Stratigraphic sequence and tectonic-sedimentary evolution of Sinian-Cambrian boundary in Yangmu-Yandong area, Guangyuan, Sichuan Province
-
摘要:
绵阳−长宁拉张槽的形成机制及时间尚存在巨大争议,严重制约了灯影组油气勘探的部署。为更好地对拉张槽深水地层提供时代约束,深化拉张槽构造−沉积演化认识,基于露头描述、薄片观察、碳同位素测试,对广元地区4个露头剖面开展综合地层对比和沉积环境分析。岩石学及碳同位素特征表明,研究区实测4条野外露头剖面从下到上可划分为4个岩性段(Ⅰ ~ Ⅳ):岩性段Ⅰ为薄层泥质灰岩夹泥质白云岩条带,对应陡山沱组三段Shuram-Wonoka负偏段地层;岩性段Ⅱ以黑色页岩为代表,可对比陡山沱组四段;岩性段Ⅲ为块状白云岩−硅质岩序列,属于灯影组同期地层;岩性段Ⅳ以薄板状硅质岩为特征,相当于麦地坪组。其中,灯影组二段早期—麦地坪期,研究区从块状白云岩逐步过渡为薄板状硅质岩,见垮塌体及滑塌揉皱,指示台地转换为斜坡−盆地沉积环境。这种加深的沉积趋势与中上扬子台地相区变浅至暴露的过程完全相反,指示断裂活动影响下快速沉降的过程。
Abstract:The formation mechanism and time of the Mianyang-Changniang sag are still controversial, which significantly limit the petroleum exploration of the Dengying Formation. In order to provide a better time constraint on the deep-water strata in the Mianyang-Changning intracratonic sag and deepen the understanding of its tectonic-sedimentary evolution process, this study carries out comprehensive stratigraphic correlation and sedimentary environment analysis of four sections in Guangyuan area, based on outcrop description, thin section observation and carbon isotope analysis. The characteristics of petrology and carbon isotopes show that the four outcrop profiles in the study area can be divided into four lithologic units from bottom to top (namelyⅠ,Ⅱ,Ⅲ and Ⅳ). Lithologic unit Ⅰ is composed of thin-bedded argillaceous limestone intercalated with argillaceous dolomite band, which is equivalent to the 3rd Member of the Doushantuo Formation with the Shuram-Wonoka negative δ13C excursion. Lithologic unit Ⅱ is represented by black shale, corresponding to the 4rd Member of the Doushantuo Formation. Lithologic unit Ⅲ showing the transition from massive dolomite to chert, can be correlated with the Dengying Formation. Lithologic unit Ⅳ is marked by platy chert, which is equivalent to the Maidiping Formation. Of these, during the early stage of the second member of Dengying to Maidiping period, massive dolomite shifted to thin-bedded chert with slump breccias and fold deposited in the study area, indicating rapid evolution from carbonate platform to slope-basin depositional environment. This deepening depositional trend is opposite to the shallowing to exposure of the whole Middle-Upper Yangtze platform, indicative of rapid subsidence induced by extensional faulting.
-
-
图 3 广元与三峡、张家界地区震旦系—寒武系界线地层综合对比图(三斗坪据Ling et al., 2013修改,四方井据Chen et al., 2019修改,四都坪据Li et al., 2016; Ding et al., 2019修改)
Figure 3.
表 1 陈家乡及大滩剖面碳氧同位素测试结果
Table 1. Carbon and oxygen isotope test results of Chenjiaxiang and Datan sections
样品编号 深度/m 岩性 δ13CVPDB/‰ δ18OVPDB/‰ 样品编号 深度/m 岩性 δ13CVPDB/‰ δ18OVPDB/‰ 样品编号 深度/m 岩性 δ13CVPDB/‰ δ18OVPDB/‰ CJ-11-1B 6 泥质灰岩 −8.83 −11.67 CJ-19-6B 72.5 白云岩 0.72 3.91 DTC-24 36.5 泥质灰岩 −8.98 −11 CJ-11-2B 7 泥质灰岩 −9.62 −12.52 CJ-19-7B 77.3 白云岩 1.29 2.76 DTC-25 38.5 泥质灰岩 −8.42 −11.21 CJ-12-1B 10.8 泥质灰岩 −8.18 −12.47 CJ-20-1B 78.5 白云岩 −0.49 0.58 DTC-26 40.5 泥质灰岩 −7.45 −11.86 CJ-12-2B 12.6 泥质灰岩 −8.20 −11.89 CJ-20-2B 80.5 硅质白云岩 −2.99 −1.76 DTC-27 42.5 泥质灰岩 −8.52 −11.21 CJ-12-3B 14.3 泥质灰岩 −8.75 −11.34 CJ-20-3B 84.5 硅质白云岩 −3.69 −0.54 DTC-28 44.5 泥质灰岩 −9 −11.34 CJ-12-4B 16.5 泥质灰岩 −8.25 −11.14 CJ-20-4B 85.8 白云岩 −1.25 0.41 DTC-29 46.5 泥质灰岩 −8.3 −10.57 CJ-12-5B 23.5 泥质灰岩 −9.33 −12.87 CJ-20-5B 92.6 白云岩 −1.79 0.83 DT-1 48.5 泥质灰岩 −9.14 −10.16 CJ-12-6B 27.5 泥质灰岩 −9.51 −8.96 CJ-21-1B 94.45 硅质白云岩 −1.10 2.71 DT-2 49.5 泥质灰岩 −8.99 −9.98 CJ-12-7B 32.5 泥质灰岩 −8.12 −11.20 CJ-21-2B 95.85 硅质白云岩 −5.33 −2.23 DT-3 50.5 泥质灰岩 −9.21 −9.62 CJ-12-8B 36.7 泥质灰岩 −8.16 −10.86 CJ-21-3B 97.45 硅质白云岩 −9.73 −4.04 DT-4 51.5 泥质灰岩 −9.02 −9.8 CJ-13-1B 40.5 泥质灰岩 −8.19 −10.67 CJ-21-4B 98.45 硅质白云岩 −10.22 −4.39 DTB-1 57.6 白云岩 −3.99 −8.77 CJ-14-1B 44.7 泥质灰岩 −8.25 −10.78 CJ-21-5B 100.05 硅质白云岩 −9.52 3.62 DTB-2 58.6 白云岩 −3.56 −9.44 CJ-14-2B 48.5 泥质灰岩 −8.40 −10.26 CJ-21-6B 100.65 硅质白云岩 −10.66 3.66 DTB-3 59.1 白云岩 −3.7 −9.3 CJ-14-3B 49.3 泥质灰岩 −8.03 −10.31 CJ-21-7B 102.05 硅质白云岩 −8.65 1.10 DTB-4 59.6 白云岩 −3.94 −9.72 CJ-14-4B 51.9 泥质灰岩 −8.79 −9.83 CJ-21-8B 105.25 硅质白云岩 −11.66 3.62 DTB-5 60.7 白云岩 −4.4 −9.8 CJ-14-5B 53.1 泥质灰岩 −8.34 −9.80 CJ-21-9B 108.25 硅质白云岩 −11.89 −1.75 DTB-6 61.6 白云岩 −4.18 −0.53 CJ-14-6B 54.5 泥质灰岩 −8.68 −9.13 CJ-21-10B 109.45 硅质白云岩 −11.41 −5.11 DTB-7 62.3 白云岩 −3.4 −2.81 CJ-14-7B 56.9 泥质灰岩 −8.69 −9.21 CJ-21-11B 109.85 硅质白云岩 −11.96 −2.74 DTB-8 63 白云岩 −5.93 −5.56 CJ-14-8B 57.9 泥质灰岩 −8.84 −9.06 DTC-10 0.5 泥质灰岩 −10.3 −13.21 DTB-9 63.5 白云岩 −4.05 −3.18 CJ-15-1B 58.9 泥质灰岩 −8.88 −9.33 DTC-11 3 泥质灰岩 −9.98 −12.48 DTB-10 64.3 白云岩 −6.75 −10.04 CJ-16-1B 60.7 云质泥岩 −8.75 −3.71 DTC-12 6 泥质灰岩 −9.97 −12.71 DTB-11 64.6 白云岩 −2.67 −2.35 CJ-16-2B 61.3 云质泥岩 −8.45 −1.92 DTC-13 9 泥质灰岩 −9.61 −11.52 DTB-12 65.7 白云岩 −1.64 −5.65 CJ-16-3B 62.8 云质泥岩 −1.86 0.08 DTC-14 12 泥质灰岩 −9.69 −12.27 DTB-13 66.7 白云岩 −0.4 −2.8 CJ-17-1B 64.1 白云岩 −1.77 0.15 DTC-15 14.5 泥质灰岩 −9.59 −12.95 DTB-14 67 白云岩 −1.38 −0.42 CJ-17-2B 64.4 白云岩 −0.39 1.52 DTC-16 17.5 泥质灰岩 −9.56 −12.15 DTB-15 67.5 白云岩 −3.07 −0.62 CJ-17-3B 64.9 白云岩 −4.28 −5.04 DTC-17 20 泥质灰岩 −9.3 −12.92 DTB-16 68.8 硅质白云岩 −12.98 −4.46 CJ-18-1B 65.4 白云岩 −1.07 1.91 DTC-18 23 泥质灰岩 −9.24 −12.81 DTB-17 70.3 硅质白云岩 −11.86 −6.66 CJ-19-1B 67.9 白云岩 −0.65 0.92 DTC-19 25.5 泥质灰岩 −9.16 −12.66 DTB-18 72 硅质白云岩 −11.91 −7.42 CJ-19-2B 68 白云岩 −2.62 −2.99 DTC-20 28.5 泥质灰岩 −9.02 −12.43 DTB-19 73.2 硅质白云岩 −11.39 −5.37 CJ-19-3B 68.2 白云岩 −4.18 −0.49 DTC-21 30.5 泥质灰岩 −8.84 −11.07 DTB-20 74.7 硅质白云岩 −15.65 −7.29 CJ-19-4B 68.9 白云岩 −3.59 −1.21 DTC-22 32.5 泥质灰岩 −9.4 −10.5 DTB-21 76.7 硅质白云岩 −16.53 −5.44 CJ-19-5B 71.9 白云岩 −0.96 −0.52 DTC-23 34.5 泥质灰岩 −8.65 −10.77 -
[1] Bowring S A, Grotzinger J P, Condon D J, et al. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman[J]. American Journal of Science, 307(10): 1097−1145. doi: 10.2475/10.2007.01
[2] Calver C R. 2000. Isotope stratigraphy of the Ediacaran (Neoproterozoic Ⅲ) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification[J]. Precambrian Research, 100: 121−150. doi: 10.1016/S0301-9268(99)00072-8
[3] Chen C. Feng Q L. 2019. Carbonate carbon isotope chemostratigraphy and U-Pb zircon geochronology of the Liuchapo Formation in South China: Constraints on the Ediacaran-Cambrian boundary in deep-water sequences[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 535: 19361.
[4] Chen D Z, Zhou X Q, Fu Y, et al. 2015. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China[J]. Terra Nova, 27(1): 62−68. doi: 10.1111/ter.12134
[5] Derry L A. 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly[J]. Earth and Planetary Science Letters, 294: 152−162. doi: 10.1016/j.jpgl.2010.03.022
[6] Ding Y, Chen D Z, Zhou X Q, et al. 2019. Tectono-depositional pattern and evolution of the middle Yangtze Platform (South China) during the late Ediacaran[J]. Precambrian Research, 333: 105426. doi: 10.1016/j.precamres.2019.105426
[7] Ding Y, Li Z W, Liu S G, et al. 2021. Sequence stratigraphy and tectono-depositional evolution of a late Ediacaran epeiric platform in the upper Yangtze area, South China[J]. Precambrian Research, 354: 106077. doi: 10.1016/j.precamres.2020.106077
[8] Ding Y, Sun W, Liu S G, et al. 2022. Low oxygen levels with high redox heterogeneity in the late Ediacaran shallow ocean: Constraints from I/(Ca + Mg) and Ce/Ce* of the Dengying Formation, South China[J]. Geobiology, 20(6): 790−809.
[9] Guerroué E L, Allen P A, Cozzi A. 2006. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram Formation (Nafun Group, Oman)[J]. Precambrian Research, 146: 68−92. doi: 10.1016/j.precamres.2006.01.007
[10] Guerroué E L, Cozzi A. 2010. Veracity of Neoproterozoic negative C-isotope values: The termination of the Shuram negative excursion[J]. Gondwana Research, 17: 653−661. doi: 10.1016/j.gr.2009.11.002
[11] Jacobsen S B, Kaufman A J. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater[J]. Chemical Geology, 161: 37−57. doi: 10.1016/S0009-2541(99)00080-7
[12] Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 73: 27−49. doi: 10.1016/0301-9268(94)00070-8
[13] Kaufman A J, Jiang G Q, Christie-Blick N, et al. 2006. Stable isotope record of the terminal Neoproterozoic krol platform in the Lesser Himalayas of northern India[J]. Precambrian Research, 147: 156−185. doi: 10.1016/j.precamres.2006.02.007
[14] Kaufman A J, Corsetti F A, Varni M A. 2007. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA[J]. Chemical Geology, 237: 47−63. doi: 10.1016/j.chemgeo.2006.06.023
[15] Li C, Hardisty D S, Luo G, et al. 2017. Uncovering the spatial heterogeneity of Ediacaran carbon cycling[J]. Geobiology, 15(2):211-224.
[16] Li Z X, Li X H, Kinny P H, et al. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122: 85−109. doi: 10.1016/S0301-9268(02)00208-5
[17] Li W J, Chen J T, Wang L W, et al. 2019. Slump sheets as a record of regional tectonics and paleogeographic changes in South China[J]. Sedimentary Geology, 392: 105525. doi: 10.1016/j.sedgeo.2019.105525
[18] Ling H F, Chen X, Li D, et al. 2013. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 225: 110−127. doi: 10.1016/j.precamres.2011.10.011
[19] Lu M, Zhu M Y, Zhang J M, et al. 2013. The DOUNC Event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin[J]. Precambrian Research, 225: 86−109. doi: 10.1016/j.precamres.2011.10.018
[20] Melezhik V A, Roberts D, Fallick A E, et al. 2008. The Shuram–Wonoka event recorded in a high-grade metamorphic terran: insight from the Scandinavian Caledonides[J]. Geological Magazine, 145(2): 161−172.
[21] Melezhik V A, Pokrovsky B G, Fallick A E, et al. 2009. Constraints on 87Sr/86Sr of Late Ediacaran seawater: insight from Siberian high-Sr limestones[J]. Journal of the Geological Society, 166: 183−191. doi: 10.1144/0016-76492007-171
[22] Prave A R, Strachan R A, Fallick A E. 2009. Global C cycle perturbations recorded in marbles: a record of Neoproterozoic Earth history within the Dalradian succession of the Shetland Islands, Scotland[J]. Journal of the Geological Society, 166: 129−135. doi: 10.1144/0016-76492007-126
[23] Swart P K. 2015. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 62(5): 1233−1304. doi: 10.1111/sed.12205
[24] Vernhet P, Heubeck C, Zhu M Y, et al. 2006. Large-scale slope instability at the southern margin of the Ediacaran Yangtze platform (Hunan province, central China)[J]. Precambrian Research, 148: 32−44. doi: 10.1016/j.precamres.2006.03.009
[25] Wang X Q, Jiang G Q, Shi X Y, et al. 2016. Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China[J]. Precambrian Research, 273: 53−66. doi: 10.1016/j.precamres.2015.12.010
[26] Yang F L, Zhou X F, Peng Y X. 2019. Evolution of Neoproterozoic basins within the Yangtze Craton and its significance for oil and gas exploration in South China: An overview[J]. Precambrian Research, 337: 105563.
[27] Zhu M Y, Zhang J M, Yang A H. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 7−61.
[28] 杜金虎, 邹才能, 徐春春, 等. 2014. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 41(3): 268−277.
[29] 杜金虎, 汪泽成, 邹才能, 等. 2016. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 37(1): 1−16.
[30] 李智武, 冉波, 肖斌, 等. 2019. 四川盆地北缘震旦纪—早寒武世隆−坳格局及其油气勘探意义[J]. 地学前缘, 26(1): 59−85.
[31] 李忠权, 刘记, 李应, 等. 2015. 四川盆地震旦系威远—安岳拉张侵蚀槽特征及形成演化[J]. 石油勘探与开发, 42(1): 26−33.
[32] 李佐臣, 裴先治, 刘战庆, 等. 2011. 扬子地块西北缘后龙门山南华纪—早古生代沉积地层特征及其形成环境[J]. 地球科学与环境学报, 33(2): 117−124.
[33] 刘静江, 刘慧荣, 李文皓, 等. 2021. 四川盆地裂陷槽研究新进展——关于裂陷槽成因机制与形成时间的探讨[J]. 地质论评, 67(3): 767−786.
[34] 刘树根, 徐国盛, 徐国强, 等. 2004. 四川盆地天然气成藏动力学初探[J]. 天然气动力科学, 15(4): 323−330.
[35] 刘树根, 马永生, 蔡勋育, 等. 2009. 四川盆地震旦系下古生界天然气成藏过程和特征[J]. 成都理工大学学报(自然科学版), 36(4): 345−354.
[36] 刘树根, 孙玮, 罗志立, 等. 2013. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版), 40(5): 511−520.
[37] 刘树根, 王一刚, 孙玮, 等. 2016. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版), 43(1): 1−23.
[38] 刘树根, 刘殊, 孙玮, 等. 2018. 绵阳−长宁拉张槽北段构造−沉积特征[J]. 成都理工大学学报(自然科学版), 45(1): 1−13.
[39] 马奎, 文龙, 张本健, 等. 2022. 四川盆地德阳−安岳侵蚀裂陷槽分段性演化分析和油气勘探意义[J]. 石油勘探与开发, 49(2): 274−284.
[40] 汪泽成, 姜华, 王铜山, 等. 2014. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发, 41(3): 305−312.
[41] 汪泽成, 刘静江, 姜华, 等. 2019. 中—上扬子地区震旦纪陡山沱组沉积期岩相古地理及勘探意义[J]. 石油勘探与开发, 46(1): 39−51.
[42] 魏国齐, 杨威, 杜金虎, 等. 2015. 四川盆地震旦纪 — 早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 35(1): 24-35.
[43] 魏国齐, 王志宏, 李剑, 等. 2017. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 28(1): 1−13.
[44] 文龙, 罗冰, 钟原, 等. 2021. 四川盆地灯影期沉积特征及槽−台体系成因模式[J]. 成都理工大学学报(自然科学版), 48(5): 513−524.
[45] 杨爱华, 朱茂炎, 张俊明, 等. 2015. 扬子板块埃迪卡拉系(震旦系)陡山沱组层序地层划分与对比[J]. 古地理学报, 17(1): 1−20.
[46] 杨雨, 黄先平, 张健, 等. 2014. 四川盆地寒武系沉积前震旦系顶界岩溶地貌特征及其地质意义[J]. 天然气工业, 34(3): 38−43.
[47] 杨志如, 王学军, 冯许魁, 等. 2014. 川中地区前震旦系裂谷研究及其地质意义[J]. 天然气工业, 34(3): 80−85.
[48] 张玺华, 彭瀚霖, 文龙, 等. 2020. 四川盆地西北部灯影组深水沉积的发现及油气地质意义[J]. 天然气勘探与开发, 43(4): 10−21.
[49] 钟勇, 李亚林, 张晓斌, 等. 2013. 四川盆地下组合张性构造特征[J]. 成都理工大学学报(自然科学版), 40(5): 498−510.
[50] 周慧, 李伟, 张宝民, 等. 2015. 四川盆地震旦纪末期—寒武纪早期台盆的形成与演化[J]. 石油学报, 36(3): 310−323.
[51] 邹才能, 杜金虎, 徐春春, 等. 2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 41(3): 278−293.
-