Research on ground substrate modeling, classification and survey based on unified management of natural resources
-
摘要:
基于自然资源统一管理的需要,自然资源部提出了“地表基质”的概念,并组织开展典型地区地表基质试点调查工作。目前,地表基质三级分类体系仍未形成统一认识和标准,严重制约着地表基质数据调查、野外填图、成果应用等工作。鉴于此,通过辨析地表基质内涵,明确了地表基质的理论意义和应用价值,综合考虑国土城镇空间、生态空间和农业空间规划的数据利用需求,建立了基于调查−分类−应用的地表基质垂向空间层次模型,可实现与岩石、砾质、土质、泥质4类地表基质数据的有机结合,进而提出三级分类体系方案。该方案以《地表基质分类方案(试行)》二级类型为基础,与现有分类体系充分衔接,并以现有的研究基础和现行技术标准为依据,在命名上遵守自然科学术语从先的惯例,通过科学编号,形成具有科学性、统一性、操作性、应用性和规范性的三级体系,具有应用的可行性,可为开展地表基质理论研究和调查应用提供借鉴和参考。
Abstract:Based on the needs of unified management of natural resources, the Ministry of Natural Resources of China has put forward the concept of "ground substrate" and has organized a pilot survey of surface substrate in typical areas. At present, the three−level classification system of ground substrate has not yet formed a unified understanding and standard, which seriously restricts the work of ground substrate data investigation, field mapping and application of results. In view of this, this paper clarifies the theoretical significance and application value of ground substrate by analyzing the connotation of ground substrate, comprehensively considers the data utilization needs of national urban space, ecological space and agricultural spatial planning, and establishes a spatial hierarchy model of ground substrate based on survey−classification−application, which can realize the organic combination with four types of ground substrate data: rock substrate, gravel substrate, soil substrate and mud substrate, and then proposes a three−level classification system scheme. Based on the secondary type of the Ground Substrate Classification Scheme, this scheme is fully connected with the existing classification system, and based on the existing research basis and current technical standards, it abides by the convention of natural science terminology in naming, and forms a scientific, unified, operational, applicable and normative three−level system through scientific numbering, which has the feasibility of application and can provide reference for the theoretical research and investigation and application of ground substrate.
-
-
表 1 地表基质相近概念辨析
Table 1. Identification of similar concepts in the ground substrate
名称 所属学科 特征 功能属性 空间属性 地球关键带 地球系统科学 指岩石圈、水圈、土壤圈、生物圈和大气圈五大圈层交汇的异质性区域 供给资源产品、支持物质和能量的循环和流动、调控自然生境等 从未风化基岩面到植被冠层的连续体域 第四纪沉积物 地质学 呈松散状态沉积的物质,具有较大孔隙 记录环境变迁和地质事件、成壤作用形成土壤等 在山丘、丘陵及剥蚀平原的地表 立地条件 林草学 自然环境因素的总和,包括地形、土壤、水文、生物、人为活动等环境因素等 水源涵养、水土保持、生物多样性保护等 土壤层至大气圈层的环境空间 土壤 土壤学 陆地表面由岩石风化和有机物分解形成 保持水分、供给植物养分、调节气候和环境等 陆地表疏松层 地表基质 自然资源学 出露于地球陆域地表浅部或水域水体底部,具有岩石、砾质、土质、泥质等特征 孕育和支撑自然资源 范围覆盖固体地球表面,包括陆域和海域全部国土空间 表 2 岩石三级分类
Table 2. Three-level classification of rock substrate
一级类 二级类 三级类 编号 名称 编号 名称 描述 编号 名称 描述 A 岩石 A1 火成岩 是由岩浆喷出地表或侵入地壳冷却凝固形成的岩石 A11 酸性岩类 SiO2含量为63%~75% A12 中性岩类 SiO2含量为52%~63% A13 基性岩类 SiO2含量为45%~52% A14 超基性岩类 SiO2含量小于45% A15 碱性岩类 指富含碱性矿物的火成岩 A16 火山碎屑岩类 火山喷发所产生的各种碎屑物质经过短距离搬运或沉积形成的岩石 A2 沉积岩 在地壳表层条件下,母岩经风化作用、生物作用、化学作用和某种火山作用的产物,经搬运、沉积形成成层的松散沉积物,而后固结而成的岩石 A21 陆缘碎屑岩类 沉积物经过风化、侵蚀、运输等过程,在陆缘区域沉积形成的岩石类型 A22 泥质岩类 主要由粘土矿物所组成的沉积岩石 A23 蒸发岩类 由湖盆、海盆中的卤水经蒸发、浓缩,盐类物质依不同的溶解度结晶而成化学沉积岩 A24 碳酸盐岩类 由方解石、白云石等自生碳酸盐矿物组成的沉积岩 A25 特殊岩类 包括铝质岩、铁质岩、锰质岩、磷质岩、硅质岩等内源沉积岩,系指组成岩石的沉积物是由生物、化学和生物化学作用形成 A3 变质岩 在变质作用条件下,由地壳中已经存在的岩石变成的具有新的矿物组合及变质结构与构造特征的岩石 A31 长英质变质
岩类由长英质岩石在高温高压下发生变质作用形成的岩石类型 A32 泥质变质岩类 指由原始沉积岩(如泥岩、页岩等)在经变质作用,具有细粒、片理、层理等特点的岩石 A33 基性变质岩类 指由基性岩经过变质作用形成,具有细粒、块状晶粒、片理等特点的岩石 A34 钙质变质岩类 指由富含钙的岩石经变质作用而形成的一种新的岩石 表 3 砾质三级分类
Table 3. Three-level classification of gravel substrate
一级类 二级类 三级类 编号 名称 编号 名称 描述 编号 名称 描述 B 砾质 B1 巨砾 巨砾体积含量≥75% B11 棱角状巨砾 具尖锐的棱角,棱线向内凹进 B12 次棱角状巨砾 棱和角均稍有磨蚀,但仍清楚可见 B13 亚圆状巨砾 棱角有明显的磨损,棱线略有向外凸出,但原始轮廓还清楚可见 B14 圆状巨砾 棱角已经全部磨损消失,棱线向外突出呈弧状,原始轮廓均已消失 B2 粗砾 粗砾体积含量≥75% B21 棱角状粗砾 具尖锐的棱角,棱线向内凹进 B22 次棱角状粗砾 棱和角均稍有磨蚀,但仍清楚可见 B23 亚圆状粗砾 棱角有明显的磨损,棱线略有向外凸出,但原始轮廓还清楚可见 B24 圆状粗砾 棱角已经全部磨损消失,棱线向外突出呈弧状,原始轮廓均已消失 B3 中砾 中砾体积含量≥75% B31 棱角状中砾 具尖锐的棱角,棱线向内凹进 B32 次棱角状中砾 棱和角均稍有磨蚀,但仍清楚可见 B33 亚圆状中砾 棱角有明显的磨损,棱线略有向外凸出,但原始轮廓还清楚可见 B34 圆状中砾 棱角已经全部磨损消失,棱线向外突出呈弧状,原始轮廓均已消失 B4 细砾 细砾体积含量≥75% B41 棱角状细砾 具尖锐的棱角,棱线向内凹进 B42 次棱角状细砾 棱和角均稍有磨蚀,但仍清楚可见 B43 亚圆状细砾 棱角有明显的磨损,棱线略有向外凸出,但原始轮廓还清楚可见 B44 圆状细砾 棱角已经全部磨损消失,棱线向外突出呈弧状,原始轮廓均已消失 表 4 土质三级分类
Table 4. Three-level classification of soil substrate
一级类 二级类 三级类 编号 名称 编号 名称 描述 编号 名称 描述 C 土质 C1 粗骨土 不同粒级砾含量(体积计)25%~75% C11 重粗骨土 筛除砾质后,粗骨粒质量含量≥60% C12 中粗骨土 筛除砾质后,粗骨粒质量含量30%~60% C13 轻粗骨土 筛除砾质后,粗骨粒质量含量<30% C2 砂土 不同粒级砾含量(体积计)<25%,筛除砾质后,砂粒含量(质量计)≥55% C21 极重砂土 筛除砾质后,砂粒质量含量>80% C22 重砂土 筛除砾质后,砂粒质量含量70%~80% C23 中砂土 筛除砾质后,砂粒质量含量60%~70% C24 轻砂土 筛除砾质后,砂粒质量含量55%~60% C3 壤土 不同粒级砾含量(体积计)<25%,筛除砾质后砂粒含量(质量计)<55%,细粘粒<30% C31 砂粉土 筛除砾质后,砂粒质量含量≥20%,粗粉粒≥40%,细粘粒质量含量<30% C32 粉土 筛除砾质后,砂粒质量含量<20%,粗粉粒≥40%,细粘粒质量含量<30% C33 砂壤土 筛除砾质后,砂粒质量含量≥20%,粗粉粒<40%,细粘粒质量含量<30% C34 壤土 筛除砾质后,砂粒质量含量<20%,粗粉粒<40%,细粘粒质量含量<30% C4 粘土 不同粒级砾含量(体积计)<25%,筛除砾质后细粘粒含量(质量计)≥30% C41 轻粘土 筛除砾质后,细粘粒质量含量30%~35% C42 中粘土 筛除砾质后,细粘粒质量含量35%~40% C43 重粘土 筛除砾质后,细粘粒质量含量40%~60% C44 极重粘土 筛除砾质后,细粘粒质量含量≥60% 表 5 砾、土颗粒的粒径划分
Table 5. Particle size classification of gravel and soil particles
mm 巨砾粒 粗砾粒 中砾粒 细砾粒 ≥256 ≥64 ≥4 ≥2 粗骨粒 砂粒 粗粉粒 细粘粒 ≥1 ≥0.05 ≥0.01 <0.001 表 6 土质质地分类
Table 6. The texture classification of soil substrate
质地组 质地名称 颗粒组成和级配 砾粒(体积计) 粗骨粒 砂粒 粗粉粒 细粘粒 粗骨土 重粗骨土 25%~75% ≥60% — — — 中粗骨土 30%~60% 轻粗骨土 <30% 砂土 极重砂土 <25% — >80% <30% 重砂土 70%~80% 中砂土 60%~70% 轻砂土 55%~60% 壤土 砂粉土 ≥20% ≥40% 粉土 <20% 砂壤土 ≥20% <40% 壤土 <20% 粘土 轻粘土 — — 30%~35% 中粘土 35%~40% 重粘土 40%~60% 极重粘土 >60% 表 7 泥质三级分类
Table 7. Three-level classification of mud substrate
一级类 二级类 三级类 编号 名称 编号 名称 描述 编号 名称 描述 D 泥质 D1 淤泥 湖沼、河湾、海湾或近海等水体底部有微生物参与条件下形成的一种近代沉积物,富含有机物,天然含水量大于液限 D11 酸性淤泥 pH<7 D12 中性淤泥 pH=7 D13 碱性淤泥 pH>7 D2 软泥 生物遗骸质量含量<30%的深海泥质沉积物 D21 酸性软泥 pH<7 D22 中性软泥 pH=7 D23 碱性软泥 pH>7 D3 深海粘土 远洋沉积物中生物遗骸质量含量<30%的细粒泥质沉积物之总称 D31 酸性深海粘土 pH<7 D32 中性深海粘土 pH=7 D33 碱性深海粘土 pH>7 表 8 宁海县地表基质三级类型
Table 8. Tertiary type of ground substrate in Ninghai County
一级类 二级类 三级类 编号 名称 编号 名称 编号 名称 A 岩石 A1 火成岩 A12 基性岩 A13 中性岩 A14 酸性岩 A2 沉积岩 A21 陆源碎屑岩 B 砾质 B3 中砾 B33 亚圆状中砾 B4 细砾 B43 亚圆状细砾 C 土质 C2 砂土 C22 重砂土 C24 轻砂土 C3 壤土 C32 粉土 C34 壤土 C4 粘土 C41 轻粘土 D 泥质 D1 淤泥 D12 中性淤泥 D13 碱性淤泥 -
[1] An P J, Zhang Z Q, Wang L W. 2016. Review of earth critical zone research[J]. Advances in Earth Science, 31(12): 1228−1234 (in Chinese with English abstract).
[2] Chang X, Zhang Y, Song J N. 2018. Looking at the new era of land spatial planning from the establishment of the Ministry of Natural Resources[J]. China Land, (5): 25−27 (in Chinese with English abstract).
[3] Chen G G, Zhang X D, Zhang J, et al. 2020. Discussion on natural resources classification system[J]. East China Geology, 41(3): 209−214 (in Chinese with English abstract).
[4] Chen J, Wu H, Zhang J X, et al. 2022. Building natural resources surveying and monitoring technological system: Direction and research agenda[J]. Acta Geographica Sinica, 77(5): 1041−1055 (in Chinese with English abstract).
[5] Chen Y F, Dong M. 2003. Spatial heterogeneity in ecological systems[J]. Acta Ecologica Sinica, (2): 346−352 (in Chinese with English abstract).
[6] Chorover J, Troch P A, Rasmussen C, et al. 2011. How water, carbon, and energy drive critical zone evolution: The Jemez−Santa Catalina Critical Zone Observatory[J]. Vadose Zone Journal, 10(3): 884−899. doi: 10.2136/vzj2010.0132
[7] Deng S Q. 1986. Suggestions to amend and supplement the classification system of soil texture in China[J]. Soils, 18(6): 304−311 (in Chinese).
[8] Ding G Y, Kao W M, Huang S Y, et al. 1964. Colour characteristics of quaternary sediments from the North China Plain and their geological significance[J]. Scientia Geologica Sinica, (2): 143−159 (in Chinese).
[9] Fu S H, Lu B J, Ye Z H. 2010. Effects of rock fragments on runoff and soil erosion[J]. Journal of Soil and Water Conservation, 24(2): 15−18 (in Chinese with English abstract).
[10] Ge L S, Hou H X, Xia R. 2022. Construction of Technical System for Ground Substrate Survey of Natural Resources[J]. Geomatics World, 29(5): 20−27 (in Chinese with English abstract).
[11] Ge L S, Xia R. 2023. High−standard farmland construction: Ground substrate survey−based solutions[J]. Natural Resource Economics of China, 36(5): 4−13 (in Chinese with English abstract).
[12] Ge L S, Yang G C. 2020. New field of natural resources survey and monitoring: Ground substrate survey[J]. Natural Resource Economics of China, 33(9): 4−11, 67 (in Chinese with English abstract).
[13] Hahm W J, Riebe C S, Lukens C E. 2014. Bedrock composition regulates mountain ecosystems and landscape evolution[J]. Proceedings of the National Academy of Sciences, 111(9): 3338−3343. doi: 10.1073/pnas.1315667111
[14] Hao A B, Yin Z Q, Peng L, et al. 2020. A discussion of the classification of natural resources based on the combination of academic−legal principles and management[J]. Hydrogeology & Engineering Geology, 47(6): 1−7 (in Chinese with English abstract).
[15] Hong M M, Wang F F, Yang H, et al. 2008. Application of attribute hierarchical model on soil quality assessment[J]. Environmental Science Survey, (2): 72−75 (in Chinese with English abstract).
[16] Huang Q, Zeng Y, Jiang Q. 2015. Progress and prospect of the study on “making great efforts to promote ecological civilization construction”[J].China Population, Resources and Environment, 25(2): 111−120 (in Chinese with English abstract).
[17] Huang X J. 2019. Unified management of natural resources: A new era, new characteristics, and new trend[J]. Resources Science, 41(1): 1−8 (in Chinese with English abstract).
[18] Jia L, Liu H, O Y Y, et al. 2022. Division scheme of surface substrate mapping units of mountainous−hilly area in South China based on geological formations research: example from Xinhui−Taishan area in Pearl River Delta[J]. Northwestern Geology, 55(4): 140−157 (in Chinese with English abstract).
[19] Li B G, Li W D, Shi Y C. 1998. Some distribution features of textural layers of regional soils in a fluviogenic plain[J]. Acta Pedologica Sinica, (4): 433−440 (in Chinese with English abstract).
[20] Li Y, Gao M, Wei C F, et al. 2006. Spatial distribution of rock fragment and its influences on soil hydrological processes[J]. Chinese Agricultural Science Bulletin, (5): 271−276 (in Chinese with English abstract).
[21] Lin J, Wu Y X, Wu J Y, et al. 2018. Construction of the spatial planning system: with discussions on the relationship between spatial planning, territorial spatial regulation, and natural resources supervision[J]. City Planning Review, 42(5): 9−17 (in Chinese with English abstract).
[22] Liu Q J, Liu Y X, Wang Y, et al. 2023. A proposed scheme for third−level classification of ground substrate[J]. Urban Geology, 18(1): 1−8 (in Chinese with English abstract).
[23] Liu Z F, Fu B J, Liu G H, et al. 2006. Soil quality: concept, indicators and its assessment[J]. Acta Ecologica Sinica, (3): 901−913 (in Chinese with English abstract).
[24] Lukasz P, Jonathan D P, Pavel S. 2016. Root, rock, and regolith: Biomechanical and biochemical weathering by treesand its impact on hillslopes−A critical literature review[J]. Earth−Science Reviews, 159: 142−159. doi: 10.1016/j.earscirev.2016.06.002
[25] Luo Z B, Fan J, Shao M A. 2022. Progresses of weathered bedrock ecohydrology in the Earth’s critical zone[J]. Chinese Science Bulletin, 67(27): 3311−3323 (in Chinese with English abstract). doi: 10.1360/TB-2022-0046
[26] Martin J B, Covington M, Toran L, et al. 2021. Carbonate Critical Zone Research Coordination Network Workshop Report[R]. Virginia: Karst Waters Institute, Leesburg.
[27] Ministry of Natural Resources. 2020a. Notice of the ministry of natural resources on issuing the overall plan for the construction of the Natural Resources Investigation and Monitoring System [EB/OL]. (2020−01−17)[2024−01−09]. http://gi.mnr.gov.cn/202001/t20200117_2498071.html (in Chinese).
[28] Ministry of Natural Resources. 2020b. Notice of the general office of the ministry of natural resources printing and distributing “The ground substrate classification scheme (trial)”[EB/OL]. (2020−12−22) [2024−01−09]. http://gi.mnr.gov.cn/202012/t202012222596025.html (in Chinese).
[29] Pei X L, Han X L, Qian J L, et al. 2020. Soil fertility assessment indicators from the perspective of natural resources comprehensive observation[J]. Resources Science, 42(10): 1953−1964 (in Chinese with English abstract).
[30] Peng L, Wang Y N, Yin Z Q, et al. 2022. Current status of natural resources classification and unified classification of natural resources for the future[J]. Geological Bulletin of China, 41(12): 2106−2113 (in Chinese with English abstract).
[31] Pu J B. 2022. Earth's critical zone and karst critical zone: Structure, characteristic and bottom boundary[J]. Bulletin of Geological Science and Technology, 41(5): 230−241.
[32] Qian F K, Zhang L L, Jia L, et al. 2016. Site condition assessment during prime farmland demarcating[J]. Journal of Natural Resources, 31(3): 447−456 (in Chinese with English abstract).
[33] Rasmussen C, Pelletier D J, Troch A P, et al. 2015. Quantifying topographic and vegetation effects on the transfer of energy and mass to the critical zone[J]. Vadose Zone Journal, 14(11): 1−16.
[34] State Council of the People's Republic of China. 2022. Circular of the State Council on the third national soil census[OL]. (2022−02−16)[2024−5−9]. https://www.gov.cn/zhengce/content/2022−02/16/content_5673906.htm (in Chinese).
[35] Sun X Y, Xu W, Wang M J. 2022. Investigation and study on stratification and classification of ground substrate layer[J]. China Land, (7): 34−36 (in Chinese with English abstract).
[36] Wang D L, Yuan G D, Gong Z T. 1988. Some insights on soil systematic classification and soil survey[J]. Soils, (1): 49−52 (in Chinese).
[37] Wang J B, Wei X F, Zhang H Q, et al. 2020. The eco−geological survey based on geological formation, exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City, Hebei Province[J]. Geology in China, 47(6): 1611−1624 (in Chinese with English abstract).
[38] Wang J J, Chen C R, Yu Y C, et al. 2011. Advances in application of models in soil quality evaluation[J]. Guizhou Agricultural Sciences, 39(7): 115−118 (in Chinese with English abstract).
[39] Wu K N, Zhao R. 2019. Soil texture classification and its application in China[J]. Acta Pedologica Sinica, 56(1): 227−241 (in Chinese with English abstract).
[40] Xu J X. 1997. Areal variation in the relation between chemical and mechanical denudations in the monsoon−influenced eastern China[J]. Scientia Geographica Sinica, (3): 10−16 (in Chinese with English abstract).
[41] Yan X B. 2006. Ecological environment construction and water resources protection and utilisation in Silt River Basin[J]. Shanxi Water Resources, (1): 38−39 (in Chinese with English abstract).
[42] Yang J L, Zhang G L, Huang L M. 2013. Rock weathering and soil formation rates of a forested watershed in the typical subtropical granite area[J]. Acta Pedologica Sinica, 50(2): 253−259 (in Chinese with English abstract).
[43] Yang S H, Song X D, Wu H Y, et al. 2024. A review and discussion on the Earth's Critical Zone research: status quo and prospect[J]. Acta Pedologica Sinica, 61(2): 308−318 (in Chinese with English abstract).
[44] Yao X F, Yang J F, Zuo L Y, et al. 2022. Discussion on connotation and survey strategy of the ground substrate[J]. Geological Bulletin of China, 41(12): 2097−2105 (in Chinese with English abstract).
[45] Yin Z Q, Qin X G, Zhang S J, et al. 2020. Preliminary study on classification and investigation of surface substrate[J]. Hydrogeology & Engineering Geology, 47(6): 8−14 (in Chinese with English abstract).
[46] Yuan G L, Hou H X, Liu J Y, et al. 2023. Introduction to the methods of ecology−geological survey for servicing ecological civilization: Example from ecology−supporting sphere survey[J]. Northwestern Geology, 56(3): 30−38 (in Chinese with English abstract).
[47] Yue W Z, Wang T Y, Zhen Y L. 2020. Unified zoning of territorial space use control derived from the core concept of "Three types of spatial zones and alert−lines"[J]. China Land Science, 34(5): 52−59,68 (in Chinese with English abstract).
[48] Zhang F R. 2021. Supporting the technical system for the unified survey of natural resources: An analysis of “The Surface Substrate Classification Scheme (Trial)”[N]. China Natural Resources News, 2021−1−8(3) (in Chinese).
[49] Zhang F R. 2023. On key survey elements and priority areas for the surface substrate layer[J]. China Land, (2): 40−41 (in Chinese with English abstract).
[50] Zhang F Y, Zhang W Y, Zhang X Y, et al. 2012. Key technique and scheme of classification and nomenclature for deep sea sediments[J]. Earth Science(Journal of China University of Geosciences), 37(1): 93−104 (in Chinese with English abstract).
[51] Zhang G L, Wang Q B, Zhang F R, et al. 2013. Criteria for establishment of soil family and soil series in Chinese soil taxonomy[J]. Acta Pedologica Sinica, 50(4): 826−834 (in Chinese with English abstract).
[52] Zhang X F, Wang C S, Li M. 2019. Demarcating ecological space and ecological protection red line under the framework of territory spatial planning[J]. Geographical Research, 38(10): 2430−2446 (in Chinese with English abstract).
[53] Zhang Y L, Luan Q L, Xiong C S, et al. 2021. Spatial heterogeneity evaluation and zoning of production−living−ecological space based on multi−source spatial data[J]. Transactions of the Chinese Society of Agricultural Engineering, 37(10): 214−223 (in Chinese with English abstract).
[54] Zhou K, Li J Y, Wang Q. 2021. Evaluation on agricultural production space and layout optimization based on resources and environmental carrying capacity: A case study of Fujian Province[J]. Scientia Geographica Sinica, 41(2): 280−289 (in Chinese with English abstract).
[55] Zhu W, Min F L, Lu Y Y, et al. 2013. Subject of "mud science and application technology" and its research progress[J]. Rock and Soil Mechanics, 34(11): 3041−3054 (in Chinese with English abstract).
[56] Zhu X S, Pei X L, Wang W, et al. 2024. Spatial heterogeneity characteristics of ground substrate in hilly area and its impact on vegetation ecology[J]. Geological Bulletin of China, 43(9): 1544−1554 (in Chinese with English abstract).
[57] 安培浚, 张志强, 王立伟. 2016. 地球关键带的研究进展[J]. 地球科学进展, 31(12): 1228−1234.
[58] 常新, 张杨, 宋家宁. 2018. 从自然资源部的组建看国土空间规划新时代[J]. 中国土地, (5): 25−27.
[59] 陈国光, 张晓东, 张洁, 等. 2020. 自然资源分类体系探讨[J]. 华东地质, 41(3): 209−214.
[60] 陈军, 武昊, 张继贤, 等. 2022. 自然资源调查监测技术体系构建的方向与任务[J]. 地理学报, 77(5): 1041−1055. doi: 10.11821/dlxb202205001
[61] 陈玉福, 董鸣. 2003. 生态学系统的空间异质性[J]. 生态学报, 23(2): 346−352. doi: 10.3321/j.issn:1000-0933.2003.02.019
[62] 邓时琴. 1986. 关于修改和补充我国土壤质地分类系统的建议[J]. 土壤, 18(6): 304−311.
[63] 丁国瑜, 高維明, 黄述银, 等. 1964. 华北平原第四纪沉积物的颜色特征及其地质意义[J]. 地质科学, (2): 143−159.
[64] 符素华, 路炳军, 叶芝菡. 2010. 地表砾石对降雨径流及土壤侵蚀的影响[J]. 水土保持学报, 24(2): 15−18.
[65] 葛良胜, 侯红星, 夏锐. 2022. 自然资源地表基质调查技术体系构建[J]. 地理信息世界, 29(5): 20−27. doi: 10.3969/j.issn.1672-1586.2022.05.005
[66] 葛良胜, 夏锐. 2023. 高标准农田建设: 基于地表基质调查的解决方案[J]. 中国国土资源经济, 36(5): 4−13.
[67] 葛良胜, 杨贵才. 2020. 自然资源调查监测工作新领域: 地表基质调查[J]. 中国国土资源经济, 33(9): 4−11.
[68] 国务院. 2022. 国务院关于开展第三次全国土壤普查的通知[OL]. (2022−02−16)[2024−5−9]. https://www.gov.cn/zhengce/content/2022−02/16/content_5673906.htm.
[69] 郝爱兵, 殷志强, 彭令, 等. 2020. 学理与法理和管理相结合的自然资源分类刍议[J]. 水文地质工程地质, 47(6): 1−7.
[70] 洪棉棉, 王菲凤, 杨晖, 等. 2008. 属性层次模型在土壤环境质量评价中的应用[J]. 环境科学导刊, (2): 72−75. doi: 10.3969/j.issn.1673-9655.2008.02.023
[71] 黄勤, 曾元, 江琴. 2015. 中国推进生态文明建设的研究进展[J]. 中国人口·资源与环境, 25(2): 111−120. doi: 10.3969/j.issn.1002-2104.2015.02.015
[72] 黄贤金. 2019. 自然资源统一管理: 新时代、新特征、新趋向[J]. 资源科学, 41(1): 1−8.
[73] 贾磊, 刘洪, 欧阳渊, 等. 2022. 基于地质建造的南方山地−丘陵区地表基质填图单元划分方案——以珠三角新会台山地区为例[J]. 西北地质, 55(4): 140−157.
[74] 李保国, 李卫东, 石元春. 1998. 冲积平原上区域土壤质地层次的某些分布特征[J]. 土壤学报, 35(4): 433−440. doi: 10.3321/j.issn:0564-3929.1998.04.001
[75] 李燕, 高明, 魏朝富, 等. 2006. 土壤砾石的分布及其对水文过程的影响[J]. 中国农学通报, 22(5): 271−276. doi: 10.3969/j.issn.1000-6850.2006.05.072
[76] 林坚, 吴宇翔, 吴佳雨, 等. 2018. 论空间规划体系的构建——兼析空间规划、国土空间用途管制与自然资源监管的关系[J]. 城市规划, 42(5): 9−17.
[77] 刘清俊, 刘雨鑫, 王颖, 等. 2023. 地表基质三级分类方案探讨[J]. 城市地质, 18(1): 1−8. doi: 10.3969/j.issn.1007-1903.2023.01.001
[78] 刘占锋, 傅伯杰, 刘国华, 等. 2006. 土壤质量与土壤质量指标及其评价[J]. 生态学报, 26(3): 901−913. doi: 10.3321/j.issn:1000-0933.2006.03.036
[79] 骆占斌, 樊军, 邵明安. 2022. 地球关键带基岩风化层生态水文研究进展[J]. 科学通报, 67(27): 3311−3323.
[80] 裴小龙, 韩小龙, 钱建利, 等. 2020. 自然资源综合观测视角下的土壤肥力评价指标. 资源科学, 42(10): 1953−1964.
[81] 彭令, 王英男, 殷志强, 等. 2022. 自然资源分类现状与面向未来的统一分类研究[J]. 地质通报, 41(12): 2106−2113. doi: 10.12097/j.issn.1671-2552.2022.12.003
[82] 蒲俊兵. 2022. 地球关键带与岩溶关键带: 结构、特征、底界[J]. 地质科技通报, 41(5): 230−241.
[83] 钱凤魁, 张琳琳, 贾璐, 等. 2016. 基本农田划定中的耕地立地条件评价研究[J]. 自然资源学报, 31(3): 447−456. doi: 10.11849/zrzyxb.20150218
[84] 孙禧勇, 许玮, 王明建. 2022. 地表基质层分层分类调查研究[J]. 中国土地, (7): 34−36.
[85] 王敦领, 袁国栋, 龚子同. 1988. 关于土壤系统分类和土壤调查的某些见解[J]. 土壤, (1): 49−52.
[86] 王纪杰, 陈昌仁, 俞元春, 等. 2011. 不同模型在土壤质量评价中的应用研究进展[J]. 贵州农业科学, 39(7): 115−118. doi: 10.3969/j.issn.1001-3601.2011.07.034
[87] 王京彬, 卫晓锋, 张会琼, 等. 2020. 基于地质建造的生态地质调查方法——以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 47(6): 1611−1624. doi: 10.12029/gc20200601
[88] 吴克宁, 赵瑞. 2019. 土壤质地分类及其在我国应用探讨[J]. 土壤学报, 56(1): 227−241. doi: 10.11766/trxb201803120129
[89] 许炯心. 1997. 地表物质迁移的构成特征及其地域变化[J]. 地理科学, 17(3): 10−16.
[90] 闫晓兵. 2006. 淤泥河流域生态环境建设与水资源保护利用[J]. 山西水利, (1): 38−39. doi: 10.3969/j.issn.1004-7042.2006.01.020
[91] 杨金玲, 张甘霖, 黄来明. 2013. 典型亚热带花岗岩地区森林流域岩石风化和土壤形成速率研究[J]. 土壤学报, 50(2): 253−259. doi: 10.11766/trxb201204120128
[92] 杨顺华, 宋效东, 吴华勇, 等. 2024. 地球关键带研究评述: 现状与展望[J]. 土壤学报, 61(2): 308−318.
[93] 姚晓峰, 杨建锋, 左力艳, 等. 2022. 地表基质的内涵辨析与调查思路[J]. 地质通报, 41(12): 2097−2105. doi: 10.12097/j.issn.1671-2552.2022.12.002
[94] 殷志强, 秦小光, 张蜀冀, 等. 2020. 地表基质分类及调查初步研究[J]. 水文地质工程地质, 47(6): 8−14.
[95] 袁国礼, 侯红星, 刘建宇, 等. 2023. 服务生态文明的生态地质调查工作方法浅析——以地表基质调查为例[J]. 西北地质, 56(3): 30−38. doi: 10.12401/j.nwg.2023065
[96] 岳文泽, 王田雨, 甄延临. 2020. “三区三线”为核心的统一国土空间用途管制分区[J]. 中国土地科学, 34(5): 52−59.
[97] 张凤荣. 2021. 支撑自然资源统一调查技术体系: 对《地表基质分类方案(试行)》的解析[N]. 中国自然资源报, 2021−01−08(3).
[98] 张凤荣. 2023. 论地表基质层重点调查内容和优先调查区域[J]. 中国土地, (2): 40−41.
[99] 张富元, 章伟艳, 张霄宇, 等. 2012. 深海沉积物分类与命名的关键技术和方案[J]. 地球科学(中国地质大学学报), 37(1): 93−104.
[100] 张甘霖, 王秋兵, 张凤荣, 等. 2013. 中国土壤系统分类土族和土系划分标准[J]. 土壤学报, 50(4): 826−834. doi: 10.11766/trxb201303180124
[101] 张雪飞, 王传胜, 李萌. 2019. 国土空间规划中生态空间和生态保护红线的划定[J]. 地理研究, 38(10): 2430−2446. doi: 10.11821/dlyj020171221
[102] 张永蕾, 栾乔林, 熊昌盛, 等. 2021. 基于多源空间数据的“三生”空间异质性评价与分区划定[J]. 农业工程学报, 37(10): 214−223. doi: 10.11975/j.issn.1002-6819.2021.10.026
[103] 周侃, 李九一, 王强. 2021. 基于资源环境承载力的农业生产空间评价与布局优化——以福建省为例[J]. 地理科学, 41(2): 280−289.
[104] 朱伟, 闵凡路, 吕一彦, 等. 2013. “泥科学与应用技术”的提出及研究进展[J]. 岩土力学, 34(11): 3041−3054.
[105] 祝晓松, 裴小龙, 王伟, 等. 2024. 山丘区地表基质空间异质性特征及其对植被生态影响[J]. 地质通报, 43(9): 1544−1554.
[106] 自然资源部. 2020a. 自然资源部关于印发《自然资源调查监测体系构建总体方案》的通知[EB/OL]. (2020−01−17) [2024−01−09]. http://gi.mnr.gov.cn/202001/t20200117_2498071.html.
[107] 自然资源部. 2020b. 自然资源部办公厅印发《地表基质分类方案(试行)》的通知[EB/OL]. (2020−12−22) [2024−01−09]. http://gi.mnr.gov.cn/202012/t202012222596025.html.
-