 10.3 0.17 2917-TW1-2 444.0 997.2 0.45 0.05003 0.0051 0.01053 0.00103 0.00154 0.00005 9.9 0.3 2917-TW1-3 853.7 845.8 1.01 0.05082 0.00338 0.01102 0.00069 0.00157 0.00004 10.1 0.24 2917-TW1-4 1232.3 2809.1 0.44 0.04733 0.0017 0.01066 0.00036 0.00155 0.00002 10 0.14 2917-TW1-5 757.4 948.0 0.80 0.04963 0.0037 0.01046 0.00074 0.00154 0.00004 66 0.25 2917-TW1-6 1201.3 2145.9 0.56 0.045 0.00237 0.01011 0.00051 0.0016 0.00003 10.3 0.17 2917-TW1-7 456.4 371.3 1.23 0.04957 0.00509 0.01086 0.00105 0.00166 0.00006 10.7 0.39 2917-TW1-8 833.7 1236.6 0.67 0.04583 0.0031 0.01047 0.00068 0.00165 0.00004 10.6 0.23 2917-TW1-9 1056.6 3024.0 0.35 0.04627 0.00173 0.01059 0.00038 0.00159 0.00002 10.2 0.14 2917-TW1-10 515.3 489.9 1.05 0.04618 0.00423 0.00995 0.00087 0.00159 0.00004 10.3 0.29 2917-TW1-11 1453.0 980.3 1.48 0.04119 0.00428 0.00936 0.00094 0.00161 0.00005 10.4 0.29 2917-TW1-12 979.0 5118.9 0.19 0.04783 0.00161 0.01073 0.00034 0.00169 0.00002 10.9 0.14 2917-TW1-13 702.0 1103.8 0.64 0.04706 0.00276 0.01005 0.00056 0.00155 0.00003 10 0.19 2917-TW1-14 499.0 1766.9 0.28 0.04415 0.00246 0.01022 0.00054 0.00165 0.00003 10.6 0.2 2917-TW1-15 586.7 438.0 1.34 0.0493 0.00456 0.01045 0.0009 0.00155 0.00005 10 0.35 2917-TW1-16 1167.3 886.6 1.32 0.04141 0.00307 0.009 0.00065 0.00158 0.00003 10.1 0.21 2917-TW1-17 395.1 528.5 0.75 0.056 0.00745 0.0118 0.00147 0.00154 0.00008 9.9 0.49 2917-TWI-18 555.0 543.7 1.02 0.0561 0.00585 0.01135 0.0011 0.00157 0.00006 10.1 0.4 2917-TW1-19 1445.7 1004.5 1.44 0.04308 0.0028 0.00972 0.00061 0.00162 0.00003 10.4 0.2 2917-TW1-20 1376.2 814.0 1.69 0.04637 0.004 0.00997 0.00083 0.00154 0.00004 10 0.26 PM005-TW1-1 1873.3 757.3 2.47 0.0473 0.0049 0.0111 0.0011 0.0017 0.0000 11.0 0.2 PM005-TW1-2 641.9 304.4 2.11 0.0792 0.0132 0.0177 0.0025 0.0018 0.0001 11.4 0.4 PM005-TW1-3 675.5 329.9 2.05 0.0367 0.0106 0.0076 0.0023 0.0017 0.0000 10.8 0.3 PM005-TW1-4 523.0 778.6 0.67 0.0340 0.0066 0.0085 0.0016 0.0018 0.0000 11.6 0.3 PM005-TW1-5 710.6 486.5 1.46 0.0513 0.0073 0.0124 0.0018 0.0018 0.0000 11.3 0.3 PM005-TW1-6 1639.7 926.7 1.77 0.0571 0.0063 0.0129 0.0014 0.0017 0.0000 10.8 0.2 PM005-TW1-7 3087.7 989.1 3.12 0.0421 0.0042 0.0100 0.0010 0.0017 0.0000 11.1 0.2 PM005-TW1-8 873.3 993.3 0.88 0.0472 0.0050 0.0109 0.0012 0.0017 0.0000 10.9 0.2 PM005-TW1-9 1023.6 904.3 1.13 0.0596 0.0057 0.0137 0.0013 0.0017 0.0000 10.9 0.2 PM005 -TW1-10 371.9 349.1 1.06 0.0965 0.0202 0.0272 0.0064 0.0018 0.0001 11.1 0.1 PM005 -TW1-11 773.4 777.6 0.99 0.1125 0.0126 0.0268 0.0028 0.0018 0.0000 11.1 0.3 PM005 -TW1-12 403.5 276.3 1.46 0.0088 0.0100 0.0021 0.0023 0.0017 0.0000 10.9 0.3 PM005-TW1-13 709.5 812.8 0.87 0.0572 0.0050 0.0131 0.0011 0.0017 0.0000 10.7 0.2 PM005-TW1-14 418.3 358.5 1.17 0.0505 0.0125 0.0106 0.0026 0.0016 0.0000 10.4 0.3 PM005-TW1-15 366.1 268.5 1.36 0.0385 0.0118 0.0095 0.0029 0.0018 0.0000 11.3 0.3 PM005-TW1-16 967.5 977.0 0.99 0.0434 0.0059 0.0104 0.0014 0.0018 0.0000 11.3 0.3 PM005-TW1-17 444.8 379.6 1.17 0.0682 0.0090 0.0158 0.0019 0.0018 0.0000 11.4 0.3 PM005-TW1-18 971.7 498.5 1.95 0.0552 0.0080 0.0126 0.0018 91000 0.0001 10.5 0.4 PM005-TW1-19 485.9 334.5 1.45 0.0989 0.0121 0.0228 0.0028 0.0017 0.0000 11.0 0.3 PM005-TW/1-20 508.3 435.3 1.17 0.0522 0.0095 0.0112 0.0020 0.0017 0.0001 10.9 0.4 -
[1] Armijo R, Tapponmier P, Mercier J L, et al. 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications[J]. Journal of Geophysical Research Solid Earth, 91: 13803−13872.
[2] Blisniuk P M, Hacker B R, Glodny J, et al. 2002. Normal faulting in central Tibet since al least 13.5 Myr ago[J]. Nature, 412: 628−632.
[3] Colem M, Hodges K. 1995. Evidence for Tiberan placeau uplift before 14 Myr ago from a new minimumage for east−west extension[J]. Nature, 374: 49−52.
[4] Hou Z Q, Gao Y F, Qu X M, et al. 2004. Origin of adakitic intrusive generated during mid−Miocene east−west extension in southern Tibet[J]. Earth and Planetary Science Letters, 220: 139−155. doi: 10.1016/S0012-821X(04)00007-X
[5] Ludwig K R. 2003. Isoplot/Ex Version 3.00: a Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Berkeley. CA, USA.
[6] Liu Y, Gao S, Hu Z, et al. 2010. Continental and oceanic crust recycling−induced melt−CPeridotite interactions in the Trans−North China orogen: U−Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51: 537−571.
[7] Wiedenbeck M, Aiie P, Corfu F, et al. 1995. Three natural zircon standards for U−Th−Pb, Lu−hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 19: 1−23.
[8] Wolff R, Hetzel R, Dunkl I, et al. 2019. High−angle normal faulting at the Tangra Yumco Graben ( Southern Tibet) since 15 Ma[J]. The Journal of Geology, 127(1): 15−36. doi: 10.1086/700406
[9] Zuo J M, Wu Z H, Ha G G, et al. 2021. Spatial variation of nearly NS−trending normal faulting in the southern Yadong−Gulu rift, Tibet: New constraints from the Chongba Yumtso fault, Duoqing Co graben[J]. Journal of Structural Geology, 144: 104256. doi: 10.1016/j.jsg.2020.104256
[10] 卞爽, 于志泉, 龚俊峰, 等. 2021. 青藏高原近南北向裂谷的时空分布特征及动力学机制[J]. 地质力学学报, 27(2): 1006−6616.
[11] 陈建林, 许继峰, 康志强, 等. 2006. 青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因[J]. 岩石学报, 22(3): 585−594.
[12] 丁林, 岳雅慧, 蔡福龙, 等. 2006. 西藏拉萨地块高镁超钾质火山岩及南北向裂谷形成时间和切割深度的制约[J]. 地质学报, 80(9): 1252−1261.
[13] 黄勇, 牟世勇, 卢定彪, 等. 2004. 藏北鱼鳞山地区鱼鳞山组火山岩的特征及时代探讨[J]. 贵州地质, 21(3): 148−151.
[14] 胡文洁, 田世洪, 杨竹森, 等. 2012. 拉萨地块西段中新世查加寺钾质火山岩岩石成因−岩石地球化学、年代学和Sr−Nd同位素约束[J]. 矿床地质, 31(4): 813−830.
[15] 哈广浩, 吴中海, 何林, 等. 2018. 藏南邛多江地堑的晚新生代沉积地层及对南北向裂谷形成时代的初步限定[J]. 地质学报, 92(10): 2051−2067.
[16] 李光明. 2000. 藏北羌塘地区新生代火山岩岩石特征及其成因探过[J]. 地质地球化学, 28(2): 38−44.
[17] 李才, 朱志勇, 迟效国. 等. 2002. 藏北改则地区鱼鳞山组火山岩同位素年代学[J]. 地质通报, 21(11): 732−734.
[18] 刘栋, 赵志丹, 朱弟成, 等. 2011. 青藏高原拉萨地块西部雄巴盆地后碰撞钾质−超钾质火山岩年代学与地球化学[J]. 岩石学报, 27(7): 2045−2059.
[19] 刘栋, 赵志丹, 朱弟成, 等. 2013. 青藏高原南部拉萨地块中新世超钾质岩石中的锆石记录[J]. 岩石学报, 29(11): 3703−3715.
[20] 刘登忠, 陶晓风, 马润则, 等. 2015. 中华人民共和国1∶ 25万措勤县幅(H45 C 001001)区域地质调查报告[M]. 北京: 地质出版社.
[21] 马润则, 刘登忠, 陶晓风, 等. 2002. 西藏措勤地区发现第三纪富钾岩浆岩[J]. 地质通报, 21(11): 728−731.
[22] 莫宣学, 赵志丹, 邓晋福, 等. 2003. 印度−亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 10(3): 135−148.
[23] 尼玛次仁, 王国灿, 顿多, 等. 2015. 西藏狮泉河地区高钾−钾玄质火山岩的岩石学、地球化学及锆石U−Pb年龄[J]. 地质通报, 34(9): 1671−2552.
[24] 潘桂棠, 李兴振, 王立全, 等. 2002. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 21(11): 701−707.
[25] 石和, 马润则, 刘登忠, 等. 2005. 西藏措勤地区的中新世布嘎寺组[J]. 成都理工大学学报: 自然科学版, 32(2): 173−176.
[26] 陶奎元. 2021. 火山岩相构造学[M]. 南京: 江苏凤凰科学技术出版社.
[27] 王保弟, 陈凌康, 许继峰, 等. 2011. 拉萨地块麻江地区具有“超钾质”成分的钾质火山岩的识别及成因[J]. 岩石学报, 27(6): 1662−1674.
[28] 谢国刚, 邹爱建, 袁建芽, 等. 2014. 中华人民共和国1∶ 25万措麦区幅(H4 C 002002)区域地质调查报告[M]. 北京: 地质出版社.
[29] 杨硕, 向树元, 张先, 等. 2016. 西藏仲巴地块加达钾质火山岩LA−ICP−MS锆石U−Pb年龄和地球化学特征[J]. 地质通报, 35(6): 1671−2552.
[30] 赵志丹, 莫宣学, Nomade Sebastien, 等. 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J]. 岩石学报, 22(4): 787−794.
[31] 张巨, 马润则, 岳相元, 等. 2011. 西藏措勤布嘎寺组中基性火山岩特征及成因[J]. 成都理工大学学报: 自然科学版, 38(2): 1671−9727.
[32] 张计东, 张振利, 魏文通, 等. 2015. 中华人民共和国1∶ 25万霍尔巴幅(H44 C 002004)、巴巴扎东幅(H45 C 003004)区域地质调查报告[M]. 北京: 地质出版社.
[33] 张振利, 张计东, 魏文通, 等. 2015. 中华人民共和国1∶ 25万亚热幅(H44 C 001003)、普兰县幅(H44 C 002003, 国内部分)区域地质调查报告[M]. 北京: 地质出版社.
[34] 张佳伟, 李汉敖, 张会平, 等. 2020. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 35(8): 848−862.
-