松嫩平原齐齐哈尔地区拜泉县地表基质特征及其古环境恢复

邵兴坤, 侯红星, 任柄璋, 时凌峰, 詹泽东, 西广越, 李俊华, 曹龙宇, 高远. 2024. 松嫩平原齐齐哈尔地区拜泉县地表基质特征及其古环境恢复. 地质通报, 43(9): 1498-1514. doi: 10.12097/gbc.2023.08.039
引用本文: 邵兴坤, 侯红星, 任柄璋, 时凌峰, 詹泽东, 西广越, 李俊华, 曹龙宇, 高远. 2024. 松嫩平原齐齐哈尔地区拜泉县地表基质特征及其古环境恢复. 地质通报, 43(9): 1498-1514. doi: 10.12097/gbc.2023.08.039
SHAO Xingkun, HOU Hongxing, REN Bingzhang, SHI Lingfeng, ZHAN Zedong, XI Guangyue, LI Junhua, CAO Longyu, GAO Yuan. 2024. Sedimentary characteristics analysis and paleoenvironmental restoration of the ground substrate in Baiquan County, Qiqihar area, Songnen Plain. Geological Bulletin of China, 43(9): 1498-1514. doi: 10.12097/gbc.2023.08.039
Citation: SHAO Xingkun, HOU Hongxing, REN Bingzhang, SHI Lingfeng, ZHAN Zedong, XI Guangyue, LI Junhua, CAO Longyu, GAO Yuan. 2024. Sedimentary characteristics analysis and paleoenvironmental restoration of the ground substrate in Baiquan County, Qiqihar area, Songnen Plain. Geological Bulletin of China, 43(9): 1498-1514. doi: 10.12097/gbc.2023.08.039

松嫩平原齐齐哈尔地区拜泉县地表基质特征及其古环境恢复

  • 基金项目: 中国地质调查局项目《松嫩平原齐齐哈尔地区黑土地地表基质调查》(编号:DD20220855)
详细信息
    作者简介: 邵兴坤(1985− ),男,硕士,高级工程师,从事地表基质调查和区域地质矿产调查。E-mail:740703590@qq.com
    通讯作者: 侯红星(1975− ),男,博士,正高级工程师,从事区域地质矿产调查和自然资源调查。E−mail:wjhjhhx@163.com
  • 中图分类号: P622+.1; P96

Sedimentary characteristics analysis and paleoenvironmental restoration of the ground substrate in Baiquan County, Qiqihar area, Songnen Plain

More Information
  • 地表基质是自然资源管理的全新概念,是支撑孕育各类自然资源的基础物质。加强地表基质沉积环境分析和古环境恢复对研究其形成机制具有重要意义。通过对松嫩平原拜泉地区50 m以浅地表基质沉积特征和沉积环境剖析,并结合全芯粘土矿物、碳酸盐、磁化率、碳元素数据分析,认为研究区垂向上分布了16层土质基质,由深至浅呈现湖相沉积→陆域风成相→草甸相过渡沉积演化特点,深层湖相沉积具有滨湖相沉积、堤岸相沉积、滨湖相多旋回沉积特点;其中深层滨湖相和堤岸相沉积物形成于寒冷极干燥环境,中深层湖相沉积物形成于温暖湿润环境,浅表层草甸相和风成相沉积物形成于较干冷环境。综合前人资料和14C、光释光、ESR测年结果,将研究区沉积演化阶段划分为早更新世晚期—中更新世早期干冷沉积阶段、中更新世中晚期温暖的湖相沉积阶段、晚更新世—早全新世风成黄土沉积阶段、中晚全新世以来黑土沉积阶段。

  • 加载中
  • 图 1  拜泉县地表基质垂向构型及BQZK05位置图

    Figure 1. 

    图 2  BQZK05岩性沉积相图

    Figure 2. 

    图 3  BQZK05粘土矿物含量对比图

    Figure 3. 

    图 4  BQZK05碳酸盐和磁化率含量对比图

    Figure 4. 

    图 5  BQZK05全碳(TC)和有机碳(Corg)含量对比图

    Figure 5. 

    图 6  BQZK05 ESR剂量响应曲线

    Figure 6. 

    表 1  BQZK05粘土矿物分析测试结果

    Table 1.  Analysis and testing results of clay minerals in BQZK05 soil core

    样品名称 粘土矿物相对含量/% 混层比/% 采样深度/m 沉积相 样品名称 粘土矿物相对含量/% 混层比/% 采样深度/m 沉积相
    S I/S It Kao I/S It S S I/S It Kao I/S It S
    BQZK05—N1 92 5 3 55 90 2 0.5 黑色粘质壤土,草甸相 BQZK05—N26 97 2 1 25.5 黑色粉砂质粘土,浅
    湖相
    BQZK05—N2 93 4 3 55 91 2 1.5 (暗)黄色壤质粘土,风成相;呈现出干湿交替的沉积环境 BQZK05—N27 96 2 2 26.5
    BQZK05—N3 93 5 2 50 91 2 2.5 BQZK05—N28 97 2 1 27.5
    BQZK05—N4 94 4 2 55 92 2 3.5 BQZK05—N29 98 1 1 28.5
    BQZK05—N5 94 5 1 60 92 2 4.5 BQZK05—N30 97 2 1 29.5
    BQZK05—N6 97 3 5.5 暗绿色粘土,滨湖相 BQZK05—N31 97 2 1 30.5
    BQZK05—N7 99 1 6.5 BQZK05—N32 97 2 1 31.5
    BQZK05—N8 99 1 7.5 绿灰色粘土,滨湖相 BQZK05—N33 96 2 2 32.5
    BQZK05—N9 98 2 8.5 灰色壤质粘土,滨湖相 BQZK05—N34 97 2 1 33.5
    BQZK05—N10 98 2 9.5 青灰色粘土,滨湖相 BQZK05—N35 98 1 1 34.5
    BQZK05—N11 95 3 2 10.5 浅青灰色粘土,滨湖相 BQZK05—N36 96 3 1 35.5
    BQZK05—N12 96 3 1 11.5 BQZK05—N37 98 1 1 36.5 青灰色砂质粘土,滨
    湖相
    BQZK05—N13 95 3 2 12.5 BQZK05—N38 98 1 1 37.5
    BQZK05—N14 96 3 1 13.5 浅灰黑色粘土,滨湖相 BQZK05—N39 96 2 2 38.5 深青灰色粘质砂土,滨湖相
    BQZK05—N15 96 2 2 14.5 BQZK05—N40 96 2 2 39.5
    BQZK05—N16 96 3 1 15.5 灰黑色粘土,浅湖相 BQZK05—N41 97 2 1 40.5
    BQZK05—N17 98 1 1 16.5 BQZK05—N42 94 4 2 41.5
    BQZK05—N18 97 2 1 17.5 BQZK05—N43 93 5 2 65 92 1 42.5 砖红色粘土,氧化环境,堤岸相
    BQZK05—N19 97 2 1 18.5 青灰色粘土与砂质粘土互层,浅湖相 BQZK05—N44 92 6 2 65 91 1 43.5
    BQZK05—N20 97 2 1 19.5 BQZK05—N45 93 5 2 65 92 1 44.5
    BQZK05—N21 96 2 2 20.5 BQZK05—N46 93 5 2 65 92 1 45.5 青灰色粉砂质粘土,滨湖相
    BQZK05—N22 96 2 2 21.5 BQZK05—N47 89 8 3 65 88 1 46.5
    BQZK05—N23 97 2 1 22.5 BQZK05—N48 92 5 3 65 91 1 47.5
    BQZK05—N24 97 2 1 23.5 BQZK05—N49 84 13 3 55 82 2 48.5
    BQZK05—N25 97 1 2 24.5 黑色粉砂质粘土,浅湖相 BQZK05—N50 88 9 3 50 86 2 49.5
      注:S—蒙脱石;It—伊利石;I/S—伊蒙混层;Kao—高岭石
    下载: 导出CSV

    表 2  BQZK05粘土矿物(S+I/S)/(It+C)值

    Table 2.  Clay mineral (S+I/S)/(It+C) value of BQZK05 soil core

    深度范围/m沉积相(S+I/S)/(It+C)平均值土质类型
    0~1草甸相22.48黑色壤土
    1~5风成相黄色壤质粘土
    5~42湖相55.36青灰色砂质粘土
    42~44.7堤岸相16.78红色粘土
    44.7~50滨湖相8.12青灰色粉砂质粘土
    下载: 导出CSV

    表 3  BQZK05碳酸盐和磁化率分析测试结果

    Table 3.  Analysis and test results of carbonate and magnetic susceptibility of BQZK05 soil core

    序号 样品野外编号 取样深度/m 碳酸盐含量/% 容积磁化率/
    10−3SI
    序号 样品野外编号 取样
    深度/m
    碳酸盐含量/% 容积磁化率/
    10−3SI
    1 BQZK05—T1 0 0.08187 0.0187 120 BQZK05—T127 25.2 0.05718 0.0189
    2 BQZK05—T2 0.2 0.09452 0.0242 121 BQZK05—T129 25.6 0.04858 0.0113
    3 BQZK05—T3 0.4 0.08037 0.021 122 BQZK05—T130 25.8 0.0474 0.0121
    4 BQZK05—T4 0.6 0.07445 0.0154 123 BQZK05—T131 26 0.03968 0.0156
    5 BQZK05—T5 0.8 0.07248 0.0187 124 BQZK05—T132 26.2 0.06624 0.0265
    6 BQZK05—T6 1 0.06753 0.0267 125 BQZK05—T133 26.4 0.07414 0.0136
    7 BQZK05—T7 1.2 0.07092 0.0265 126 BQZK05—T134 26.6 0.04965 0.0117
    8 BQZK05—T8 1.4 0.06307 0.0278 127 BQZK05—T135 26.8 0.09577 0.0118
    9 BQZK05—T9 1.6 0.07214 0.0171 128 BQZK05—T136 27 0.04623 0.0162
    10 BQZK05—T10 1.8 0.0715 0.026 129 BQZK05—T137 27.2 0.04147 0.0119
    11 BQZK05—T11 2 0.08178 0.0258 130 BQZK05—T138 27.4 0.04868 0.0134
    12 BQZK05—T12 2.2 0.0742 0.0312 131 BQZK05—T139 27.6 0.08306 0.0147
    13 BQZK05—T13 2.4 0.07223 0.0385 132 BQZK05—T141 28 0.04974 0.0138
    14 BQZK05—T15 2.8 0.08766 0.0335 133 BQZK05—T142 28.2 0.04841 0.0183
    15 BQZK05—T16 3 0.07613 0.0221 134 BQZK05—T143 28.4 0.04953 0.0133
    16 BQZK05—T17 3.2 0.07624 0.0324 135 BQZK05—T144 28.6 0.0495 0.0213
    17 BQZK05—T18 3.4 0.06809 0.0251 136 BQZK05—T145 28.8 0.03628 0.0151
    18 BQZK05—T19 3.6 0.04993 0.0253 137 BQZK05—T146 29 0.0318 0.0144
    19 BQZK05—T20 3.8 0.0615 0.0288 138 BQZK05—T147 29.2 0.04972 0.013
    20 BQZK05—T21 4 0.06532 0.0198 139 BQZK05—T148 29.4 0.07752 0.0144
    21 BQZK05—T22 4.2 0.05669 0.0215 140 BQZK05—T149 29.6 0.07143 0.0336
    22 BQZK05—T23 4.4 0.06446 0.0218 141 BQZK05—T150 29.8 0.05256 0.0094
    23 BQZK05—T24 4.6 0.06623 0.0179 142 BQZK05—T151 30 0.03769 0.0159
    24 BQZK05—T25 4.8 0.05216 0.0193 143 BQZK05—T152 30.2 0.03401 0.0159
    25 BQZK05—T26 5 0.06994 0.0196 144 BQZK05—T153 30.4 0.03096 0.0154
    26 BQZK05—T27 5.2 0.08359 0.0157 145 BQZK05—T154 30.6 0.03802 0.0105
    27 BQZK05—T28 5.4 0.08037 0.013 146 BQZK05—T155 30.8 0.03846 0.0153
    28 BQZK05—T29 5.6 0.08308 0.0123 147 BQZK05—T156 31 0.04695 0.0198
    29 BQZK05—T30 5.8 0.07121 0.011 148 BQZK05—T157 31.2 0.03949 0.0133
    30 BQZK05—T31 6 0.08116 0.0079 149 BQZK05—T158 31.4 0.03893 0.024
    31 BQZK05—T32 6.2 0.08696 0.0047 150 BQZK05—T159 31.6 0.05506 0.0135
    32 BQZK05—T33 6.4 0.10246 0.0092 151 BQZK05—T160 31.8 0.03627 0.0142
    33 BQZK05—T34 6.6 0.10174 0.0104 152 BQZK05—T161 32 0.05932 0.0171
    34 BQZK05—T35 6.8 0.1125 0.0097 153 BQZK05—T162 32.2 0.03907 0.0208
    35 BQZK05—T36 7 0.12154 0.0132 154 BQZK05—T163 32.4 0.04404 0.0169
    36 BQZK05—T37 7.2 0.0765 0.0145 155 BQZK05—T164 32.6 0.05348 0.014
    37 BQZK05—T38 7.4 0.07269 0.0163 156 BQZK05—T165 32.8 0.05706 0.0073
    38 BQZK05—T39 7.6 0.0763 0.0123 157 BQZK05—T166 33 0.04802 0.0187
    39 BQZK05—T40 7.8 0.06793 0.0153 158 BQZK05—T167 33.2 0.04162 0.0143
    40 BQZK05—T42 8.2 0.04926 0.0149 159 BQZK05—T168 33.4 0.09873 0.0205
    41 BQZK05—T43 8.4 0.05867 0.016 160 BQZK05—T169 33.6 0.04872 0.013
    42 BQZK05—T44 8.6 0.05875 0.0146 161 BQZK05—T170 33.8 0.0423 0.0109
    43 BQZK05—T45 8.8 0.04094 0.0132 162 BQZK05—T171 34 0.04282 0.0101
    44 BQZK05—T46 9 0.05074 0.0163 163 BQZK05—T172 34.2 0.05058 0.0146
    45 BQZK05—T47 9.2 0.06483 0.0082 164 BQZK05—T173 34.4 0.03251 0.0174
    46 BQZK05—T48 9.4 0.06191 0.0099 165 BQZK05—T174 34.6 0.05292 0.0116
    47 BQZK05—T49 9.6 0.03686 0.0138 166 BQZK05—T175 34.8 0.07484 0.0113
    48 BQZK05—T53 10.4 0.05287 0.0145 167 BQZK05—T176 35 0.05563 0.0108
    49 BQZK05—T54 10.6 0.05241 0.016 168 BQZK05—T177 35.2 0.03746 0.0134
    50 BQZK05—T55 10.8 0.05353 0.0139 169 BQZK05—T178 35.4 0.06499 0.0157
    51 BQZK05—T56 11 0.03067 0.0167 170 BQZK05—T179 35.6 0.05974 0.0158
    52 BQZK05—T57 11.2 0.03187 0.0138 171 BQZK05—T180 35.8 0.04731 0.0121
    53 BQZK05—T58 11.4 0.04093 0.0139 172 BQZK05—T181 36 0.0497 0.0204
    54 BQZK05—T59 11.6 0.05034 0.0128 173 BQZK05—T182 36.2 0.06745 0.0141
    55 BQZK05—T60 11.8 0.04718 0.014 174 BQZK05—T183 36.4 0.0022 0.022
    56 BQZK05—T61 12 0.03255 0.0156 175 BQZK05—T184 36.6 0.07237 0.0189
    57 BQZK05—T62 12.2 0.04645 0.0138 176 BQZK05—T185 36.8 0.08179 0.0187
    58 BQZK05—T63 12.4 0.03239 0.0063 177 BQZK05—T187 37.2 0.08495 0.0171
    59 BQZK05—T64 12.6 0.04691 0.0153 178 BQZK05—T188 37.4 0.04532 0.0176
    60 BQZK05—T65 12.8 0.05046 0.0142 179 BQZK05—T189 37.6 0.04167 0.0191
    61 BQZK05—T66 13 0.03747 0.0156 180 BQZK05—T190 37.8 0.04172 0.0132
    62 BQZK05—T67 13.2 0.03747 0.0154 181 BQZK05—T191 38 0.04143 0.0148
    63 BQZK05—T68 13.4 0.0486 0.0165 182 BQZK05—T192 38.2 0.07402 0.0133
    64 BQZK05—T69 13.6 0.05192 0.0119 183 BQZK05—T193 38.4 0.13072 0.0112
    65 BQZK05—T70 13.8 0.03571 0.0165 184 BQZK05—T194 38.6 0.04932 0.0083
    66 BQZK05—T71 14 0.04609 0.0134 185 BQZK05—T195 38.8 0.04161 0.0116
    67 BQZK05—T72 14.2 0.04325 0.014 186 BQZK05—T196 39 0.03458 0.0207
    68 BQZK05—T73 14.4 0.03928 0.0134 187 BQZK05—T197 39.2 0.04069 0.0077
    69 BQZK05—T74 14.6 0.04318 0.0148 188 BQZK05—T198 39.4 0.06651 0.0063
    70 BQZK05—T76 15 0.03728 0.0158 189 BQZK05—T199 39.6 0.0362 0.0122
    71 BQZK05—T77 15.2 0.02712 0.0122 190 BQZK05—T200 39.8 0.03146 0.0123
    72 BQZK05—T78 15.4 0.01563 0.0145 191 BQZK05—T201 40 0.03679 0.0139
    73 BQZK05—T79 15.6 0.01494 0.0168 192 BQZK05—T202 40.2 0.03789 0.0114
    74 BQZK05—T80 15.8 0.03748 0.0159 193 BQZK05—T203 40.4 0.03663 0.0168
    75 BQZK05—T81 16 0.04136 0.0124 194 BQZK05—T204 40.6 0.03444 0.0185
    76 BQZK05—T82 16.2 0.03769 0.0126 195 BQZK05—T205 40.8 0.03037 0.0155
    77 BQZK05—T83 16.4 0.06501 0.0165 196 BQZK05—T206 41 0.03008 0.0176
    78 BQZK05—T84 16.6 0.04946 0.0118 197 BQZK05—T207 41.2 0.02439 0.0135
    79 BQZK05—T85 16.8 0.03919 0.0172 198 BQZK05—T208 41.4 0.02825 0.0348
    80 BQZK05—T86 17 0.0468 0.0142 199 BQZK05—T209 41.6 0.04408 0.0183
    81 BQZK05—T87 17.2 0.05327 0.012 200 BQZK05—T210 41.8 0.04371 0.0185
    82 BQZK05—T88 17.4 0.03888 0.0122 201 BQZK05—T213 42.4 0.12473 0.0224
    83 BQZK05—T89 17.6 0.04577 0.0131 202 BQZK05—T214 42.6 0.18772 0.0293
    84 BQZK05—T90 17.8 0.05091 0.0196 203 BQZK05—T216 43 0.06943 0.0867
    85 BQZK05—T91 18 0.05431 0.0152 204 BQZK05—T217 43.2 0.06006 0.0358
    86 BQZK05—T92 18.2 0.02718 0.0149 205 BQZK05—T218 43.4 0.04901 0.0404
    87 BQZK05—T93 18.4 0.04529 0.0197 206 BQZK05—T219 43.6 0.04772 0.0431
    88 BQZK05—T94 18.6 0.02358 0.0104 207 BQZK05—T220 43.8 0.0698 0.0468
    89 BQZK05—T95 18.8 0.03307 0.0122 208 BQZK05—T221 44 0.07933 0.0358
    90 BQZK05—T96 19 0.02473 0.0122 209 BQZK05—T222 44.2 0.06452 0.043
    91 BQZK05—T97 19.2 0.03255 0.0071 210 BQZK05—T223 44.4 0.07757 0.0419
    92 BQZK05—T98 19.4 0.03242 0.0129 211 BQZK05—T224 44.6 0.0824 0.034
    93 BQZK05—T99 19.6 0.04491 0.013 212 BQZK05—T225 44.8 0.10504 0.0347
    94 BQZK05—T100 19.8 0.04137 0.0132 213 BQZK05—T226 45 0.08475 0.0247
    95 BQZK05—T101 20 0.03135 0.0139 214 BQZK05—T227 45.2 0.09417 0.026
    96 BQZK05—T102 20.2 0.03442 0.0164 215 BQZK05—T228 45.4 0.0996 0.0255
    97 BQZK05—T103 20.4 0.04975 0.0194 216 BQZK05—T229 45.6 0.07424 0.0258
    98 BQZK05—T104 20.6 0.03728 0.0168 217 BQZK05—T230 45.8 0.09405 0.0211
    99 BQZK05—T105 20.8 0.05229 0.0137 218 BQZK05—T231 46 0.08936 0.0145
    100 BQZK05—T106 21 0.05825 0.0165 219 BQZK05—T232 46.2 0.0861 0.0201
    101 BQZK05—T107 21.2 0.06061 0.0117 220 BQZK05—T233 46.4 0.07394 0.0138
    102 BQZK05—T108 21.4 0.0646 0.0149 221 BQZK05—T234 46.6 0.08508 0.0138
    103 BQZK05—T109 21.6 0.05405 0.0136 222 BQZK05—T235 46.8 0.08133 0.016
    104 BQZK05—T110 21.8 0.06544 0.0137 223 BQZK05—T236 47 0.07195 0.014
    105 BQZK05—T111 22 0.0668 0.0182 224 BQZK05—T237 47.2 0.07466 0.0107
    106 BQZK05—T112 22.2 0.05949 0.0169 225 BQZK05—T238 47.4 0.08267 0.015
    107 BQZK05—T113 22.4 0.05098 0.0189 226 BQZK05—T239 47.6 0.08179 0.0149
    108 BQZK05—T114 22.6 0.05765 0.0155 227 BQZK05—T240 47.8 0.08994 0.0105
    109 BQZK05—T115 22.8 0.05417 0.0236 228 BQZK05—T241 48 0.08806 0.0135
    110 BQZK05—T116 23 0.0487 0.0231 229 BQZK05—T242 48.2 0.10138 0.0099
    111 BQZK05—T117 23.2 0.04359 0.0128 230 BQZK05—T243 48.4 0.26506 0.0133
    112 BQZK05—T118 23.4 0.0497 0.0148 231 BQZK05—T244 48.6 0.155 0.0112
    113 BQZK05—T119 23.6 0.039 0.0152 232 BQZK05—T245 48.8 0.17682 0.0152
    114 BQZK05—T120 23.8 0.05505 0.0545 233 BQZK05—T246 49 0.17081 0.0098
    115 BQZK05—T121 24 0.05352 0.0099 234 BQZK05—T247 49.2 0.1916 0.0092
    116 BQZK05—T122 24.2 0.05181 0.0325 235 BQZK05—T248 49.4 0.26623 0.0088
    117 BQZK05—T124 24.6 0.03804 0.0143 236 BQZK05—T249 49.6 0.09292 0.0139
    118 BQZK05—T125 24.8 0.05217 0.0134 237 BQZK05—T250 49.8 0.11584 0.0123
    119 BQZK05—T126 25 0.04342 0.0164
    下载: 导出CSV

    表 4  BQZK05有机碳和全碳分析测试结果

    Table 4.  Organic carbon and total carbon analysis test results of BQZK05 soil core

    样品编号采样深度/mTC/%Corg/%样品编号采样深度/mTC/%Corg/%
    BQZK05—H1—10.251.391.26BQZK05—H12-425.750.660.64
    BQZK05—H1—20.751.821.68BQZK05—H12—526.250.580.57
    BQZK05—H2—11.250.540.54BQZK05—H12—626.751.21.03
    BQZK05—H2—21.750.480.47BQZK05—H12—727.250.740.72
    BQZK05—H2—32.250.340.33BQZK05—H12—827.750.290.27
    BQZK05—H2—42.8250.310.31BQZK05—H12—928.250.330.28
    BQZK05—H3—13.4250.40.39BQZK05—H12—1028.750.30.3
    BQZK05—H3—23.950.320.31BQZK05—H12—1129.250.260.25
    BQZK05—H3—34.60.340.33BQZK05—H12—1229.750.310.3
    BQZK05—H4—15.250.210.21BQZK05—H12—1330.250.810.75
    BQZK05—H4—25.70.120.098BQZK05—H12—1430.750.830.76
    BQZK05—H5—16.250.0750.059BQZK05—H12—1531.250.410.4
    BQZK05—H5—26.850.0880.072BQZK05—H12—1631.751.981.76
    BQZK05—H6—17.40.260.25BQZK05—H12—1732.250.890.74
    BQZK05—H6—280.20.2BQZK05—H12—1832.750.580.57
    BQZK05—H6—38.60.120.11BQZK05—H12—1933.250.770.67
    BQZK05—H7—19.350.170.16BQZK05—H12—2033.750.860.77
    BQZK05—H8—110.070.110.096BQZK05—H12—2134.250.630.62
    BQZK05—H8—210.610.0940.082BQZK05—H12—2234.750.730.68
    BQZK05—H8—311.150.10.09BQZK05—H12—2335.250.630.61
    BQZK05—H8—411.690.110.097BQZK05—H12—2435.70.660.65
    BQZK05—H8—512.230.130.11BQZK05—H13—136.20.190.15
    BQZK05—H9—112.7150.150.13BQZK05—H13—236.750.130.1
    BQZK05—H9—213.1450.180.17BQZK05—H13—337.250.150.1
    BQZK05—H9—313.5750.190.18BQZK05—H13—437.750.130.09
    BQZK05—H9—414.0050.210.19BQZK05—H13—538.3751.190.098
    BQZK05—H9—514.4350.220.21BQZK05—H14—139.1250.170.075
    BQZK05—H9—614.8250.260.25BQZK05—H14—239.750.150.077
    BQZK05—H10—115.290.220.21BQZK05—H14—340.250.0610.057
    BQZK05—H10—215.820.250.23BQZK05—H14—440.750.0910.078
    BQZK05—H10—316.30.160.15BQZK05—H14—541.250.0990.078
    BQZK05—H10—416.780.180.17BQZK05—H14—641.750.0560.05
    BQZK05—H10—517.260.160.14BQZK05—H15—142.251.10.097
    BQZK05—H10—617.750.160.16BQZK05—H15—242.752.080.078
    BQZK05—H11—118.250.150.15BQZK05—H15—343.250.40.12
    BQZK05—H11—218.750.170.17BQZK05—H15—443.750.350.14
    BQZK05—H11—319.250.190.18BQZK05—H15—544.350.380.11
    BQZK05—H11—419.750.160.16BQZK05—H16—145.10.430.14
    BQZK05—H11—520.250.210.2BQZK05—H16—245.750.520.13
    BQZK05—H11—620.750.190.18BQZK05—H16—346.250.580.18
    BQZK05—H11—721.250.190.18BQZK05—H16—446.750.680.18
    BQZK05—H11—821.750.240.22BQZK05—H16—547.250.830.27
    BQZK05—H11—922.250.240.23BQZK05—H16—647.750.670.2
    BQZK05—H11—1022.750.260.25BQZK05—H16—748.252.320.36
    BQZK05—H11—1123.350.260.25BQZK05—H16—848.752.060.4
    BQZK05—H12—124.10.330.32BQZK05—H16—949.151.530.087
    BQZK05—H12—224.750.410.41BQZK05—H16—1049.451.390.094
    BQZK05—H12—325.250.260.25BQZK05—H16—1149.82.290.11
    下载: 导出CSV

    表 5  BQZK05 ESR分析测试结果

    Table 5.  ESR analysis test results of BQZK05 soil core

    野外编号 样品物质 深度/m U/10−6 Th/10−6 K/% 含水量/% 等效剂量/Gy 剂量率/(Gy·ka−1) 年龄/Ka
    BQZK05—G07 粘土 23.7 2.24±0.09 13.1±0.26 1.40±0.06 16±5 795±102 2.32±0.12 343±44
    BQZK05—G08 粉砂质粘土 28.30 2.09±0.08 14.2±0.28 1.29±0.05 13±5 1179±162 2.37±0.12 498±68
    BQZK05—G09 砂质粘土 36.47 1.31±0.05 16.1±0.32 0.79±0.03 17±5 1185±189 1.81±0.09 653±104
    BQZK05—G10 砂质粘土 38.72 1.97±0.08 17.6±0.35 1.88±0.08 11±5 2198±277 3.12±0.16 705±89
    BQZK05—G11 粘土 43.15 1.50±0.06 16.4±0.33 2.28±0.09 18±5 2163±302 2.98±0.15 727±101
    BQZK05—G12 粉砂质泥岩 46.4 1.99±0.08 15.4±0.31 2.34±0.09 15±5 3739±508 3.19±0.16 1172±159
      注:样品符合 ESR 测年要求,测量信号较好,年龄结果误差小于 20%
    下载: 导出CSV

    表 6  BQZK05光释光测年结果

    Table 6.  Photoluminescence dating results of BQZK05 soil core

    野外编号深度/m测试矿物(Q/KF)粒径含水量/%U/10−6Th//10−6K/%环境剂量率/(Gy·ka−1等效剂量/Gy年龄/ka
    BQZK05—G021.4KF63-90252.7±0.113.1±0.52.1±0.13.9±0.2279.1±6.471.4±3.8
    BQZK05—G033.6KF63-90272.6±0.113.6±0.52.1±0.13.8±0.2837±35220±14
    下载: 导出CSV

    表 7  BQZK05加速器质谱(AMS)14C年龄测试结果

    Table 7.  Accelerator mass spectrometry (AMS) 14C age test results for BQZK05 soil core

    样品原编号 采样深度/m 样品 14C年龄/a BP 距离2023年/a
    BQZK05—C14—1 0.20 黑色粘质壤土 5665±30 5738±30
    BQZK05—C14—2 0.40 黑色粘质壤土 940±20 1013±20
    BQZK05—C14—3 0.60 黑色粘质壤土 3190±30 3263±30
      注:所用14C半衰期为5568年,14C年龄BP为距1950年的年代
    下载: 导出CSV
  • [1]

    Chen L, Sun Y G, Shang X Y, et al. 2022. Geological survey method for the ground substrate survey of natural resource: Taking Zhangbei demonstration zone as an example[J]. Henan Science and Technology, 41(21): 99−102(in Chinese with English abstract).

    [2]

    Chen P, Hou H X, Ma J C, et al. 2023. Investigation and research idea on black soil surface matrix in low mountain and hilly regions: A case study of Zhalantun area[J]. Natural Resource Economics of China, 81(9): 81−89(in Chinese with English abstract).

    [3]

    Fang X M, Galy A, Yang Y B, et al. 2019. Paleogene global cooling—induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau[J]. Geology, 47(10): 992−996. doi: 10.1130/G46422.1

    [4]

    Fu J Y, Li Y C, Zhao C J, et al. 2018. Geotechnical map of Northeast China (1∶1.5 million scale)[M]. Beijing: Geological Publishing House(in Chinese).

    [5]

    Ge L S, Yang G C. 2020. New field of Natural resources survey and monitoring: Ground substrate survey[J]. Natural Resource Economics of China, 33(9): 4−11,67(in Chinese with English abstract).

    [6]

    Hao A B, Yin Z Q, Peng L, et al. 2020. A discussion of the classification of natural resources based on the combination of academic−legal principles and management[J]. Hydrogeology and Engineering Geology, 47(6): 1−7(in Chinese with English abstract).

    [7]

    Hou H X, Lu M, Qin T, et al. 2024. Methodology for surface matrix investigation[M]. Beijing: China University of Geosciences Press: 6. (in Chinese).

    [8]

    Hou H X, Ge L S, Sun X, et al. 2022. A study on the application of ground substrate in the survey and evaluation of China's black soil resources: Based on ground substrate survey in Baoqing, Heilongjiang Province[J]. Journal of Natural Resources, 37(9): 2264−2276(in Chinese with English abstract). doi: 10.31497/zrzyxb.20220905

    [9]

    Hou H X, Zhang S J, Lu M, et al. 2021. Technology and method of the ground substrate layer survey of natural resources: Taking Baoding area as an example[J]. Northwestern Geology, 54(3): 277−288(in Chinese with English abstract).

    [10]

    Hou H X, Ge L S, Sun X, et al. 2021. Discussion on the content and elements attribute index system of surface matrix survey[J]. Natural Science, 9(4): 433−442(in Chinese with English abstract).

    [11]

    Hu B, Zhang C X, Wu H B, et al. 2019. Clay mineralogy of an Eocene fluvial−lacustrine sequence in Xining Basin, Northwest China, and its paleoclimatic implications[J]. Scientia Sinica Terrae, 49(3): 569−583(in Chinese with English abstract). doi: 10.1360/N072018-00101

    [12]

    Jia L, Liu H, Ouyang Y, et al. 2022. Division scheme of surface substrate mapping units of mountainous−hilly area in South China based on geological formations research: Example from Xinhui−Taishan area in Pearl River Delta[J]. Northwestern Geology, 55(4): 140−157(in Chinese with English abstract).

    [13]

    Li X, Zhou X H, Xiang Z Q, et al. 2023. Simply discussion on the work of ground substrate survey: taking Hainan Island as an example[J]. Geological Bulletin of China, 42(1): 68−75(in Chinese with English abstract).

    [14]

    Ministry of Natural Resources. 2020a. General scheme for construction of natural resources survey and moniyoring system[Z](in Chinese).

    [15]

    Ministry of Natural Resources. 2020b. Classification Scheme for Surface Matrix (Trial)[Z](in Chinese).

    [16]

    Ministry of Natural Resources. 2020. Overall plan for investigation of black soil surface matrix [Z](in Chinese).

    [17]

    Ren Z Y, Wu P, Cao X X. 2016. Clay minerals and their palaeoclimatic indicators in the Mawo karst basin in Weining, Guizhou[J]. Sedimentary Geology and Tethyan Geology, 36(1): 70−76(in Chinese with English abstract).

    [18]

    Song Y H, Liu K, Dai H M. et al. 2022. Palynological assemblages of typical black soil profile in the eastern Songliao Plain and their age and its implication for paleoclimatic[J]. Geological Bulletin of China, 41(9): 165−177 (in Chinese with English abstract).

    [19]

    Wu J X, Xia G Q, Chen Y, et al. 2022. Characterisitics of clay mineralogy and its paleoclimatic significance across the Oligocene−Miocene transition in Lunpola Basin, Central Tibet[J]. Acta Sedimentologica Sinica, 40(5): 1265−1279(in Chinese with English abstract).

    [20]

    Xi J J, Fu C F, Meng Y Y, et al. 2018. Carbonate content of Jianzha Basin in Northeastern margin of the tibatan plateau and paleoclimatic significance[J]. Quaternary Sciences, 38(1): 107−117(in Chinese with English abstract).

    [21]

    Xia Y M, Wang P F. 1987. The paleobotany and paleoclimate in the Songnen Plain: A study on the Late Tertiary−Pleistocene spore pollen assemblages[J]. Acta Geographica Sinica, 42(2): 165–177(in Chinese).

    [22]

    Yin Z Q, Chen Z R, Li X, et al. 2023. Connotation, layering, mapping and supporting objectives of the integrated survey of ground substrates[J]. Hydrogeology & Engineering Geology, 50(1): 144−151(in Chinese with English abstract).

    [23]

    Yin Z Q, Qin X G, Zhang S J, et al. 2020. Preliminary study on classification and investigation of surface substrate[J]. Hydrogeology & Engineering Geology, 11(6): 8−14(in Chinese with English abstract).

    [24]

    Zhan T, Yang Y, Zeng F M, et al. 2023. Magnetostratigraphy and magnetic susceptibility of the Dumeng borehole sequence from Northeeast China Plain and implications for sedimentary evolution of the Songnen paleo−lake.[J]. Chinese Journal of Geophysics, 66(2): 673−684(in Chinese with English abstract).

    [25]

    Zhao C, Li X Q, Zhou X Y, et al. 2016. Holocene vegetation succession and responses to climate change in the northern sector of Northeast China[J]. Scientia Sinica(Terrae), 46(6): 870−880(in Chinese with English abstract).

    [26]

    Zhao F Y. 2010. A Study of the regularity of Quaternary geological history evolution in Songliao plain based on geological remote sensing survey[J]. Remote Sensing for Land and Resources, 86: 152–158(in Chinese with English abstract).

    [27]

    Zhao Q, Xie Y Y, Hao D M, et al. 2022. Climatic aridification in Songnen Plain since the Middle Pleistocene from Harbin Loess records[J]. Acta Sedimentologica Sinica, 40(6): 1702−1717(in Chinese with English abstract).

    [28]

    陈龙, 孙勇刚, 尚晓雨, 等. 2022. 坝上地区自然资源地表基质调查地质测量方法探讨——以张北示范区为例[J]. 河南科技, 41(21): 99−102.

    [29]

    陈彭, 侯红星, 马骏驰, 等. 2023. 低山丘陵区黑土地地表基质调查研究思路——以扎兰屯地区为例[J]. 中国国土资源经济, 81(9): 81−89.

    [30]

    付俊彧, 李英才, 赵春荆, 等. 2018. 东北地区大地构造相图(1∶150万)说明书[M]. 北京: 地质出版社.

    [31]

    葛良胜, 杨贵才. 2020. 自然资源调查监测工作新领域: 地表基质调查[J]. 中国国土资源经济, 33(9): 4−11,67.

    [32]

    郝爱兵, 殷志强, 彭令, 等. 2020. 学理与法理和管理相结合的自然资源分类刍议[J]. 水文地质工程地质, 47(6): 1−7.

    [33]

    侯红星, 葛良胜, 孙肖, 等. 2022. 地表基质在中国黑土地资源调查评价中的应用探讨——基于黑龙江宝清地区地表基质调查[J]. 自然资源学报, 37(9): 2264−2276.

    [34]

    侯红星, 张蜀冀, 鲁敏, 等. 2021a. 自然资源地表基质层调查技术方法新经验: 以保定地区地表基质层调查为例[J]. 西北地质, 54(3): 277−288.

    [35]

    侯红星, 葛良胜, 孙肖, 等. 2021b. 地表基质调查内容及要素—属性指标体系探讨[J]. 自然科学, 9(4): 433−442.

    [36]

    侯红星, 鲁敏, 秦天, 等. 2024. 地表基质调查工作方法[M]. 北京: 中国地质大学出版社: 6.

    [37]

    胡彬, 张春霞, 吴海斌, 等. 2019. 西宁盆地始新世河湖相沉积序列粘土矿物组合特征及其古环境意义[J]. 中国科学(地球科学), 49(3): 569−583.

    [38]

    贾磊, 刘洪, 欧阳渊, 等. 2022. 基于地质建造的南方山地丘陵区地表基质填图单元划分方案——以珠三角新会—台山地区为例[J]. 西北地质, 55(4): 140−157.

    [39]

    李响, 周效华, 相振群, 等. 2023. 地表基质调查的工作思路刍议: 以海南岛为例[J]. 地质通报, 42(1): 68−75.

    [40]

    任增莹, 吴攀, 曹星星. 2016. 贵州威宁麻窝山岩溶盆地沉积物中粘土矿物特征及其古气候指示意义[J]. 沉积与特提斯地质, 36(1): 70−76.

    [41]

    宋运红, 刘凯, 戴慧敏. 等. 2022. 松嫩平原东部典型黑土剖面孢粉组合、时代及其对古气候的指示[J]. 地质通报, 41(9): 165−177.

    [42]

    吴劲宣, 夏国清, 陈云, 等. 2022. 西藏伦坡拉盆地渐新世—中新世之交粘土矿物特征及其古气候意义[J]. 沉积学报, 40(5): 1265−1279.

    [43]

    席建建, 符超峰, 孟媛媛, 等. 2018. 青藏高原东北缘尖扎盆地碳酸盐含量及其古环境意义[J]. 第四纪研究, 38(1): 107−117.

    [44]

    夏玉梅, 汪佩芳. 1987. 松嫩平原晚第三纪—更新世孢粉组合及古植被与古气候的研究[J]. 地理学报, 42(2): 165−177.

    [45]

    殷志强, 陈自然, 李霞, 等. 2023. 地表基质综合调查: 内涵、分层、填图与支撑目标[J]. 水文地质工程地质, 50(1): 144−151.

    [46]

    殷志强, 秦小光, 张蜀冀, 等. 2020. 地表基质分类及调查初步研究[J]. 水文地质工程地质, 11(6): 8−14.

    [47]

    詹涛, 杨业, 曾方明, 等. 2023. 东北平原杜蒙钻孔的磁性地层学和磁化率对松嫩古湖演化的指示[J]. 地球物理学报, 66(2): 673−684.

    [48]

    赵超, 李小强, 周新郢, 等. 2016. 北大兴安岭地区全新世植被演替及气候响应[J]. 中国科学: 地球科学, 46(6): 870−880.

    [49]

    赵福岳. 2010. 松辽平原的第四纪地质历史演化规律研究[J]. 国土资源遥感, 86: 152−158.

    [50]

    赵倩, 谢远云, 郝冬梅, 等. 2022. 松嫩平原中更新世以来气候干旱化−来自哈尔滨黄土记录[J]. 沉积学报, 40(6): 1702−1717.

    [51]

    自然资源部. 2020a. 自然资源调查监测体系构建总体方案[Z].

    [52]

    自然资源部. 2020b. 地表基质分类方案(试行)[Z].

    [53]

    自然资源部. 2022. 黑土地地表基质调查总体方案[Z].

  • 加载中

(6)

(7)

计量
  • 文章访问数:  435
  • PDF下载数:  92
  • 施引文献:  0
出版历程
收稿日期:  2023-08-27
修回日期:  2023-12-10
刊出日期:  2024-09-15

目录