Distribution and influencing factors of soil microbial carbon in plant rhizosphere in a Forest Park, Wuhan
-
摘要:
研究目的 土壤微生物生物量碳是土壤有机质中最活跃的组分,研究植物根际土壤微生物量碳对认识土壤碳汇及土壤肥力具有重要意义。
研究方法 以武汉市马鞍山森林公园为研究对象,选择4种不同植物类型(乔木、小乔木、灌木、草本)随机设置33个采样点,研究不同植物群落根际土壤微生物量碳分布特征的主要驱动因子。
研究结果 ①土壤微生物量碳在不同植物群落根际间存在显著差异,根际土壤微生物量碳的波动范围为270.76 ~ 908.44 mg/kg。②土壤微生物量碳与土壤有机碳(r=0.662, p < 0.01)、无机氮(r=0.510, p < 0.01)、碳磷比(r=0.519, p < 0.01)、铵态氮(r=0.355, p < 0.01)和硝态氮(r=0.485, p < 0.01)显著正相关,而与土壤速效磷(r=−0.134,p<0.05)显著负相关。③不同植物群落根际间的土壤微生物生物量熵碳的变化范围为1%~4%,其中黑足鳞毛蕨植物群落的根际最高,桂花植物群落根际最弱。④土壤有机碳、碳磷比和无机碳是影响土壤微生物生物量碳的主要因子,而碳氮比(36.36%,p < 0.01)和有机碳(24.42%,p < 0.05)是决定土壤微生物生物量熵碳含量的关键。
结论 土壤碳氮比和有机碳是土壤微生物量熵碳的主要影响因子。不同植物根际土壤中微生物生物量碳间存在显著差异,相比之下黑足鳞毛蕨的根际土壤微生物固碳能力最高。
Abstract:Objective Soil microbial biomass carbon is the most active component of soil organic matter. Studying the microbial biomass carbon in the rhizosphere soil is of great significance.
Methods The study took Ma’an Forest Park in Wuhan City as the research object, and four different plant types (trees, small trees, shrubs, and herbs) were selected to randomly set up 33 sampling points to study the main drivers of the distribution characteristics of rhizosphere soil microbial mass carbon in different plant communities.
Results ① Soil microbial biomass carbon was significantly different in the plant rhizosphere of different plant communities. The fluctuation range of soil microbial biomass carbon in the plant rhizosphere was 270.76 ~ 908.44 mg/kg. ② Soil microbial biomass carbon was significantly and positively correlated with soil organic carbon (r = 0.662, p < 0.01), inorganic nitrogen (r = 0.510, p < 0.01), carbon−to−phosphorus ratio (r = 0.519, p < 0.01), ammonium nitrogen (r = 0.355, p < 0.01), and nitrate nitrogen (r = 0.485, p < 0.01), while it was significantly and negatively correlated with soil quick−acting phosphorus (r =− 0.134, p < 0.05). ③ The variation of soil microbial biomass entropy carbon in the rhizosphere of different plant communities ranged from 1% to 4%, among which the rhizosphere of the Dryopteris fuscipes C. Chr. was the highest, and that of the osmanthus sp was the lowest. ④ Soil organic carbon, carbon to phosphorus ratio and inorganic carbon were the main factors affecting soil microbial biomass carbon, while carbon to nitrogen ratio (36.36%, p < 0.01) and organic carbon (24.42%, p < 0.05) were the key determinants of entropic carbon content of soil microbial biomass.
Conclusion Soil carbon to nitrogen ratio and organic carbon were the main influencing factors of soil microbial biomass entropy carbon. There were significant differences between the soil microbial biomass carbon in the inter−root soils of different plants, compared to the Dryopteris fuscipes C. Chr, which had the highest inter−root soil microbial carbon sequestration capacity.
-
Key words:
- soil microbial mass carbon /
- forest soil /
- stoichiometric ratio /
- plant rhizosphere /
- forest park /
- impact factor /
- Wuhan
-
-
表 1 马鞍山森林土壤理化指标
Table 1. Soil physicochemical indexes of Ma'an Forest Park
物种 有机碳/( g·kg−1) 速效磷/( mg·kg−1) 铵态氮/( mg·kg−1) 硝态氮/( mg·kg−1) 无机氮/( mg·kg−1) pH值 MBC/( mg·kg−1) 乔木 香樟 46.02±4.67a 35.34±1.54c 15.33±1.77a 9.00±1.36a 24.33±1.70a 4.49±0.11c 908.44±163.16a 马尾松 24.21±3.23bc 49.38±3.17b 7.20±0.41c 5.83±0.62bc 13.03±0.36b 4.56±0.08bc 601.69±93.09ab 柏木 23.26±4.10bc 31.82±3.87c 12.53±1.61ab 6.4±1.56ab 18.93±3.07ab 4.78±0.03ab 403.02±112.73b 小乔木 杉松 23.14±1.47bc 50.72±1.88b 13.23±1.36ab 7.87±1.32ab 21.1±2.26ab 4.83±0.13ab 565.60±54.31ab 桂花 20.23±2.69bc 96.90±4.24a 9.7±0.63bc 1.07±0.39bc 10.77±1.03bc 4.56±0.12bc 270.76±77.03b 广玉兰 12.37±1.37c 103.16±2.61a 10.77±1.14bc 0.67±0.11c 11.43±1.03bc 4.91±0.06a 392.62±86.02b 灌木 野鸦椿 31.16±0.76ab 91.66±5.73a 8.70±1.09bc 6.93±1.32a 15.63±0.33b 4.49±0.04bc 676.44±48.12ab 荚蒾 35.51±3.20a 99.21±3.19a 17.90±2.98a 7.20±2.15a 25.10±5.08a 4.38±0.09c 625.69±31.55ab 海桐 30.90±3.70ab 84.25±4.17a 8.33±1.08bc 9.07±1.28a 17.90±1.43ab 4.38±0.11c 681.51±29.41ab 草本 野青茅 23.54±2.95bc 40.55±1.14bc 10.6±0.71bc 9.17±3.31a 19.77±4.02ab 4.79±0.08ab 412.18±98.78b 黑足鳞毛蕨 22.07±3.65bc 51.45±7.93b 12.17±2.21ab 8.63±2.84a 20.80±4.93ab 4.66±0.03ab 514.49±90.73ab 注:不同小写字母代表差异显著(p < 0.05) 表 2 马鞍山森林土壤养分化学计量比
Table 2. Stoichiometric ratio of soil nutrient content in Ma'an forest
物种 C∶P C∶N N∶P 乔木 香樟 1311.10±183.87a 1879.87±60.54a 0.75±0.04a 马尾松 522.72±79.36bc 1841.26±204.50a 0.45±0.04bc 柏木 791.97±99.28b 1271.08±177.38ab 0.74±0.07a 小乔木 杉松 453.25±42.37cd 1112.92±50.02b 0.49±0.04bc 桂花 214.75±25.18e 1883.67±222.85a 0.24±0.01d 广玉兰 121.23±11.92e 1114.99±183.82b 0.20±0.004d 灌木 野鸦椿 343.53±21.11de 1998.98±88.47a 0.17±0.01d 荚蒾 376.94±64.68de 1675.95±44.77a 0.26±0.06d 海桐 375.57±61.26de 1718.27±12.12a 0.22±0.03d 草本 野青茅 569.11±73.79bc 1283.25±209.05ab 0.57±0.03b 黑足鳞毛蕨 358.95±48.25de 1118.38±304.52b 0.39±0.06c 注:不同小写字母代表差异显著(p < 0.05) -
[1] Bhople P, Djukic I, Keiblinger K, et al. 2019. Variations in soil and microbial biomass C, N and fungal biomass ergosterol along elevation and depth gradients in Alpine ecosystems[J]. Geoderma, 345: 93−103. doi: 10.1016/j.geoderma.2019.03.022
[2] Brookes P C, Landman A, Pruden G, et al. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 17(6): 837−842. doi: 10.1016/0038-0717(85)90144-0
[3] Brookes P C, Powlson D S, Jenkinson D S. 1982. Measurement of microbial biomass phosphorus in soil[J]. Soil Biology and Biochemistry, 14(4): 319−329. doi: 10.1016/0038-0717(82)90001-3
[4] Chen M K, Wang S J, Chen W Q, et al. 2019. Effects of ant nesting on soil microbial biomass carbon and quotient in tropical forest of Xishuangbanna[J]. Chinese Journal of Applied Ecology, 30: 2973−2982 (in Chinese with English abstract).
[5] Chen X H, Chen Z Z, Lei J R, et al. 2021. Soil microbial biomass carbon, nitrogen and nutrient characteristics of different plant communities in Dongzhai Port[J]. Forest Resources Management, (6): 97−104 (in Chinese with English abstract).
[6] Cheng Y, Zhang J B, Cai Z C. 2012. A research progress on biotic and abiotic inorganic N immobilization in soils[J]. Acta Pedologica Sinica, 49(5): 1030−1036 (in Chinese with English abstract).
[7] Ding L Z, Man X L, Xiao R H, et al. 2019. Dynamics of soil microbial biomass carbon and nitrogen in the soil of rhizosphere during growing season in the cold temperate forests[J]. Scientia Silvae Sinicae, 55(7): 178−186 (in Chinese with English abstract).
[8] Gao D, Bai E, Wang S, et al. 2022. Three−dimensional mapping of carbon, nitrogen, and phosphorus in soil microbial biomass and their stoichiometry at the global scale[J]. Global Change Biology, 28(22): 1−13.
[9] Gao S, Yin H, Fu M J, et al. 2018. Effects of freeze−thaw cycles on soil microbial biomass carbon, nitrogen, and nitrogen mineralization in three types of forest in the temperate zone[J]. Acta Ecologica Sinica, 38(21): 7859−7869 (in Chinese with English abstract).
[10] Guan H Y, Wang Q, Zhao X, et al. 2015. Seasonal patterns of soil microbial biomass C and impacting factors in two typical arid desert vegetation regions[J]. Arid Land Geography, 38(1): 67−74 (in Chinese with English abstract).
[11] Hu Z D, Liu S R, Shi Z M, et al. 2012. Variations of soil nitrogen and microbial biomass carbon and Nitrogen of Quercus aquifolioides forest at different attitudes in Balangshan, Sichuan[J]. Forest Research, 25(3): 261−268 (in Chinese with English abstract).
[12] Lai J, Zou Y, Zhang J, et al. 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package[J]. Methods in Ecology and Evolution, 13: 782−788. doi: 10.1111/2041-210X.13800
[13] Li P, Muledeer T, Tian D, et al. 2019. Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems[J]. Chinese Journal of Plant Ecology, 43(6): 532−542. doi: 10.17521/cjpe.2019.0075
[14] Li R B. 2008. Review of research advances of soil microbial biomass carbon[J]. Forestry and Environmental Science, 24: 65−68 (in Chinese with English abstract).
[15] Li Y, Lu J. 2023. Factors influencing soil carbon and the impact of litter on soil carbon storage[J]. Agriculture and technology, 43(4): 52−55 (in Chinese with English abstract).
[16] Liu C, Tian J, Cheng K, et al. 2023. Topsoil microbial biomass carbon pool and the microbial quotient under distinct land−use types across China: A data synthesis[J]. Soil Science and Environment, 2(5): 1−10.
[17] Liu S. 2010. Temporal and spatial variations of microbial biomass carbon and nitrogen in five temperate forest soils[D]. Master Thesis of Northeast Forestry University (in Chinese with English abstract).
[18] Ma C X, Li H J, Zhen H F, et al. 2019. Responses of soil active carbon and nitrogen to short−term warming in alpine treeline of west Sichuan, China[J]. Chinese Journal of Applied Ecology, 30(3): 718−726 (in Chinese with English abstract).
[19] Monika R, Kusum A, Ayyanadar A. 2021. Seasonal dynamics in soil microbial biomass C, N and P in a temperate forest ecosystem of Uttarakhand, India[J]. Tropical Ecology, 62(3): 377−385.
[20] Office of the National Soil Census. 1979. Interim technical regulations for the Second National Soil Survey[M]. China Agriculture Press: 1−79 (in Chinese).
[21] Qing Y, Sun F D, Li Y, et al. 2015. Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, southwest China[J]. Acta Prataculturae Sinica, 24(3): 38−47 (in Chinese with English abstract).
[22] Shi F J, Huang Z Y, Li T, et al. 2018. Vertical changes of the soil microbial biomass and the correlation analysis in Parashorea chinensis natural forest[J]. Forestry and Environmental Science, 34: 72−76 (in Chinese with English abstract).
[23] Su F, Xu S, Sayer E J, et al. 2021. Distinct storage mechanisms of soil organic carbon in coniferous forest and evergreen broadleaf forest in tropical China[J]. Journal of Environmental Management, 295: 113142. doi: 10.1016/j.jenvman.2021.113142
[24] Sun T, Wang Y, Hui D, et al. 2020. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient[J]. Soil Biology and Biochemistry, 32: 106147.
[25] Taylor L A, Arthur M A, Yanai R D. 1999. Forest floor microbial biomass across a northern hardwood successional sequence[J]. Soil Biology and Biochemistry, 31(3): 431−439. doi: 10.1016/S0038-0717(98)00148-5
[26] Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 19(6): 703−707.
[27] Wang Q C, Zhen Y, Song G, et al. 2021. Impacts of simulated nitrogen and phosphorus depositions on soil microbial biomass and soil nutrients along two secondary succession stages in a subtropical forest[J]. Acta Ecologica Sinica, 41(15): 6245−6256 (in Chinese with English abstract).
[28] Wang S Q, Yu G R. 2008. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 28(8): 3938−3945 (in Chinese with English abstract).
[29] Wuhan Municipal Landscape Gardens and Forestry Bureau, Annual Report on Greening of Wuhan City in 2021[EB/OL]. (2022−03−17). [2022−12−07]. http://ylj.wuhan.gov.cn/zwgk/zwxxgkzl_12298/tjxx/lhgb_12361/202203/t20220317_1941383.shtml (in Chinese).
[30] Xu X, Han L, Wang Y, et al. 2007. Influence of vegetation types and soil properties on microbial biomass carbon and metabolic quotients in temperate volcanic and tropical forest soils[J]. Soil Science and Plant Nutrition, 253: 430−440.
[31] Yang J H, Wang C L, Dai H L. 2008. Soil agrochemical analysis and environmental monitoring[M]. Beijing: China Land Publishing House (in Chinese).
[32] You Y M, Wang J, Huang X M, et al. 2016. Responses of soil microbial biomass, community structure and soil enzyme to below−ground carbon changein the warm−temperate forest ecosystem[J]. Guihaia, 36(7): 837−847 (in Chinese with English abstract).
[33] Zhang H Y. 2005. A study on the relationship between black soil microbiomass and soil fertility[D]. Master Thesis of Shenyang Agricultural University (in Chinese with English abstract).
[34] Zhang Y Q, Fang X, Xian Y N, et al. 2019. Characteristics of soil microbial biomass carbon, nitrogen, phosphorus and enzyme activity in four subtropical forests, China[J]. Acta Ecologica Sinica, 39(14): 5326−5338 (in Chinese with English abstract).
[35] 陈闽昆, 王邵军, 陈武强, 等. 2019. 蚂蚁筑巢对西双版纳热带森林土壤微生物生物量碳及熵的影响[J]. 应用生态学报, 30: 2973−2982.
[36] 陈小花, 陈宗铸, 雷金睿, 等. 2021. 东寨港不同植物群落土壤微生物量碳氮及养分特征[J]. 林业资源管理, (6): 97−104.
[37] 程谊, 张金波, 蔡祖聪. 2012. 土壤中无机氮的微生物同化和非生物固定作用研究进展[J]. 土壤学报, 49(5): 1030−1036.
[38] 丁令智, 满秀玲, 肖瑞晗, 等. 2019. 寒温带森林根际土壤微生物量碳氮含量生长季内动态变化[J]. 林业科学, 55(7): 178−186.
[39] 高珊, 伊航, 傅民杰, 等. 2018. 冻融循环对温带3种林型下土壤微生物量碳、氮和氮矿化的影响[J]. 生态学报, 38(21): 7859−7869.
[40] 管海英, 王权, 赵鑫, 等. 2015. 两种典型荒漠植被区土壤微生物量碳的季节变化及影响因素分析[J]. 干旱区地理, 38(1): 67−74.
[41] 胡宗达, 刘世荣, 史作民, 等. 2012. 川滇高山栎林土壤氮素和微生物量碳氮随海拔变化的特征[J]. 林业科学研究, 25(3): 261−268.
[42] 黎荣彬. 2008. 土壤微生物生物量碳研究进展[J]. 林业与环境科学, 24: 65−68. doi: 10.3969/j.issn.1006-4427.2008.02.015
[43] 李雅, 卢杰. 2023. 土壤碳的影响因素及凋落物对土壤碳储量的影响[J]. 农业与技术, 43(4): 52−55.
[44] 刘爽. 2010. 五种温带森林土壤微生物生物量碳和氮的时空变化[D]. 东北林业大学硕士学位论文.
[45] 马彩霞, 李洪杰, 郑海峰, 等. 2019. 川西高山林线土壤活性碳 氮对短期增温的响应[J]. 应用生态学报, 30(3): 718−726.
[46] 青烨, 孙飞达, 李勇, 等. 2015. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析[J]. 草业学报, 24(3): 38−47. doi: 10.11686/cyxb20150304
[47] 全国土壤普查办公室. 1979. 全国第二次土壤普查暂行技术规程[M]. 农业出版社出版: 1−79.
[48] 施福军, 黄则月, 李婷, 等. 2018. 望天树天然林土壤微生物生物量碳氮垂直分布及相关性分析[J]. 林业与环境科学, 34: 72−76. doi: 10.3969/j.issn.1006-4427.2018.06.012
[49] 王全成, 郑勇, 宋鸽, 等. 2021. 亚热带次级森林演替过程中模拟氮磷沉降对土壤微生物生物量及土壤养分的影响[J]. 生态学报, 41(15): 6245−6256.
[50] 王绍强, 于贵瑞. 2008. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 28(8): 3938−3945. doi: 10.3321/j.issn:1000-0933.2008.08.054
[51] 武汉市园林和林业局. 2021年武汉市绿化状况公报[EB/OL]. (2022−03−17). [2022−12−07]. http://ylj.wuhan.gov.cn/zwgk/zwxxgkzl_12298/tjxx/lhgb_12361/202203/t20220317_1941383.shtml.
[52] 杨剑虹, 王成林, 代亨林. 2008. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社.
[53] 尤业明, 王娟, 黄雪蔓, 等. 2016. 暖温带森林土壤微生物量、群落结构和活性对植物地下碳源的响应[J]. 广西植物, 36(7): 837−847. doi: 10.11931/guihaia.gxzw201409049
[54] 张海燕. 2005. 有关黑土微生物量与土壤肥力关系的研究[D]. 沈阳农业大学硕士学位论文.
[55] 张雅茜, 方晞, 冼应男, 等. 2019. 亚热带区4种林地土壤微生物生物量碳氮磷及酶活性特征[J]. 生态学报, 39(14): 5326−5338.
-