Sulfur isotopes and trace elements of sulfides in gold deposits in the Shuangjianshan-Langwashan area of the Beishan orogenic belt as indicators of metallogenic mechanism
-
摘要:
研究目的 双尖山—狼娃山地区位于中亚造山带中段南缘,北山造山带北部的明水岩浆弧地段,目前该地区矿床成因等信息尚不明确,厘清该地区金矿床硫化物中微量元素的赋存状态、流体性质、成矿机制,进而指导勘查实践。
研究方法 在野外地质调查和矿相学研究的基础上,对区域内双尖山、大红泉、狼娃山金矿床主成矿阶段的黄铁矿和黄铜矿开展 LA−ICP−MS 微量和稀土元素及硫同位素分析。
研究结果 结果表明,双尖山—狼娃山地区金矿床的金有可见金及不可见金2种赋存形式,不可见金主要以固溶体金(Au1+)的形式赋存于黄铁矿晶格中。Pb和Bi主要以辉铋矿或Bi以固溶体的形式存在于方铅矿包裹体中。大红泉和狼娃山矿床中Zn与Cd、Pb与Sb之间呈正相关关系,表明黄铁矿中存在闪锌矿、方铅矿等矿物包体。双尖山—狼娃山地区金矿床Nb/La、Th/La、Hf/Sm值多小于1,指示成矿流体中富含Cl−;Co、Ni的含量及比值指示成矿流体具有中低温、低盐度的特点;Cu/Au值指示成矿流体整体处于较还原的环境;Y/Ho、Zr/Hf、Nb/Ta值指示成矿过程存在多期次流体的叠加,双尖山金矿床成矿晚期流体可能与大气降水相混合。双尖山、大红泉和狼娃山矿床硫化物δ34S均值分别为2.58‰、2.07‰和1.22‰,双尖山硫同位素值变化范围相较于大红泉、狼娃山金矿床偏大,显示岩浆硫与地层硫的混合特征,而大红泉和狼娃山金矿床δ34S值均为极低的正值,显示出岩浆硫的特征。
结论 综合对比野外地质特征、微量元素及硫同位素组成,认为双尖山及狼娃山金矿床属低硫型浅成低温热液型金矿床,大红泉金矿床为造山型金矿床,区域成矿作用具有多期次性。
Abstract:Objective The Shuangjianshan-Langwashan area is situated in the southern margin of the central segment of the Central Asian Orogenic Belt, specifically within the Mingshui magmatic arc of the northern Beishan Orogenic Belt. Currently, critical information regarding the genesis of mineral deposits in this region remains unclear. This study aims to investigate the occurrence state of trace elements in sulfides, fluid characteristics, and metallogenic mechanisms of gold deposits in the Shuangjianshan-Langwashan area, with the ultimate objective of guiding exploration practices.
Methods Based on field geological investigations and ore microscopy studies, LA−ICP−MS analyses of trace elements, rare−earth elements, and sulfur isotopes were performed on pyrite and chalcopyrite from the main metallogenic stages of the Shuangjianshan, Dahongquan, and Langwashan gold deposits in the region.
Results The results show that gold in the Shuangjianshan−Langwashan area gold deposits exists in two forms: visible gold and invisible gold. Invisible gold is mainly hosted in the pyrite lattice in the form of solid−solution gold (Au1+). Pb and Bi are mainly present in galena inclusions, either in the form of bismuthinite or as solid−solution Bi. In the Dahongquan and Langwashan deposits, the positive correlations between Zn and Cd, and between Pb and Sb indicate the presence of mineral inclusions such as sphalerite and galena in pyrite. The Nb/La, Th/La, and Hf/Sm values in the Shuangjianshan−Langwashan gold deposit are mostly less than 1, indicating that the ore−forming fluid is rich in Cl−. Likewise, the content and ratio of Co and Ni indicate that the ore−forming fluid has the characteristics of medium−low temperature and low salinity. Moreover, Cu/Au indicates that the overall ore−forming fluid is in a relatively reducing environment. And the Y/Ho, Zr/Hf, and Nb/Ta values indicate the presence of multiple stages of fluid superposition in the metallogenic process. In the late metallogenic stage of the Shuangjianshan gold deposit, the fluid may have mixed with atmospheric precipitation. The average δ34S values of sulfides from the Shuangjianshan, Dahongquan, and Langwashan deposits are 2.58‰, 2.07‰, and 1.22‰ respectively. The range of sulfur isotope values of the Shuangjianshan gold deposit is larger than that of the Dahongquan and Langwashan gold deposits, indicating the mixing characteristics of magmatic sulfur and stratigraphic sulfur. The δ34S values of the Dahongquan and Langwashan gold deposits are all extremely low positive values, indicating the characteristics of magmatic sulfur.
Conclusions Based on field geological phenomena, trace−element characteristics, and sulfur isotopes, it is considered that the Shuangjianshan and Langwashan gold deposits belong to low−sulfidation epithermal gold deposits, while the Dahongquan gold deposit is an orogenic gold deposit, and the metallogenesis in the area has multiple stages.
-
Key words:
- Beishan orogenic belt /
- gold deposit /
- trace elements /
- sulphur isotopes /
- genesis of deposits
-
-
图 1 北山地区大地构造位置图(a,据Xiao et al., 2010修改)和北山地区区域地质图(b,据Zhang et al., 2012;苗来成等,2014;王钏屹等,2018修改)及双尖山—狼娃山地区地质图(c,据甘肃省有色地质调查院,2019修改)
Figure 1.
图 2 双尖山(a,据白荣龙等,2022修改)、大红泉(b,据甘肃省有色地质调查院,2016修改)及狼娃山(c,据甘肃省有色地质勘查局天水矿产勘查院,2016修改)金矿床地质图
Figure 2.
图 7 双尖山—狼娃山地区金矿床Te及Au的赋存状态判别图(Te溶解度曲线据Keith et al., 2018;Au溶解度曲线据Reich et al., 2005)
Figure 7.
图 8 Ni−Co(a,底图据Bajwah et al., 1987; Brill, 1989修改)、Sb/Bi−As/Ag(b,底图据Augustin et al., 2019修改)、(Fe+S)−As(c)及Co−Ni−As(d)(c、d底图据李洪梁和李光明,2019修改)成因判别图
Figure 8.
图 9 双尖山、大红泉和狼娃山金矿床黄铁矿与现代海底热液和海水的Y/Ho值对比图(现代海水、BAB、MAR和EPR数据据Bau et al., 1997; Bau and Dulski, 1999;Douville et al., 1999;底图据第鹏飞等,2023)
Figure 9.
图 10 双尖山—狼娃山地区金矿床硫同位素直方图(a)及硫值对比图(b,底图据Hofes., 2009)
Figure 10.
表 1 双尖山—狼娃山地区金矿硫同位素测试结果
Table 1. Results of sulfur isotope testing of gold ores in the Shuangjianshan-Langwashan area
矿区 样品点号 矿物 δ34SV-CDT/‰ 矿区 样品点号 矿物 δ34SV-CDT /‰ 双尖山 SJS008-PY-1 黄铁矿 3.94 大红泉 DHQ006-PY-3 黄铁矿 1.65 SJS008-PY-2 黄铁矿 3.85 DHQ006-PY-4 黄铁矿 1.8 SJS008-PY-3 黄铁矿 6.28 DHQ006-PY-5 黄铁矿 2.00 SJS008-PY-4 黄铁矿 5.88 均值 2.08 SJS008-PY-5 黄铁矿 4.48 狼娃山 LWS001-PY-1 黄铁矿 0.94 SJS005-PY-1 黄铁矿 1.10 LWS001-PY-2 黄铁矿 1.91 SJS005-PY-2 黄铁矿 1.36 LWS001-PY-3 黄铁矿 2.01 SJS005-PY-3 黄铁矿 1.23 LWS001-PY-4 黄铁矿 2.00 SJS005-PY-4 黄铁矿 1.48 LWS001-PY-5 黄铁矿 0.7 SJS005-PY-5 黄铁矿 1.37 LWS002-PY-1 黄铁矿 0.69 SJS004-PY-1 黄铁矿 2.37 LWS002-PY-2 黄铁矿 0.59 SJS004-PY-2 黄铁矿 1.89 LWS002-PY-3 黄铁矿 1.10 SJS004-PY-3 黄铁矿 1.28 LWS002-PY-4 黄铁矿 1.02 SJS004-PY-4 黄铁矿 2.73 LWS002-PY-5 黄铁矿 1.30 SJS004-PY-5 黄铁矿 1.65 均值 1.22 均值 2.73 双尖山 SJS005-CP-1 黄铜矿 0.37 大红泉 DHQ002-PY-1 黄铁矿 2.34 DHQ002-PY-2 黄铁矿 2.30 大红泉 DHQ002-CP-1 黄铜矿 2.14 DHQ002-PY-3 黄铁矿 2.27 DHQ002-CP-2 黄铜矿 2.14 DHQ002-PY-4 黄铁矿 2.42 DHQ002-CP-3 黄铜矿 1.83 DHQ002-PY-6 黄铁矿 2.53 DHQ002-CP-4 黄铜矿 2.04 DHQ006-PY-1 黄铁矿 1.81 DHQ002-CP-5 黄铜矿 2.11 DHQ006-PY-2 黄铁矿 1.64 均值 2.05 表 2 双尖山-狼娃山地区金矿床黄铁矿稀土元素含量及特征值
Table 2. Contents and characteristic values of rare earth elements in pyrite of gold deposits in the Shuangjianshan-Langwashan area
10−6 元素 双尖山 大红泉 狼娃山 最大值 最小值 平均 最大值 最小值 平均 最大值 最小值 平均 La 0.027 0.005 0.011 0.095 0.000 0.024 0.014 0.001 0.005 Ce 0.048 0.002 0.011 0.230 0.000 0.028 0.011 0.000 0.003 Pr 0.008 0.000 0.004 0.034 0.000 0.006 0.008 0.000 0.004 Nd 0.051 0.001 0.022 0.156 0.001 0.027 0.039 0.002 0.019 Sm 0.065 0.004 0.027 0.045 0.003 0.013 0.077 0.014 0.030 Eu 0.016 0.001 0.007 0.020 0.001 0.005 0.013 0.001 0.006 Gd 0.037 0.000 0.024 0.073 0.001 0.022 0.058 0.003 0.020 Tb 0.003 0.000 0.001 0.013 0.000 0.003 0.004 0.000 0.002 Dy 0.024 0.001 0.012 0.074 0.001 0.017 0.018 0.006 0.011 Ho 0.007 0.000 0.002 0.017 0.000 0.003 0.006 0.001 0.003 Er 0.016 0.001 0.006 0.043 0.000 0.010 0.009 0.001 0.003 Tm 0.011 0.000 0.005 0.005 0.000 0.002 0.010 0.001 0.003 Yb 0.036 0.001 0.012 0.047 0.000 0.010 0.024 0.002 0.015 Lu 0.006 0.001 0.003 0.009 0.000 0.002 0.004 0.000 0.002 Y 0.026 0.002 0.013 0.461 0.001 0.065 0.012 0.001 0.006 ΣREE 0.152 0.021 0.083 0.829 0.005 0.100 0.114 0.018 0.061 LREE 0.115 0.006 0.051 0.564 0.001 0.060 0.102 0.004 0.035 HREE 0.064 0.005 0.032 0.265 0.004 0.040 0.087 0.004 0.026 LREE/HREE 5.393 0.125 1.919 4.383 0.165 1.088 14.972 0.127 2.637 LaN/YbN 3.023 0.111 1.046 5.624 0.519 1.924 0.478 0.080 0.262 δEu 2.886 0.038 1.192 2.385 0.242 0.889 1.000 0.902 0.953 δCe 1.000 0.227 0.714 1.000 0.110 0.764 1.257 0.044 0.739 表 3 双尖山—狼娃山地区金矿床黄铁矿微量元素含量
Table 3. Trace element content of pyrite in gold deposits in Shuangjianshan-Langwashan area
10−6 矿床 编号 矿物 Mn Co Ni Sb Pb Bi Se Sn Au Ag Cd In Cu Zn Ge As Te Tl 双尖山 SJS04-2-2-1 黄铁矿 0.25 17.51 1.55 -. -. 0.02 10.53 0.04 0.04 0.1 0.52 0.02 0.46 0.98 3.49 116.5 9.46 -. SJS04-2-2-2 黄铁矿 -. 95.63 4.4 0.14 0.03 0.01 15.28 0.14 0.02 -. 0.26 -. 0.23 1.1 4.5 266.1 14.22 0.02 SJS04-2-2-3 黄铁矿 0.16 26.03 16.72 0.09 0.02 0.01 8.72 -. 0.01 0.02 0.19 -. -. 1.06 5 39.34 7.34 0.02 SJS04-2-2-4 黄铁矿 -. 1.11 2.27 -. 0.05 0.27 -. -. 0.01 0.01 0.04 0.01 -. 1.15 3.79 9.66 0.47 0 SJS04-2-2-5 黄铁矿 -. 8.9 -. 0 0.03 -. 10.1 0 0.02 0.02 -. -. -. 0.1 3.97 16.06 4.01 0.03 SJS04-2-2-6 黄铁矿 0.05 338.9 -. 0.03 0.02 0.05 5.79 0.05 0 -. 0.05 -. 0.21 1.85 4.02 62.5 1.58 -. SJS04-2-2-7 黄铁矿 -. 15.8 2.04 0.04 0.03 -. 12.34 -. -. 0 -. 0 -. 0.02 3.59 7.83 0.47 -. SJS04-2-2-8 黄铁矿 0.26 30.71 -. 0.04 0.04 0.02 6.36 0.03 -. 0.04 -. -. 0.27 1.69 3.86 15.42 -. 0 SJS04-2-2-9 黄铁矿 -. 4.03 0.64 -. -. 0.02 2.21 0.03 0.01 -. 0.24 -. 0.28 1.44 3.72 10.23 -. -. SJS04-2-2-10 黄铁矿 -. 94.07 3.12 0.06 0.06 0.32 5.28 0.06 -. 1.48 -. -. 0.27 -. 4.19 18.76 0.79 0.02 SJS08-2-1 黄铁矿 -. -. -. -. 0.04 0.05 2.36 -. 0.01 -. -. 0 0.93 0.99 3.72 8.28 25.94 0.01 SJS08-2-2 黄铁矿 -. 7.49 14.77 -. 0.03 0.02 -. 0.07 0 0.03 0.13 0 0.5 0.43 3.52 24.76 50.72 0.02 SJS08-2-3 黄铁矿 0.1 141.4 86.85 0.04 0.16 0.03 -. 0.02 0.04 0 -. 0.01 0.4 0.56 4.05 13.17 20.31 0.02 SJS08-2-4 黄铁矿 -. 4.69 4.32 -. 0.35 0.14 -. 0.07 0.04 0.01 -. 0.01 0.34 0.7 3.69 12.87 9.39 -. SJS08-2-5 黄铁矿 -. 0.81 2.86 0.04 0.04 -. 3.02 -. -. 0.06 -. -. 0.54 0.43 4.83 4.55 12.81 0.01 SJS08-2-6 黄铁矿 0.04 0.4 -. -. -. 0.01 12.07 -. -. -. 0.16 0 0.12 0.23 4.81 0.75 10.6 -. SJS08-2-7 黄铁矿 0.14 0.25 0.24 0.08 3.38 0.67 -. -. 0 0.1 -. 0.01 0.48 1 3.28 3.67 3.68 -. SJS08-2-8 黄铁矿 0.37 4.01 17.86 0.1 70.78 6.64 0.86 -. 0.04 16.7 -. 0.01 73.77 1.94 4.17 20.76 33.79 0.03 SJS08-2-9 黄铁矿 0.03 45.57 15.22 0.04 0.03 0.05 13.77 0.1 -. 0.02 0.5 0.01 0.49 0.72 4.02 24.51 30.7 0 SJS08-2-10 黄铁矿 0.51 121.9 20.62 0 6.4 2.07 -. 0.14 -. 0.19 35.65 6.01 3.34 1463 3.91 11.28 -. -. 大红泉 DHQ02-2-1 黄铁矿 0.54 7.17 117.6 -. 0.28 0.37 13.84 0.04 -. 0.02 0.06 -. 0.75 0.39 4.46 -. 0.58 0 DHQ02-2-2 黄铁矿 2.17 4.15 70.97 0.08 5.46 17.66 7.77 8.36 0.25 0.78 22.05 31.13 38.32 2513 4.67 2.64 2.9 0.01 DHQ02-2-3 黄铁矿 0.15 13.6 366 0.81 13.3 2.53 11.54 0.01 0.03 0.09 0.05 0 2.69 0.89 4.67 2.55 1.1 -. DHQ02-2-4 黄铁矿 -. 24.21 724 0.22 4.51 0.71 11.83 0.02 0.01 0.02 0.02 0 3.08 0.93 5.04 3.1 3.01 0.01 DHQ02-2-5 黄铁矿 0.17 20.62 15.77 0.11 8.47 8.47 4.58 0.05 0.01 0.23 0.04 -. 2.13 0.75 4.24 1.83 1.44 0.01 DHQ02-2-6 黄铁矿 -. 20.29 192.8 0.1 4.13 5.01 16.44 0.02 0.04 0.17 -. 0.01 4.68 0.96 3.91 -. 1.67 0.01 DHQ02-2-7 黄铁矿 0.02 10.6 54.97 -. 0.02 0.13 9.45 0 -. -. -. 0.01 0.94 0.54 4.77 -. 0.32 0.01 DHQ02-2-8 黄铁矿 0.03 7.74 126.5 0.17 11.69 2.22 40.48 0.02 0.03 36.59 0.16 0.01 4588 3.75 4.77 1.35 0.62 0 DHQ02-2-9 黄铁矿 -. 73.63 0.31 0.06 0.15 0.05 11.8 -. -. 0.04 0.02 0.01 0.24 0.86 4.74 39.11 45 0.01 DHQ02-2-10 黄铁矿 -. 182.9 45.53 -. -. 0 10.15 0.03 0.01 0.05 0.11 -. 5.44 1.4 4.33 6.48 4.45 0 DHQ06-2-1 黄铁矿 29.61 22.45 714.2 0.27 20.64 14.96 44.22 2.66 0.59 4.17 81.07 40.54 115.6 5247 4.2 -. 3.72 0 DHQ06-2-2 黄铁矿 4.97 27.56 1122 0.1 2.35 7.34 13.13 0.77 0.59 0.6 44.51 10.8 40.59 3156 4.46 1.98 3.6 -. DHQ06-2-3 黄铁矿 4.19 39.6 1385 0.11 6.3 17.94 10.9 1.08 0.43 0.67 74.12 86.85 57.53 7450 4.18 2.05 4.48 0.01 DHQ06-2-4 黄铁矿 0.94 39.68 2263 0.13 5.05 13.29 7.69 0.43 2.07 0.86 15.98 4.89 19.86 1186 4.28 0.59 7.67 0.01 DHQ06-2-5 黄铁矿 1.96 101.1 1725 0.25 15.36 63.92 11.38 1.7 0.66 1.4 43.38 29.98 40.18 3307 4.59 3.74 15.82 0.01 DHQ06-2-6 黄铁矿 17.24 278.3 1792 0.27 914.8 194.9 21.92 2.67 1.89 29.51 28.11 14.5 1158 1967 4.71 10.88 40.73 0 DHQ06-2-7 黄铁矿 -. 17.65 2558 0.03 0.39 0.62 13.09 0.01 0.01 -. -. 0 0.51 0.4 4.53 -. 0.53 -. DHQ06-2-8 黄铁矿 0.97 72.68 3270 0.04 9.96 21.67 8.13 0.01 0.05 0.36 0.15 0.01 8.73 1.94 4.76 9.87 8.84 -. DHQ06-2-9 黄铁矿 1.65 23.54 2079 0.29 8.03 10.92 10.19 1.36 0.94 0.58 46.55 16.48 24.54 3243 4.58 3.68 4.47 0 DHQ06-2-10 黄铁矿 1.1 36.49 2540 0.16 10.28 35.46 11.8 0.45 0.75 0.88 28.06 7.17 12.29 2092 5.39 1.31 14.53 0.03 狼娃山 LWS01-2-1 黄铁矿 0.08 12.27 2.76 -. 2.2 1.35 9.24 0.04 0 -. -. -. 0.89 0.71 3.63 99.8 2.45 -. LWS01-2-2 黄铁矿 -. 34.85 5.42 0.02 2.26 2.34 5.65 0.03 0.07 0.18 -. -. 4.57 1.47 4.51 146.1 10.06 -. LWS01-2-3 黄铁矿 0.13 1.43 0.95 -. 0.08 0.25 10.19 0.1 -. -. 0.04 -. 1.73 0.17 3.71 151.9 7.09 -. LWS01-2-4 黄铁矿 0.27 2.5 0.59 0.04 0.03 0.01 7.76 0.01 -. -. -. -. 0.75 1.5 3.75 90.1 3.17 0 LWS01-2-5 黄铁矿 0.11 21.75 1.62 0.02 1.45 1.29 12 -. -. -. 0.29 -. 1.45 -. 3.84 3.52 0.19 0.01 LWS01-2-6 黄铁矿 -. 21.91 3.72 0.02 0.34 0.06 8.91 -. -. 0.01 -. -. 0.65 0.68 4.43 7.26 0.56 -. LWS01-2-7 黄铁矿 -. 24.26 202.2 -. 17.61 6.76 3.27 0.06 0.04 0.53 0.11 0 1.8 -. 3.9 223.4 19.78 0 LWS01-2-8 黄铁矿 -. 32.9 163.2 0.04 26.77 15.31 15.71 0.11 0.04 0.68 0.14 0 1.56 1.3 3.34 310.2 27.84 0.03 LWS01-2-9 黄铁矿 0.29 47.66 67.36 0.11 26.55 13.9 11.7 -. 0.09 0.42 -. -. 4.39 0.78 3.63 182 17.13 0.06 LWS01-2-10 黄铁矿 0.18 21.42 24.97 0.09 2.46 0.13 20.08 0.11 0.02 -. 0.06 0 2.12 1 4.16 213.6 15.54 0 LWS02-2-1 黄铁矿 -. 77.12 1.64 0.03 1.76 58.32 11.54 -. 0.15 0.31 -. 0 5.26 0.58 4.62 11.57 32.01 0.01 LWS02-2-2 黄铁矿 0.39 1.3 0.4 0 0.81 6.64 15.25 2.1 0.01 0.14 -. -. 0.8 0.91 4.46 -. 2.92 -. LWS02-2-3 黄铁矿 -. 2.28 -. 0.11 1.47 1.15 19.37 0.11 0.04 0.09 -. 0 4.96 1.05 3.84 -. 0.65 0 LWS02-2-4 黄铁矿 0.34 32.96 1.38 0.07 3.38 5.54 4.36 -. 0.02 0.02 -. -. 0.29 -. 4.23 146.4 30.67 -. LWS02-2-5 黄铁矿 -. 109.1 2.29 0.07 2.54 4.29 15.77 1.76 0 0.03 -. 0.01 1.94 0.51 3.4 149.2 38.35 -. LWS02-2-6 黄铁矿 0.29 10.21 -. 0.04 1.2 5.84 4.36 0.81 0 0.11 -. -. 0.56 0.9 3.66 3.78 1.28 0 LWS02-2-7 黄铁矿 0.31 76.37 3.09 -. 2.11 9.38 14.07 -. 0.02 0.17 0.01 0 3.2 -. 4.36 199.5 67.95 -. LWS02-2-8 黄铁矿 0.2 192.5 3.76 0.1 8.15 30.93 9.82 0.68 0.03 2.64 -. 0 3.67 1.05 4.19 225.3 36.98 -. LWS02-2-9 黄铁矿 0.28 7.89 1.53 0.02 -. 0.03 18.08 -. 0 0.06 0.1 -. 0.51 0.36 3.9 -. 0.86 0.01 LWS02-2-10 黄铁矿 -. 66.27 4 -. 0.04 0.01 22.14 0.2 0.02 0.01 0.21 -. 0.08 0.92 4.04 100 18.84 0.02 注:-. 表示低于检测限 表 4 双尖山—狼娃山地区金矿床与其他典型金矿床特征对比
Table 4. Comparison of characteristics between gold deposits in the Shuangjianshan-Langwashan area and other typical gold deposits
对比
项目双尖山 大红泉 狼娃山 低硫型浅成
低温热液型矿床造山型矿床 控矿
构造压扭性断裂 韧性剪切带 压扭性断裂 破火山口和火山穹丘系统,与火山活动中心的各种断裂关系密切 韧脆性剪切带、
褶皱转折端等赋矿
地质体浅变质的火山岩或
钾长花岗岩花岗闪长岩、构造蚀变岩 安山质角砾熔岩、流纹
斑岩和英安质凝灰岩中新生代陆相的钙碱性火山岩,
少数为古生代无特定的岩性,可产于
各个时代的变质地体中金属
矿物(含金)黄铁矿、黄铜矿、自
然金及少量毒砂、辉锑矿
和辉钼矿等黄铁矿和黄铜矿等 以自然银、自然金、黄铁矿、褐铁矿、磁铁矿、赤铁矿为主,黄铜矿、毒砂次之 黄铁矿、自然金、银金矿、闪锌矿、方铅矿、毒砂等 以黄铁矿为主,少量自然金、黄铜矿、毒砂、磁黄铁矿、
方铅矿、闪锌矿非金属
矿物石英、方解石、绢云母、长石、角闪石、绿泥石等 石英、方解石、绢云母、长石、绿泥石等 以石英脉为主,方解石和
绢云母次之石英、玉髓、方解石、冰长石、绢云母等 石英、铁白云石、方解石、
绿泥石、斜长石、绢云母、
电气石围岩
蚀变硅化、绢云母化、绿帘石化、绿泥石化、碳酸盐化、黄铁矿化、毒砂化、黄钾铁矾化等 硅化、高岭土化、绿泥石化、
褪色化等硅化、绢云母化、黄铁矿化、褐铁矿化、青磐岩化等 冰长石化、硅化、绢英岩化、黄铁矿化、碳酸盐化、青磐岩化等 硅化、绿泥石化、黑云母化、钠长石化、电气石化、
碳酸盐化等流体
性质中低温、还原性、低盐度 中低温、还原性、低盐度 中低温、还原性、低盐度 100~350℃,低温,相对还原、近中性流体,盐度<5%~10% 温度变化范围大(200~
650℃),还原性、近中性
流体,盐度<6%成矿
深度较浅 较深 较浅 0.05~1.5 km 2~20 km 流体
来源大气降水为主 变质流体为主,可能混有大气降水 大气降水为主 大气降水±岩浆水 变质流体为主 物质
来源岩浆硫+地层硫 岩浆硫 岩浆硫 地层源±岩浆源 地层源±岩浆源 微量元
素特征Co/Ni=6.19(n=15) Co/Ni=0.33(n=19) Co/Ni=14.28(n=18) Co/Ni>1 Co/Ni<0.5 资料
来源本文 本文 本文 Hedenquist et al., 2000; Simmons and Browne, 2000; Sillitoe and Hedenguist, 2003. Kerrich et al., 2000;陈衍景等,2007;李洪梁和李光明,2019 -
[1] Ao S J, Xiao W J, Han C M, et al. 2010. Geochronology and geochemistry of Early Permian mafic–ultramafic complexes in the Beishan area, Xinjiang, NW China: Implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research, 18(2/3): 466−478. doi: 10.1016/j.gr.2010.01.004
[2] Ao S J, Xiao W J, Han C M, et al. 2012. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: Implications for the architecture of the Southern Altaids[J]. Geological Magazine, 149(4): 606−625. doi: 10.1017/S0016756811000884
[3] Augustin, Jérôme, Damien Gaboury. 2019. Multi−stage and multi−sourced fluid and gold in the formation of orogenic gold deposits in the world−class Mana district of Burkina Faso–Revealed by LA−ICP−MS analysis of pyrites and arsenopyrites[J]. Ore Geology Reviews, 104: 495−521. doi: 10.1016/j.oregeorev.2018.11.011
[4] Bai R L, Hu J R, Zhao F F, et al. 2022. Zircon U−Pb ages and Hf isotopic characteristics and their geological significances of syenogranite in the Shuangjianshan gold deposit in the Beishan Orogenic Belt, Gansu Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(2): 274−286 (in Chinese with English abstract).
[5] Bajwah Z U, Seccombe P K, Offler R. 1987. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron−copper deposit, New South Wales, Australia[J]. Mineralium Deposita, 22(4): 292−203.
[6] Bau M, Dulski P. 1995. Comparative study of yttrium and rare−earth element behaviours in fluorine−rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology, 119: 213−223. doi: 10.1007/BF00307282
[7] Bau M, Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid−Atlantic Ridge: Implications for Y and REE behaviour during near−vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 155(1/2): 77−90. doi: 10.1016/S0009-2541(98)00142-9
[8] Bau M, Möller P, Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox−cycling[J]. Marine Chemistry, 56(1/2): 123−131. doi: 10.1016/S0304-4203(96)00091-6
[9] Bi X W, Hu R Z, Peng J T, et al. 2004. REE and HFSE geochemical characteristics of pyrites in Yao'an gold deposit: Tracing ore forming fluid signatures[J]. Bulletin of Mineralogy, Petrology and Geochemistry, (1): 1−4 (in Chinese with English abstract).
[10] Bralia A, Sabatini G, Troja F. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems: evidences from southern Tuscany pyritic deposits[J]. Mineralium Deposita, 14: 353−374.
[11] Brill B A. 1989. Trace−element contents and partitioning of elements in ore minerals from the CSA Cu−Pb−Zn deposit, Australia, and implications for ore genesis[J]. The Canadian Mineralogist, 27(7): 263−274.
[12] Cai Z H, Xu Z Q, He B Z, et al. 2012. Age and tectonic evolution of ductile shear zones in the eastern Tianshan−Beishan orogenic belt[J]. Acta Petrologica Sinica, 28(6): 1875−1895 (in Chinese with English abstract).
[13] Cao G S, Zhang Y, Chen H Y. 2023. Trace elements in pyrite from orogenic gold deposits: Implications for metallogenic mechanism[J]. Acta Petrologica Sinica, 39(8): 2330−2346 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.08.06
[14] Cao L, Xu R K, Shan L, et al. 2011. Study on fluid inclisions of Nanjinshan gold deposit of Beishan area, Gansu Province[J]. Contributions to Geology and Mineral Resources Research, 26(3): 249−254, 327 (in Chinese with English abstract).
[15] Chai P, Sun J G, Xing S W, et al. 2016. Ore geology, fluid inclusion and 40Ar/39Ar geochronology constraints on the genesis of the Yingchengzi gold deposit, southern Heilongjiang Province, NE China[J]. Ore Geology Reviews, 72: 1022−1036. doi: 10.1016/j.oregeorev.2015.09.026
[16] Chen J J, Cui Y, Cui K. 2016. The geological characteristics and prospecing of Double Jianshan gold deposits in Gansu Province Subei County[J]. World Nonferrous Metals, (20): 56−58 (in Chinese with English abstract).
[17] Chen S Z, Zhou J Y, Gu L X, et al. 2000. Genesis of ore−forming fluids and precipitation mechanism of gold in the Mazhuangshan gold deposit, Hami, Xinjiang[J]. Mineral Deposits, (3): 193−200 (in Chinese with English abstract).
[18] Chen S, Guo Z, Qi J, et al. 2016. Early Permian volcano−sedimentary successions, Beishan, NW China: Peperites demonstrate an evolving rift basin[J]. Journal of Volcanology and Geothermal Research, 309: 31−44. doi: 10.1016/j.jvolgeores.2015.11.004
[19] Chen Y J, Ni P, Fan H R, et al. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits[J]. Acta Mineralogica Sinica, 23(9): 2085−2108 (in Chinese with English abstract).
[20] Clark C, Grguric B, Mumm A S. 2004. Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences, northeastern South Australia[J]. Ore Geology Reviews, 25(3/4): 237−257. doi: 10.1016/j.oregeorev.2004.04.003
[21] Cleven N, Lin S, Guilmette C, et al. 2015. Petrogenesis and implications for tectonic setting of Cambrian suprasubduction−zone ophiolitic rocks in the central Beishan orogenic collage, Northwest China[J]. Journal of Asian Earth Sciences, 113: 369−390. doi: 10.1016/j.jseaes.2014.10.038
[22] Cook N J, Ciobanu C L, Mao J. 2009. Textural control on gold distribution in As−free pyrite from the Dong, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China)[J]. Chemical Geology, 264(1/4): 101−121. doi: 10.1016/j.chemgeo.2009.02.020
[23] Cook N J, Ciobanu C L, Meria D, et al. 2013. Arsenopyrite−pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements[J]. Economic Geology, 108(6): 1273−1283. doi: 10.2113/econgeo.108.6.1273
[24] Deditius A P, Reich M, Kesler S E, et al. 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica et Cosmochimica Acta, 140: 644−670.
[25] Deditius A P, Utsunomiya S, Reich M, et al. 2011. Trace metal nanoparticles in pyrite[J]. Ore Geology Reviews, 42(1): 32−46. doi: 10.1016/j.oregeorev.2011.03.003
[26] Deditius A P, Utsunomiya S, Renock D, et al. 2008. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance[J]. Geochimica et Cosmochimica Acta, 72(12): 2919−2933. doi: 10.1016/j.gca.2008.03.014
[27] Di P F, Tang Q Y, Liu D X, et al. 2023. Trace element geochemistry of pyrite and its significance in the Gannan District, West Qinling: A case study from the Jiagantan and Zaozigou gold deposits[J]. Chinese Rare Earths, 44(4): 140−154 (in Chinese with English abstract).
[28] Douville E, Bienvenu P, Charlou J L, et al. 1999. Yttrium and rare earth elements in fluids from various deep−sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 63(5): 627−643. doi: 10.1016/S0016-7037(99)00024-1
[29] Fan H R, Li X H, Zuo Y B, et al. 2018. In−situ LA− (MC) −ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica, 34(12): 3479−3496 (in Chinese with English abstract).
[30] George L L, Biagioni C, D'Orazio M, et al. 2018. Textural and trace element evolution of pyrite during greenschist facies metamorphic recrystallization in the southern Apuan Alps (Tuscany, Italy): Influence on the formation of Tl−rich sulfosalt melt[J]. Ore Geology Reviews, 102: 59−105. doi: 10.1016/j.oregeorev.2018.08.032
[31] Goldfarb R J, Taylor R D, Collins G S, et al. 2014. Phanerozoic continental growth and gold metallogeny of Asia[J]. Gondwana Research, 25(1): 48−102.
[32] Gong Q S, Liu M Q, Li H L, et al. 2002. The type and basic characteristics of Beishan orogenic belt, Gansu[J]. Northwestern Geology, 35(3): 28−34 (in Chinese with English abstract).
[33] Gregory D D, Large R R, Halpin J A, et al. 2015. Trace Element Content of Sedimentary Pyrite in Black Shales[J]. Economic Geology, 110(6): 1389−1410. doi: 10.2113/econgeo.110.6.1389
[34] He S P, Ren B C, Yao W G, et al. 2002. The division of tectonic units of Beishan area, Gansu−Inner Mongolia[J]. Northwestern Geology, 35(4): 30−40 (in Chinese with English abstract).
[35] Hedenquist J W, Arribas R A, Gonzalez−Urien E. 2000. Exploration for epithermal gold deposits[J]. Reviews in Economic Geology, 13: 245−277.
[36] Hofes J. 2009. Stable isotope geochemistry[M]. Berlin, Heidelberg: Springer−Verlag: 48−54.
[37] Huang S T, Yu X F, Lü Z C, et al. 2020. Characteristics of gold−bearing minerals and compositions of In−Situ sulfur of Laojinchang gold deposit in Beishan, Gansu Province and its ore−forming implications[J]. Journal of Jilin University (Earth Science Edition), 50(5): 1387−1403 (in Chinese with English abstract).
[38] Hurtig N C, Williams−Jones A E. 2014. An experimental study of the transport of gold through hydration of AuCl in aqueous vapour and vapour−like fluids[J]. Geochimica et Cosmochimica Acta, 127: 305−325. doi: 10.1016/j.gca.2013.11.029
[39] Huston D L, Sie S H, Suter G F, et al. 1995. Trace elements in sulfide minerals from eastern Australian volcanic−hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic Geology, 90(5): 1167−1196. doi: 10.2113/gsecongeo.90.5.1167
[40] Jiang S H, Nie F J, Chen W S, et al. 2006. 40Ar−39Ar geochronology and fluid inclusion features of the Nanjinshan gold deposit, Beishan Mt., Gansu Province[J]. Geological Review, 52(2): 266−275 (in Chinese with English abstract).
[41] Keith M, Haase K M, Chivas A R, et al. 2022. Phase separation and fluid mixing revealed by trace element signatures in pyrite from porphyry systems[J]. Geochimica et Cosmochimica Acta, 329: 185−205. doi: 10.1016/j.gca.2022.05.015
[42] Keith M, Häckel F, Haase K M, et al. 2016. Trace element systematics of pyrite from submarine hydrothermal vents[J]. Ore Geology Reviews, 72: 728−745. doi: 10.1016/j.oregeorev.2015.07.012
[43] Keith M, Smith D J, Doyle K, et al. 2020. Pyrite chemistry: A new window into Au−Te ore−forming processes in alkaline epithermal districts, Cripple Creek, Colorado[J]. Geochimica et Cosmochimica Acta, 274: 172−191. doi: 10.1016/j.gca.2020.01.056
[44] Keith M, Smith D J, Jenkin G R, et al. 2018. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore−forming processes[J]. Ore Geology Reviews, 96: 269−282. doi: 10.1016/j.oregeorev.2017.07.023
[45] Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction−zone fluids[J]. Nature, 380(6571): 237−240. doi: 10.1038/380237a0
[46] Kerrich R, Goldfarb R, Groves D, et al. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China, 43: 1−68.
[47] Koglin N, Frimmel H E, Lawrie Minter W E, et al. 2010. Trace−element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits[J]. Mineralium Deposita, 45: 259−280. doi: 10.1007/s00126-009-0272-0
[48] Large R R, Bull S W, Maslennikov V V. 2011. A carbonaceous sedimentary source−rock model for Carlin−type and orogenic gold deposits[J]. Economic Geology, 106(3): 331−358. doi: 10.2113/econgeo.106.3.331
[49] Large R R, Danyushevsky L, Hollit C, et al. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin−style sediment−hosted deposits[J]. Economic Geology, 104(5): 635−668. doi: 10.2113/gsecongeo.104.5.635
[50] Li H L, Li G M. 2019. Compositional characteristics of pyrite ore formed in the main metallogenic period of various types of hydrothermal gold deposits[J]. Earth Science Frontiers, 26(3): 202−210 (in Chinese with English abstract).
[51] Li L. 2015. Study of Deposit geology and Ore−forming Fluid in 460 gold mine, Beishan area, Gansu Province[D]. China University of Geosciences (Beijing) (in Chinese with English abstract).
[52] Li X J, Liu W. 2002. Fluid inclusion and stable isotope constraints on the genesis of the Mazhuangshan gold deposit, eastern Tianshan Mountains of China[J]. Acta Petrologica Sinica, (4): 551−558 (in Chinese with English abstract).
[53] Liu W, Pan X F. 2006. Study on the characteristics of ore−forming fluids of typical gold deposits in the southern metallogenic belt of the Beishan area in Gansu and Xinjiang[J]. Acta Petrologica Sinica, 22(1): 171−188 (in Chinese with English abstract).
[54] Liu Y, Hu Z, Gao S, et al. 2008. In−situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.
[55] Ma Y, Jiang S Y, Frimmel H E, et al. 2022. In situ chemical and isotopic analyses and element mapping of multiple−generation pyrite: Evidence of episodic gold mobilization and deposition for the Qiucun epithermal gold deposit in Southeast China[J]. American Mineralogist, 107(6): 1133−1148. doi: 10.2138/am-2022-8030
[56] Mao G Z, Hua R M, Gao J F, et al. 2006. REE composition and trace element features of gold−bearing pyrite in Jinshan gold deposit, Jiangxi Province[J]. Mineral Deposits, (4): 412−426 (in Chinese with English abstract).
[57] Mao Q G. 2008. Paleozoic to Early Mesozoic Accretionary and Collisional Tectonics of the Beishan and Adjacent Area, Northwest China[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences.
[58] Mei J M. 2000. Chemical Typomorphic Characteristic of Pyrites from Zhilingtou Gold Deposit, Suichang, Zhejiang[J]. Geoscience, 14(1): 51−55 (in Chinese with English abstract).
[59] Miao L C, Zhu M S, Zhang F Q. 2014. Tectonic setting of Mesozoic magmatism and associated metallogenesis in Beishan area[J]. Geology in China, 41(4): 1190−1204 (in Chinese with English abstract).
[60] Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 67(5): 551−578. doi: 10.2113/gsecongeo.67.5.551
[61] Oreskes N, Einaudi M T. 1990. Origin of rare earth element−enriched hematite breccias at the Olympic Dam Cu−U−Au−Ag deposit, Roxby Downs, South Australia[J]. Economic geology, 85(1): 1−28. doi: 10.2113/gsecongeo.85.1.1
[62] Pan X F, Liu W. 2010. Characteristics, derivation and evolution of ore−forming fluids in typical gold deposits of the Beishan Metallogenic Belt in Gansu−Xinjiang border area[J]. Acta Geoscientica Sinica, 31(4): 507−518 (in Chinese with English abstract).
[63] Pan X, Liu W, Hou Z. 2014. Ore−Forming Fluids as Sampled by Sulfide−and Quartz−Hosted Fluid Inclusions in the Jinwozi Lode Gold Deposit, Eastern Tianshan Mountains of China[J]. Resource Geology, 64(3): 183−208. doi: 10.1111/rge.12036
[64] Pearce N J G, Perkins W T, Westgate J A, et al. 1997. A Compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials[J]. Geostand Newsl, 21: 115−144.
[65] Reich M, Kesler S E, Utsunomiya S et al. 2005. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 69(11): 2781−2796.
[66] Roberts F I. 1982. Trace element chemistry of pyrite: A useful guide to the occurrence of sulfide base metal mineralization[J]. Journal of Geochemical Exploration, 17(1): 49−62. doi: 10.1016/0375-6742(82)90019-X
[67] Rollinson H R. 1993. Using Geochemical Data: Evaluation, Presentation Interpretation[M]. New York: John Wiley and Sons.
[68] Román N, Reich M, Leisen M, et al. 2019. Geochemical and micro−textural fingerprints of boiling in pyrite[J]. Geochimica et Cosmochimica Acta, 246: 60−85. doi: 10.1016/j.gca.2018.11.034
[69] Schaarschmidt A, Haase K M, Klemd R, et al. 2021. Boiling effects on trace element and sulfur isotope compositions of sulfides in shallow−marine hydrothermal systems: Evidence from Milos Island, Greece[J]. Chemical Geology, 583: 120457. doi: 10.1016/j.chemgeo.2021.120457
[70] Shan L, Zheng Y Y, Xu R K, et al. 2009. Review on sulfur isotopic tracing and hydrothermal metallogenesis[J]. Geology and Resources, 18(3): 197−203 (in Chinese with English abstract).
[71] Sheng J F, Li Y, Fan S Y. 1999. A study of minor elements in minerals from polymetallic deposits in the central part of the Da Hinggan Mountains[J]. Mineral Deposits, 18(2): 153−160 (in Chinese with English abstract).
[72] Sillitoe R H, Hedenquist J W. 2003. Linkages between volcanotectonic settings, ore−fluid compositions, and epithermal precious metal deposits[C]//Simmons SF and Graham I. Volcanic, geothermal, and ore−forming fluids: Rulers and witnesses of processes within the Earth. Littleton, Colo, USA: Society of Economic Geologists, 10: 315−343.
[73] Simmons S F, Browne P R. 2000. Hydrothermal minerals and precious metals in the Broadlands−Ohaaki geothermal system: Implications for understanding low−sulfidation epithermal environments[J]. Economic Geology, 95(5): 971−999. doi: 10.2113/gsecongeo.95.5.971
[74] Song X X, Zhang J K. 1986. Trace element characteristics of pyrite of various genetic types in China[C]//Collected Papers of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences (18). Institute of Mineral Deposits: 175−184 (in Chinese with English abstract).
[75] Steadman J A, Large R R, Olin P H, et al. 2021. Pyrite trace element behavior in magmatic−hydrothermal environments: An LA−ICPMS imaging study[J]. Ore Geology Reviews, 128: 103878. doi: 10.1016/j.oregeorev.2020.103878
[76] Su W C, Xia B, Zhang H T, et al. 2008. Visible gold in arsenian pyrite at the Shuiyindong Carlin−type gold deposit, Guizhou, China: Implications for the environment and processes of ore formation[J]. Ore Geology Reviews, 33(3/4): 667−679. doi: 10.1016/j.oregeorev.2007.10.002
[77] Tomkins A G, Pattison D R, Zaleski E. 2004. The Hemlo gold deposit, Ontario: An example of melting and mobilization of a precious metal−sulfosalt assemblage during amphibolite facies metamorphism and deformation[J]. Economic Geology, 99(6): 1063−1084. doi: 10.2113/gsecongeo.99.6.1063
[78] Ubide T, McKenna C A, Chew D M, et al. 2015. High− resolution LA−ICP−MS trace element mapping of igneous minerals: In search of magma histories[J]. Chemical Geology, 409: 157−168. doi: 10.1016/j.chemgeo.2015.05.020
[79] Ulrich T, Long D G F, Kamber B S, et al. 2011. In situ trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic gold placer deposit, Pardo and Clement townships, Ontario, Canada[J]. Economic Geology, 106(4): 667−686. doi: 10.2113/econgeo.106.4.667
[80] Vaughan D J, Rosso K M. 2006. Chemical bonding in sulfide minerals[J]. Reviews in Mineralogy and Geochemistry, 61(1): 231−264. doi: 10.2138/rmg.2006.61.5
[81] Voute F, Hagemann S G, Evans N J, et al. 2019. Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz−Parcoy district, Peru: Implication for paragenesis, fluid source, and gold deposition mechanisms[J]. Mineralium Deposita, 54: 1077−1100. doi: 10.1007/s00126-018-0857-6
[82] Wang C Y, Wang Q S, Shu S P, et al. 2018. Temporal and Spatial Evolution of Ore−Forming Fluid and Metallogenic Mechanism in the Jinwozi Gold Deposit, Beishan Metallogenic Belt[J]. Earth Science, 43(9): 3126−3140 (in Chinese with English abstract).
[83] Wang H T. 2019. Tectono−magmatism and its s geological significance in the beishan area of the southern part of the Central Asian Orogenic Belt[D]. Lanzhou University, (in Chinese with English abstract).
[84] Wang L, Yang J G, Wang X H, et al. 2015. LA−ICP−MS Zircon U−Pb Dating and Its Geological Implications of Yingmaotuo Granitic Rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 583−591 (in Chinese with English abstract).
[85] Wang Q S. 2020. Magmatism and Mineralization of Mazhuangshan−Nanjinshan Gold Ore Belt in Eastern Tianshan Area[D]. China University of Geosciences (Beijing) (in Chinese with English abstract).
[86] Williams−Jones A E, Bowell R J, Migdisov A A. 2009. Gold in solution[J]. Elements, 5: 281−287. doi: 10.2113/gselements.5.5.281
[87] Wu Y F, Evans K, Li J W, et al. 2019. Metal remobilization and ore−fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit[J]. Geochimica et Cosmochimica Acta, 245: 98−117. doi: 10.1016/j.gca.2018.10.031
[88] Xiao W J , Mao Q G, Windley B F, et al. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310: 1553−1594.
[89] Xiao W J, Shu L S, Gao J, et al. 2008. Continental Dynamics of the Central Asian Orogenic Belt and Its Metallogeny[J]. Xinjiang Geology, 26(1): 4−8 (in Chinese with English abstract).
[90] Xiao W J, Zhang L C, Qin K Z, et al. 2004. Paleozoic accretionary and collisional tectonic of the eastern Tianshan(China): implications for the continental growth of central Asia[J]. American Journal of Science, 304: 370−395. doi: 10.2475/ajs.304.4.370
[91] Yan Y T, Li S R, Zhang N, et al. 2012. Composition typomorphic characteristics and statistics analysis of metallogenic pyrite in gold deposits of different genetic types[J]. Gold, (3): 11−16 (in Chinese with English abstract).
[92] Yaxley G M, Green D H, Kamenetsky V. 1998. Carbonatite metasomatism in the southeastern Australian lithosphere[J]. Journal of Petrology, 39(11/12): 1917−1930. doi: 10.1093/petroj/39.11-12.1917
[93] Yin W X. 2020. The geological features of the gold deposit Shuangjianshan deposit in north of Gansu Province[J]. World Nonferrous Metals, (5): 116−117 (in Chinese with English abstract).
[94] Yuan W H, Gu X X, Zhang Y M, et al. 2020. Properties of Ore−forming Fluids and Genesis of the Xiaoxigong Gold Deposit in the Beishan Region, Gansu Province[J]. Geoscience, 34(3): 554 (in Chinese with English abstract).
[95] Yue Q. 2021. Geological characteristics and prospecting criteria of the Langwashan silver−gold deposit in Gansu Province[J]. World Nonferrous Metals, (4): 74−75, 78 (in Chinese with English abstract).
[96] Zhang L, Chen H Y, Chen Y J, et al. 2012. Geology and fluid evolution of the Wangfeng orogenic−type gold deposit, Western Tian Shan, China[J]. Ore Geology Reviews, 49: 85−95. doi: 10.1016/j.oregeorev.2012.09.002
[97] Zhang Y, Hollings P, Shao Y J, et al. 2020. Magnetite texture and trace−element geochemistry fingerprint of pulsed mineralization in the Xinqiao Cu−Fe−Au deposit, Eastern China[J]. American Mineralogist, 105(11): 1712−1723. doi: 10.2138/am-2020-7414
[98] Zhang Y, Shao Y J, Chen H Y, et al. 2017. A hydrothermal origin for the large Xinqiao Cu−S−Fe deposit, Eastern China: Evidence from sulfide geochemistry and sulfur isotopes[J]. Ore Geology Reviews, 88: 534−549. doi: 10.1016/j.oregeorev.2016.08.002
[99] Zhou X W, Li S R, Lu L, et al. 2005. Research on the Composition Typomorphism of Pyrite from Longkeng Gold−Silver Mineralization District in Wuyi, Zhejiang Province, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 24(4): 317−326 (in Chinese with English abstract).
[100] Zhu Z Y, Cook N J, Yang T, et al. 2016. Mapping of sulfur isotopes and trace elements in sulfides by LA−(MC)ICP−MS: Potential analytical problems, improvements and implications[J]. Minerals, 6(4): 110. doi: 10.3390/min6040110
[101] Zhu Z Y, Jiang S Y, Ciobanu C L, et al. 2017. Sulfur isotope fractionation in pyrite during laser ablation: Implications for laser ablation multiple collector inductively coupled plasma mass spectrometry maping[J]. Chemical Geology, 450: 223−234. doi: 10.1016/j.chemgeo.2016.12.037
[102] 白荣龙, 虎金荣, 赵甫峰, 等. 2022. 甘肃北山造山带双尖山金矿区正长花岗岩锆石U−Pb年龄和Hf同位素特征及地质意义[J]. 矿物岩石地球化学通报, 41(2): 274−286.
[103] 毕献武, 胡瑞忠, 彭建堂, 等. 2004. 黄铁矿微量元素地球化学特征及其对成矿流体性质的指示[J]. 矿物岩石地球化学通报, (1): 1−4. doi: 10.3969/j.issn.1007-2802.2004.01.001
[104] 蔡志慧, 许志琴, 何碧竹, 等. 2012. 东天山-北山造山带中大型韧性剪切带属性及形成演化时限与过程[J]. 岩石学报, 28(6): 1875−1895.
[105] 曹根深, 张宇, 陈华勇. 2023. 造山型金矿床黄铁矿微量元素对成矿机制的指示[J]. 岩石学报, 39(8): 2330−2346. doi: 10.18654/1000-0569/2023.08.06
[106] 曹亮, 许荣科, 陕亮, 等. 2011. 甘肃北山南金山金矿床流体包裹体研究[J]. 地质找矿论丛, 26(3): 249−254, 327.
[107] 陈晶晶, 崔艳, 崔凯. 2016. 甘肃省肃北县双尖山金矿地质特征及找矿远景[J]. 世界有色金属, (20): 56−58.
[108] 陈世忠, 周济元, 顾连兴, 等. 2000. 新疆哈密马庄山金矿成矿流体成因及金沉淀机制的探讨[J]. 矿床地质, (3): 193−200. doi: 10.3969/j.issn.0258-7106.2000.03.001
[109] 陈衍景, 倪培, 范洪瑞, 等. 2007. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报, 23(9): 2085−2108. doi: 10.3969/j.issn.1000-0569.2007.09.009
[110] 第鹏飞, 汤庆艳, 刘东晓, 等. 2023. 西秦岭甘南地区金矿床黄铁矿微量元素地球化学特征及意义——以加甘滩和早子沟金矿为例[J]. 稀土, 44(4): 140−154.
[111] 范宏瑞, 李兴辉, 左亚彬, 等. 2018. LA−(MC)−ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 34(12): 3479−3496.
[112] 甘肃省有色地质调查院. 2016. 甘肃省肃北县大红泉东地质图[R].
[113] 甘肃省有色地质调查院. 2019. 甘肃省肃北县跃进山—双井子地区地质矿产图[R].
[114] 甘肃省有色地质勘查局天水矿产勘查院. 2016. 甘肃省肃北县狼娃山金矿地形地质图[R].
[115] 龚全胜, 刘明强, 李海林, 等. 2002. 甘肃北山造山带类型及基本特征[J]. 西北地质, 35(3): 28−34. doi: 10.3969/j.issn.1009-6248.2002.03.004
[116] 何世平, 任秉琛, 姚文光, 等. 2002. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 35(4): 30−40. doi: 10.3969/j.issn.1009-6248.2002.04.004
[117] 黄式庭, 于晓飞, 吕志成, 等. 2020. 甘肃北山老金厂金矿床载金矿物特征、原位硫同位素组成及其对成矿的指示意义[J]. 吉林大学学报(地球科学版), 50(5): 1387−1403.
[118] 江思宏, 聂凤军, 陈伟十, 等. 2006. 北山地区南金山金矿床的40Ar−39Ar同位素年代学及其流体包裹体特征[J]. 地质论评, 52(2): 266−275.
[119] 李洪梁, 李光明. 2019. 不同类型热液金矿床主成矿期黄铁矿成分标型特征[J]. 地学前缘, 26(3): 202−210.
[120] 李雷. 2015. 甘肃北山地区460金矿矿床地质及成矿流体研究[D]. 中国地质大学(北京)硕士学位论文.
[121] 李新俊, 刘伟. 2002. 东天山马庄山金矿床流体包裹体和同位素地球化学研究及其对矿床成因的制约[J]. 岩石学报, (4): 551−558.
[122] 刘伟, 潘小菲. 2006. 甘新北山地区南成矿带典型金矿成矿流体特征研究[J]. 岩石学报, 22(1): 171−188.
[123] 毛光周, 华仁民, 高剑峰, 等. 2006. 江西金山金矿床含金黄铁矿的稀土元素和微量元素特征[J]. 矿床地质, (4): 412−426.
[124] 毛启贵. 2008. 北山及邻区古生代—早中生代增生与碰撞大地构造格局[D]. 中国科学院地质与地球物理研究所.
[125] 梅建明. 2000. 浙江遂昌治岭头金矿床黄铁矿的化学成分标型研究[J]. 现代地质, 14(1): 51−55.
[126] 苗来成, 朱明帅, 张福勤. 2014. 北山地区中生代岩浆活动与成矿构造背景分析[J]. 中国地质, 41(4): 1190−1204. doi: 10.3969/j.issn.1000-3657.2014.04.013
[127] 潘小菲, 刘伟. 2010. 甘肃-新疆北山成矿带典型矿床成矿流体研究进展及成矿作用探讨[J]. 地球学报, 31(4): 507−518.
[128] 陕亮, 郑有业, 许荣科, 等. 2009. 硫同位素示踪与热液成矿作用研究[J]. 地质与资源, 18(3): 197−203. doi: 10.3969/j.issn.1671-1947.2009.03.007
[129] 盛继福, 李岩, 范书义. 1999. 大兴安岭中段铜多金属矿床矿物微量元素研究[J]. 矿床地质, 18(2): 153−160. doi: 10.3969/j.issn.0258-7106.1999.02.007
[130] 宋学信, 张景凯. 1986. 中国各种成因黄铁矿的微量元素特征[C]//中国地质科学院矿床地质研究所文集(18). 矿床地质研究所.
[131] 王钏屹, 王琦崧, 疏孙平, 等. 2018. 北山成矿带金窝子金矿床成矿流体时空演化与成矿机制[J]. 地球科学, 43(9): 3126−3140.
[132] 王怀涛. 2019. 中亚造山带南段北山构造-岩浆作用及其地质意义的研究[D]. 兰州大学博士学位论文.
[133] 王磊, 杨建国, 王小红, 等. 2015. 甘肃北山营毛沱地区花岗岩类 LA−ICP−MS 锆石 U−Pb 定年及地质意义[J]. 矿物岩石地球化学通报, 34(3): 583−591. doi: 10.3969/j.issn.1007-2802.2015.03.015
[134] 王琦崧. 2020. 东天山地区马庄山-南金山金矿带岩浆-成矿作用[D]. 中国地质大学(北京)博士学位论文.
[135] 肖文交, 舒良树, 高俊, 等. 2008. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质, 26(1): 4−8.
[136] 严育通, 李胜荣, 张娜, 等. 2012. 不同成因类型金矿床成矿期黄铁矿成分成因标型特征[J]. 黄金, (3): 11−16.
[137] 殷伟旭. 2020. 甘肃肃北双尖山金矿床矿体地质特征[J]. 世界有色金属, (5): 116−117.
[138] 袁伟恒, 顾雪祥, 章永梅, 等. 2020. 甘肃北山地区小西弓金矿床成矿流体性质及矿床成因[J]. 现代地质, 34(3): 554.
[139] 岳强. 2021. 甘肃省狼娃山银金矿地质特征及找矿标志[J]. 世界有色金属, (4): 74−75, 78.
[140] 周学武, 李胜荣, 鲁力, 等. 2005. 浙江弄坑金银矿区黄铁矿成分标型研究[J]. 矿物岩石地球化学通报, 24(4): 317−326. doi: 10.3969/j.issn.1007-2802.2005.04.006
-