武汉市森林公园常见植物根际土壤微生物量碳分布及其影响因素

钟言钰, 罗协, 李思悦. 2025. 武汉市森林公园常见植物根际土壤微生物量碳分布及其影响因素. 地质通报, 44(1): 150-157. doi: 10.12097/gbc.2023.09.011
引用本文: 钟言钰, 罗协, 李思悦. 2025. 武汉市森林公园常见植物根际土壤微生物量碳分布及其影响因素. 地质通报, 44(1): 150-157. doi: 10.12097/gbc.2023.09.011
ZHONG Yanyu, LUO Xie, LI Siyue. 2025. Distribution and influencing factors of soil microbial carbon in plant rhizosphere in a Forest Park, Wuhan. Geological Bulletin of China, 44(1): 150-157. doi: 10.12097/gbc.2023.09.011
Citation: ZHONG Yanyu, LUO Xie, LI Siyue. 2025. Distribution and influencing factors of soil microbial carbon in plant rhizosphere in a Forest Park, Wuhan. Geological Bulletin of China, 44(1): 150-157. doi: 10.12097/gbc.2023.09.011

武汉市森林公园常见植物根际土壤微生物量碳分布及其影响因素

  • 基金项目: 武汉工程大学研究生教育创新基金项目《武汉市森林公园土壤微生物生物量碳分布及其影响因素研究》(编号:CX2022550)和武汉工程大学高层次人才启动项目(编号:21QD02)
详细信息
    作者简介: 钟言钰(1999− ),女,在读硕士生,从事土壤微生物量碳研究。E−mail:zhongyy06006@163.com
    通讯作者: 李思悦(1978− ),男,博士,教授,从事流域生态学与生源要素生物地球化学循环研究。E−mail:syli2006@163.com
  • 中图分类号: P595; S714.3

Distribution and influencing factors of soil microbial carbon in plant rhizosphere in a Forest Park, Wuhan

More Information
  • 研究目的

    土壤微生物生物量碳是土壤有机质中最活跃的组分,研究植物根际土壤微生物量碳对认识土壤碳汇及土壤肥力具有重要意义。

    研究方法

    以武汉市马鞍山森林公园为研究对象,选择4种不同植物类型(乔木、小乔木、灌木、草本)随机设置33个采样点,研究不同植物群落根际土壤微生物量碳分布特征的主要驱动因子。

    研究结果

    ①土壤微生物量碳在不同植物群落根际间存在显著差异,根际土壤微生物量碳的波动范围为270.76 ~ 908.44 mg/kg。②土壤微生物量碳与土壤有机碳(r=0.662, p < 0.01)、无机氮(r=0.510, p < 0.01)、碳磷比(r=0.519, p < 0.01)、铵态氮(r=0.355, p < 0.01)和硝态氮(r=0.485, p < 0.01)显著正相关,而与土壤速效磷(r=−0.134,p<0.05)显著负相关。③不同植物群落根际间的土壤微生物生物量熵碳的变化范围为1%~4%,其中黑足鳞毛蕨植物群落的根际最高,桂花植物群落根际最弱。④土壤有机碳、碳磷比和无机碳是影响土壤微生物生物量碳的主要因子,而碳氮比(36.36%,p < 0.01)和有机碳(24.42%,p < 0.05)是决定土壤微生物生物量熵碳含量的关键。

    结论

    土壤碳氮比和有机碳是土壤微生物量熵碳的主要影响因子。不同植物根际土壤中微生物生物量碳间存在显著差异,相比之下黑足鳞毛蕨的根际土壤微生物固碳能力最高。

  • 加载中
  • 图 1  马鞍山森林公园研究区采样图

    Figure 1. 

    图 2  马鞍山森林不同植物群落的土壤微生物生物量碳含量(不同小写字母代表差异显著(p < 0.05)。黑鳞蕨: 黑足鳞毛蕨)

    Figure 2. 

    图 3  马鞍山森林公园土壤微生物生物量熵碳

    Figure 3. 

    图 4  马鞍山森林公园土壤因子的相关性热图(*表示在0.05级别(双尾)相关性显著, **表示在0.01级别(双尾)相关性显著)

    Figure 4. 

    图 5  土壤因子的单一解释率

    Figure 5. 

    表 1  马鞍山森林土壤理化指标

    Table 1.  Soil physicochemical indexes of Ma'an Forest Park

    物种 有机碳/( g·kg−1) 速效磷/( mg·kg−1) 铵态氮/( mg·kg−1) 硝态氮/( mg·kg−1) 无机氮/( mg·kg−1) pH值 MBC/( mg·kg−1)
    乔木
    香樟46.02±4.67a35.34±1.54c15.33±1.77a9.00±1.36a24.33±1.70a4.49±0.11c908.44±163.16a
    马尾松24.21±3.23bc49.38±3.17b7.20±0.41c5.83±0.62bc13.03±0.36b4.56±0.08bc601.69±93.09ab
    柏木23.26±4.10bc31.82±3.87c12.53±1.61ab6.4±1.56ab18.93±3.07ab4.78±0.03ab403.02±112.73b
    小乔木
    杉松23.14±1.47bc50.72±1.88b13.23±1.36ab7.87±1.32ab21.1±2.26ab4.83±0.13ab565.60±54.31ab
    桂花20.23±2.69bc96.90±4.24a9.7±0.63bc1.07±0.39bc10.77±1.03bc4.56±0.12bc270.76±77.03b
    广玉兰12.37±1.37c103.16±2.61a10.77±1.14bc0.67±0.11c11.43±1.03bc4.91±0.06a392.62±86.02b
    灌木
    野鸦椿31.16±0.76ab91.66±5.73a8.70±1.09bc6.93±1.32a15.63±0.33b4.49±0.04bc676.44±48.12ab
    荚蒾35.51±3.20a99.21±3.19a17.90±2.98a7.20±2.15a25.10±5.08a4.38±0.09c625.69±31.55ab
    海桐30.90±3.70ab84.25±4.17a8.33±1.08bc9.07±1.28a17.90±1.43ab4.38±0.11c681.51±29.41ab
    草本
    野青茅23.54±2.95bc40.55±1.14bc10.6±0.71bc9.17±3.31a19.77±4.02ab4.79±0.08ab412.18±98.78b
    黑足鳞毛蕨22.07±3.65bc51.45±7.93b12.17±2.21ab8.63±2.84a20.80±4.93ab4.66±0.03ab514.49±90.73ab
      注:不同小写字母代表差异显著(p < 0.05)
    下载: 导出CSV

    表 2  马鞍山森林土壤养分化学计量比

    Table 2.  Stoichiometric ratio of soil nutrient content in Ma'an forest

    物种 C∶P C∶N N∶P
    乔木
    香樟1311.10±183.87a1879.87±60.54a0.75±0.04a
    马尾松522.72±79.36bc1841.26±204.50a0.45±0.04bc
    柏木791.97±99.28b1271.08±177.38ab0.74±0.07a
    小乔木
    杉松453.25±42.37cd1112.92±50.02b0.49±0.04bc
    桂花214.75±25.18e1883.67±222.85a0.24±0.01d
    广玉兰121.23±11.92e1114.99±183.82b0.20±0.004d
    灌木
    野鸦椿343.53±21.11de1998.98±88.47a0.17±0.01d
    荚蒾376.94±64.68de1675.95±44.77a0.26±0.06d
    海桐375.57±61.26de1718.27±12.12a0.22±0.03d
    草本
    野青茅569.11±73.79bc1283.25±209.05ab0.57±0.03b
    黑足鳞毛蕨358.95±48.25de1118.38±304.52b0.39±0.06c
      注:不同小写字母代表差异显著(p < 0.05)
    下载: 导出CSV
  • [1]

    Bhople P, Djukic I, Keiblinger K, et al. 2019. Variations in soil and microbial biomass C, N and fungal biomass ergosterol along elevation and depth gradients in Alpine ecosystems[J]. Geoderma, 345: 93−103. doi: 10.1016/j.geoderma.2019.03.022

    [2]

    Brookes P C, Landman A, Pruden G, et al. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 17(6): 837−842. doi: 10.1016/0038-0717(85)90144-0

    [3]

    Brookes P C, Powlson D S, Jenkinson D S. 1982. Measurement of microbial biomass phosphorus in soil[J]. Soil Biology and Biochemistry, 14(4): 319−329. doi: 10.1016/0038-0717(82)90001-3

    [4]

    Chen M K, Wang S J, Chen W Q, et al. 2019. Effects of ant nesting on soil microbial biomass carbon and quotient in tropical forest of Xishuangbanna[J]. Chinese Journal of Applied Ecology, 30: 2973−2982 (in Chinese with English abstract).

    [5]

    Chen X H, Chen Z Z, Lei J R, et al. 2021. Soil microbial biomass carbon, nitrogen and nutrient characteristics of different plant communities in Dongzhai Port[J]. Forest Resources Management, (6): 97−104 (in Chinese with English abstract).

    [6]

    Cheng Y, Zhang J B, Cai Z C. 2012. A research progress on biotic and abiotic inorganic N immobilization in soils[J]. Acta Pedologica Sinica, 49(5): 1030−1036 (in Chinese with English abstract).

    [7]

    Ding L Z, Man X L, Xiao R H, et al. 2019. Dynamics of soil microbial biomass carbon and nitrogen in the soil of rhizosphere during growing season in the cold temperate forests[J]. Scientia Silvae Sinicae, 55(7): 178−186 (in Chinese with English abstract).

    [8]

    Gao D, Bai E, Wang S, et al. 2022. Three−dimensional mapping of carbon, nitrogen, and phosphorus in soil microbial biomass and their stoichiometry at the global scale[J]. Global Change Biology, 28(22): 1−13.

    [9]

    Gao S, Yin H, Fu M J, et al. 2018. Effects of freeze−thaw cycles on soil microbial biomass carbon, nitrogen, and nitrogen mineralization in three types of forest in the temperate zone[J]. Acta Ecologica Sinica, 38(21): 7859−7869 (in Chinese with English abstract).

    [10]

    Guan H Y, Wang Q, Zhao X, et al. 2015. Seasonal patterns of soil microbial biomass C and impacting factors in two typical arid desert vegetation regions[J]. Arid Land Geography, 38(1): 67−74 (in Chinese with English abstract).

    [11]

    Hu Z D, Liu S R, Shi Z M, et al. 2012. Variations of soil nitrogen and microbial biomass carbon and Nitrogen of Quercus aquifolioides forest at different attitudes in Balangshan, Sichuan[J]. Forest Research, 25(3): 261−268 (in Chinese with English abstract).

    [12]

    Lai J, Zou Y, Zhang J, et al. 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package[J]. Methods in Ecology and Evolution, 13: 782−788. doi: 10.1111/2041-210X.13800

    [13]

    Li P, Muledeer T, Tian D, et al. 2019. Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems[J]. Chinese Journal of Plant Ecology, 43(6): 532−542. doi: 10.17521/cjpe.2019.0075

    [14]

    Li R B. 2008. Review of research advances of soil microbial biomass carbon[J]. Forestry and Environmental Science, 24: 65−68 (in Chinese with English abstract).

    [15]

    Li Y, Lu J. 2023. Factors influencing soil carbon and the impact of litter on soil carbon storage[J]. Agriculture and technology, 43(4): 52−55 (in Chinese with English abstract).

    [16]

    Liu C, Tian J, Cheng K, et al. 2023. Topsoil microbial biomass carbon pool and the microbial quotient under distinct land−use types across China: A data synthesis[J]. Soil Science and Environment, 2(5): 1−10.

    [17]

    Liu S. 2010. Temporal and spatial variations of microbial biomass carbon and nitrogen in five temperate forest soils[D]. Master Thesis of Northeast Forestry University (in Chinese with English abstract).

    [18]

    Ma C X, Li H J, Zhen H F, et al. 2019. Responses of soil active carbon and nitrogen to short−term warming in alpine treeline of west Sichuan, China[J]. Chinese Journal of Applied Ecology, 30(3): 718−726 (in Chinese with English abstract).

    [19]

    Monika R, Kusum A, Ayyanadar A. 2021. Seasonal dynamics in soil microbial biomass C, N and P in a temperate forest ecosystem of Uttarakhand, India[J]. Tropical Ecology, 62(3): 377−385.

    [20]

    Office of the National Soil Census. 1979. Interim technical regulations for the Second National Soil Survey[M]. China Agriculture Press: 1−79 (in Chinese).

    [21]

    Qing Y, Sun F D, Li Y, et al. 2015. Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, southwest China[J]. Acta Prataculturae Sinica, 24(3): 38−47 (in Chinese with English abstract).

    [22]

    Shi F J, Huang Z Y, Li T, et al. 2018. Vertical changes of the soil microbial biomass and the correlation analysis in Parashorea chinensis natural forest[J]. Forestry and Environmental Science, 34: 72−76 (in Chinese with English abstract).

    [23]

    Su F, Xu S, Sayer E J, et al. 2021. Distinct storage mechanisms of soil organic carbon in coniferous forest and evergreen broadleaf forest in tropical China[J]. Journal of Environmental Management, 295: 113142. doi: 10.1016/j.jenvman.2021.113142

    [24]

    Sun T, Wang Y, Hui D, et al. 2020. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient[J]. Soil Biology and Biochemistry, 32: 106147.

    [25]

    Taylor L A, Arthur M A, Yanai R D. 1999. Forest floor microbial biomass across a northern hardwood successional sequence[J]. Soil Biology and Biochemistry, 31(3): 431−439. doi: 10.1016/S0038-0717(98)00148-5

    [26]

    Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 19(6): 703−707.

    [27]

    Wang Q C, Zhen Y, Song G, et al. 2021. Impacts of simulated nitrogen and phosphorus depositions on soil microbial biomass and soil nutrients along two secondary succession stages in a subtropical forest[J]. Acta Ecologica Sinica, 41(15): 6245−6256 (in Chinese with English abstract).

    [28]

    Wang S Q, Yu G R. 2008. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 28(8): 3938−3945 (in Chinese with English abstract).

    [29]

    Wuhan Municipal Landscape Gardens and Forestry Bureau, Annual Report on Greening of Wuhan City in 2021[EB/OL]. (2022−03−17). [2022−12−07]. http://ylj.wuhan.gov.cn/zwgk/zwxxgkzl_12298/tjxx/lhgb_12361/202203/t20220317_1941383.shtml (in Chinese).

    [30]

    Xu X, Han L, Wang Y, et al. 2007. Influence of vegetation types and soil properties on microbial biomass carbon and metabolic quotients in temperate volcanic and tropical forest soils[J]. Soil Science and Plant Nutrition, 253: 430−440.

    [31]

    Yang J H, Wang C L, Dai H L. 2008. Soil agrochemical analysis and environmental monitoring[M]. Beijing: China Land Publishing House (in Chinese).

    [32]

    You Y M, Wang J, Huang X M, et al. 2016. Responses of soil microbial biomass, community structure and soil enzyme to below−ground carbon changein the warm−temperate forest ecosystem[J]. Guihaia, 36(7): 837−847 (in Chinese with English abstract).

    [33]

    Zhang H Y. 2005. A study on the relationship between black soil microbiomass and soil fertility[D]. Master Thesis of Shenyang Agricultural University (in Chinese with English abstract).

    [34]

    Zhang Y Q, Fang X, Xian Y N, et al. 2019. Characteristics of soil microbial biomass carbon, nitrogen, phosphorus and enzyme activity in four subtropical forests, China[J]. Acta Ecologica Sinica, 39(14): 5326−5338 (in Chinese with English abstract).

    [35]

    陈闽昆, 王邵军, 陈武强, 等. 2019. 蚂蚁筑巢对西双版纳热带森林土壤微生物生物量碳及熵的影响[J]. 应用生态学报, 30: 2973−2982.

    [36]

    陈小花, 陈宗铸, 雷金睿, 等. 2021. 东寨港不同植物群落土壤微生物量碳氮及养分特征[J]. 林业资源管理, (6): 97−104.

    [37]

    程谊, 张金波, 蔡祖聪. 2012. 土壤中无机氮的微生物同化和非生物固定作用研究进展[J]. 土壤学报, 49(5): 1030−1036.

    [38]

    丁令智, 满秀玲, 肖瑞晗, 等. 2019. 寒温带森林根际土壤微生物量碳氮含量生长季内动态变化[J]. 林业科学, 55(7): 178−186.

    [39]

    高珊, 伊航, 傅民杰, 等. 2018. 冻融循环对温带3种林型下土壤微生物量碳、氮和氮矿化的影响[J]. 生态学报, 38(21): 7859−7869.

    [40]

    管海英, 王权, 赵鑫, 等. 2015. 两种典型荒漠植被区土壤微生物量碳的季节变化及影响因素分析[J]. 干旱区地理, 38(1): 67−74.

    [41]

    胡宗达, 刘世荣, 史作民, 等. 2012. 川滇高山栎林土壤氮素和微生物量碳氮随海拔变化的特征[J]. 林业科学研究, 25(3): 261−268.

    [42]

    黎荣彬. 2008. 土壤微生物生物量碳研究进展[J]. 林业与环境科学, 24: 65−68. doi: 10.3969/j.issn.1006-4427.2008.02.015

    [43]

    李雅, 卢杰. 2023. 土壤碳的影响因素及凋落物对土壤碳储量的影响[J]. 农业与技术, 43(4): 52−55.

    [44]

    刘爽. 2010. 五种温带森林土壤微生物生物量碳和氮的时空变化[D]. 东北林业大学硕士学位论文.

    [45]

    马彩霞, 李洪杰, 郑海峰, 等. 2019. 川西高山林线土壤活性碳 氮对短期增温的响应[J]. 应用生态学报, 30(3): 718−726.

    [46]

    青烨, 孙飞达, 李勇, 等. 2015. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析[J]. 草业学报, 24(3): 38−47. doi: 10.11686/cyxb20150304

    [47]

    全国土壤普查办公室. 1979. 全国第二次土壤普查暂行技术规程[M]. 农业出版社出版: 1−79.

    [48]

    施福军, 黄则月, 李婷, 等. 2018. 望天树天然林土壤微生物生物量碳氮垂直分布及相关性分析[J]. 林业与环境科学, 34: 72−76. doi: 10.3969/j.issn.1006-4427.2018.06.012

    [49]

    王全成, 郑勇, 宋鸽, 等. 2021. 亚热带次级森林演替过程中模拟氮磷沉降对土壤微生物生物量及土壤养分的影响[J]. 生态学报, 41(15): 6245−6256.

    [50]

    王绍强, 于贵瑞. 2008. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 28(8): 3938−3945. doi: 10.3321/j.issn:1000-0933.2008.08.054

    [51]

    武汉市园林和林业局. 2021年武汉市绿化状况公报[EB/OL]. (2022−03−17). [2022−12−07]. http://ylj.wuhan.gov.cn/zwgk/zwxxgkzl_12298/tjxx/lhgb_12361/202203/t20220317_1941383.shtml.

    [52]

    杨剑虹, 王成林, 代亨林. 2008. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社.

    [53]

    尤业明, 王娟, 黄雪蔓, 等. 2016. 暖温带森林土壤微生物量、群落结构和活性对植物地下碳源的响应[J]. 广西植物, 36(7): 837−847. doi: 10.11931/guihaia.gxzw201409049

    [54]

    张海燕. 2005. 有关黑土微生物量与土壤肥力关系的研究[D]. 沈阳农业大学硕士学位论文.

    [55]

    张雅茜, 方晞, 冼应男, 等. 2019. 亚热带区4种林地土壤微生物生物量碳氮磷及酶活性特征[J]. 生态学报, 39(14): 5326−5338.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  351
  • PDF下载数:  75
  • 施引文献:  0
出版历程
收稿日期:  2023-09-08
修回日期:  2024-03-18
刊出日期:  2025-01-15

目录