Magmatic evolution of the Hongchuan Cu-Ni sulfide deposit, western North Qilian Orogenic Belt: Insights from whole-rock geochemistry and zircon Hf isotopes
-
摘要:
研究目的 北祁连造山带内的红川铜镍矿床是近年找矿的重要发现。该矿床的赋矿岩体形成时代、岩石成因和岩浆源区性质不明,制约了进一步了解其成矿过程。
研究方法 因此,对其开展岩石学、岩石地球化学、锆石U−Pb同位素年代学和Hf同位素地球化学研究。
研究结果 红川铜镍矿床中赋矿岩体主要由强蛇纹石化橄榄岩和黑云角闪石岩组成,主要含矿岩性是强蛇纹石化橄榄岩。岩石地球化学特征显示,红川岩体主量元素具有低SiO2(39.13%~46.35%),高MgO(13.69%~27.47%),高Mg#值(68.28~79.91),稀土元素配分曲线显示平坦型特征,亏损微量元素Nb、P和Ti。对红川Ⅳ号赋矿岩体中的含斜长石橄榄岩进行了LA−ICP−MS锆石U−Pb同位素测年,获得锆石206Pb/238U年龄加权平均值为486.9 ± 5.9 Ma,锆石εHf(t)值介于−0.19~7.12之间。
结论 结合岩石地球化学数据和区域地质背景对比分析,该岩体形成于岛弧环境,岩浆源区为经历了俯冲板片流体交代作用的亏损地幔,岩浆侵位过程中经历了小于10%的下地壳物质混染。
Abstract:Objective The recent discovery of the Hongchuan Cu−Ni deposit in the North Qilian Orogenic Belt represents a significant breakthrough in mineral exploration. Uncertainties in the formation age, petrogenesis, and magmatic source of the ore−bearing intrusions hinder a comprehensive understanding of the deposit′s mineralization mechanisms.
Methods Therefore, this study integrates petrological, whole−rock geochemical, zircon U−Pb geochronological, and Hf isotopic analyses to characterize these intrusions.
Results The ore−bearing rock in the Hongchuan Cu−Ni deposit predominantly comprises strongly serpentinized peridotite and biotite amphibolite, and the main ore−bearing lithology is strongly serpentinized peridotite. Geochemical analyses reveal features, including low SiO2(39.13%~46.35%) and high MgO(13.69%~27.47%) contents, high Mg# values (68.28~79.91). The distribution curve of rare earth elements shows flat characteristics, and trace elements Nb, P, and Ti are deficient. Zircon U−Pb dating, conducted via LA−ICP−MS on zircons from the plagioclase−bearing peridotite, yielded a weighted mean 206Pb/238U age of 486.9 ± 5.9 Ma, with zircon εHf(t) values ranging from −0.19 to 7.12.
Conclusions Integrating geological data with regional geological context suggests a genesis within an island arc environment. The magma source is proposed to have originated from a depleted mantle that was influenced by fluid alteration and subduction processes, with less than 10% contamination of lower crustal materials during magma emplacement.
-
-
图 1 红川地区大地构造背景示意图(据Duan et al., 2015修改)
Figure 1.
图 2 红川铜镍硫化物矿床地质图(据龚振中等, 2024修改)
Figure 2.
图 6 红川镁铁-超镁铁质岩体岩石球粒陨石标准化配分图(a)和原始地幔标准化蛛网图(b)(球粒陨石和原始地幔标准化数值据McDonough and Sun, 1995)
Figure 6.
图 7 红川岩体Zr/Nb−Nb/Ta(a)、Ce/Pb−Th/Zr(b)、(La/Nb)PM−(Th/Ta)PM(c)和Nb/Yb−Th/Yb(d)相关图(c底图据Neal et al., 2002; d底图据Pearce, 2008,上地壳(UC)和下地壳(LC)值据Zindler and Hart, 1986; Rudnick and Fountain, 1995; 原始地幔(PM)、洋岛玄武岩(OIB)和E型大洋中脊玄武岩(E-MORB)值据Sun and McDonough, 1989)
Figure 7.
图 9 红川镁铁超镁铁质岩体岩石Th/Nb−Ba/Th(a,底图据Hanyu et al., 2006)和Nb/Y−Rb/Y(b,底图据Saunders et al., 1991)图解
Figure 9.
表 1 红川含斜长石橄榄岩LA−ICP−MS锆石U−Th−Pb定年分析结果
Table 1. Analytical results of zircon LA−ICP−MS U−Th−Pb ages of Hongchuan plagioclase−bearing peridotites
分析点 含量/10−6 Th/U 同位素比值 同位素年龄/Ma Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 23HC-IV-2 含斜长石橄榄岩 23HC-IV-2-1 200 269 0.74 0.0582 0.0075 0.5424 0.0511 0.0714 0.0062 1999 283 440 34 445 37 23HC-IV-2-2 932 1996 0.47 0.0641 0.0021 0.6971 0.0207 0.0785 0.0015 746 69 537 12 487 9 23HC-IV-2-3 43 52 0.82 0.1699 0.0058 11.6391 0.3764 0.4981 0.0128 2557 57 2576 30 2606 55 23HC-IV-2-4 68 172 0.40 0.0557 0.0028 0.6064 0.0327 0.0785 0.0015 439 111 481 21 487 9 23HC-IV-2-5 979 1995 0.49 0.0660 0.0018 1.0902 0.0349 0.1193 0.0026 806 59 749 17 727 15 23HC-IV-2-6 95 194 0.49 0.0634 0.0037 0.6853 0.0375 0.0785 0.0020 720 125 530 23 487 12 23HC-IV-2-7 88 233 0.37 0.0630 0.0027 0.6771 0.0298 0.0779 0.0015 707 93 525 18 484 9 23HC-IV-2-8 247 357 0.69 0.0717 0.0048 1.1457 0.0579 0.1186 0.0030 976 136 775 27 722 17 23HC-IV-2-9 59 146 0.41 0.0654 0.0059 0.7226 0.0567 0.0818 0.0028 787 193 552 33 507 16 23HC-IV-2-10 94 199 0.47 0.0601 0.0033 0.6485 0.0341 0.0787 0.0017 609 117 508 21 488 10 23HC-IV-2-11 47 122 0.38 0.1230 0.0041 6.4079 0.2398 0.3756 0.0083 2000 60 2033 33 2056 39 23HC-IV-2-12 75 194 0.38 0.0609 0.0035 0.6622 0.0354 0.0786 0.0012 635 122 516 22 488 7 23HC-IV-2-13 500 1485 0.34 0.0577 0.0025 0.6303 0.0261 0.0788 0.0019 520 96 496 16 489 11 23HC-IV-2-14 394 969 0.41 0.0550 0.0030 0.5438 0.0329 0.0707 0.0017 413 124 441 22 440 10 23HC-IV-2-15 148 419 0.35 0.0615 0.0036 1.0135 0.0669 0.1182 0.0043 657 125 711 34 720 25 23HC-IV-2-16 204 271 0.75 0.0565 0.0029 0.6192 0.0334 0.0784 0.0019 472 118 489 21 486 11 23HC-IV-2-17 81 187 0.43 0.0563 0.0035 0.6041 0.0362 0.0780 0.0016 465 137 480 23 484 9 23HC-IV-2-18 73 175 0.42 0.0587 0.0035 0.6473 0.0406 0.0788 0.0017 554 131 507 25 489 10 表 2 红川含斜长石橄榄岩锆石Hf同位素分析结果
Table 2. Analytical results of zircon Hf isotope of the Hongchuan plagioclase-bearing peridotites
分析点 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 年龄/Ma εHf (0) εHf (t) tDM1/Ma tDM2/Ma fLu/Hf 23HC-IV-2-2 0.108178 0.002103 0.282573 0.000018 487 −6.97 3.00 939 1185 −0.94 23HC-IV-2-7 0.017197 0.000528 0.282661 0.000023 484 −3.87 6.54 783 967 −0.98 23HC-IV-2-10 0.013316 0.000404 0.282673 0.000018 488 −3.42 7.12 764 934 −0.99 23HC-IV-2-12 0.020694 0.000653 0.282542 0.000032 488 −8.05 2.40 946 1223 −0.98 23HC-IV-2-13 0.086894 0.002042 0.282648 0.000023 489 −4.31 5.72 832 1020 −0.94 23HC-IV-2-16 0.023959 0.000670 0.282470 0.000028 486 −10.59 −0.19 1043 1380 −0.98 23HC-IV-2-17 0.030901 0.000847 0.282520 0.000037 484 −8.84 1.46 980 1277 −0.97 23HC-IV-2-18 0.028121 0.000754 0.282503 0.000033 489 −9.45 0.99 1001 1309 −0.98 表 3 红川岩体全岩主量、微量和稀土元素分析结果
Table 3. Whole-rock major, trace, and rare earth elements data of the Hongchuan intrusions
元素 23HC-Ⅲ-1 23HC-Ⅲ-2 23HC-Ⅲ-3 23HC-IV-1 23HC-IV-2 23HC-IV-3 黑云角闪石岩 黑云角闪石岩 黑云角闪石岩 黑云角闪石岩 含斜长石橄榄岩 橄榄岩 SiO2 46.28 45.16 46.35 43.84 45.62 39.13 TiO2 0.63 0.64 0.69 0.43 0.31 0.26 Al2O3 12.21 11.54 11.88 10.92 10.37 6.27 TFe2O3 11.48 11.93 12.60 13.39 11.69 13.68 MnO 0.15 0.16 0.17 0.19 0.19 0.12 MgO 14.59 15.98 13.69 15.62 15.27 27.47 CaO 9.79 9.73 10.35 11.60 12.19 4.18 Na2O 1.16 1.26 1.36 1.59 2.09 0.30 K2O 0.86 0.34 0.67 0.16 0.17 0.04 P2O5 0.07 0.05 0.08 0.02 0.01 0.03 烧失量 2.51 2.48 2.02 2.20 1.66 8.32 总计 99.73 99.27 99.86 99.96 99.57 99.80 m/f 2.49 2.62 2.12 2.28 2.55 3.95 Mg# 71.57 72.63 68.28 69.80 72.13 79.91 La 2.33 1.90 5.88 2.40 1.69 1.03 Ce 5.86 4.38 13.32 4.94 3.35 2.22 Pr 0.78 0.64 1.69 0.67 0.46 0.31 Nd 3.98 3.20 7.66 3.21 2.29 1.57 Sm 1.45 1.16 2.35 1.19 0.88 0.58 Eu 0.63 0.50 0.89 0.57 0.48 0.26 Gd 2.19 1.85 3.22 1.75 1.29 0.85 Tb 0.44 0.38 0.60 0.34 0.24 0.16 Dy 3.06 2.68 3.94 2.23 1.65 1.05 Ho 0.67 0.61 0.84 0.47 0.35 0.23 Er 1.91 1.77 2.39 1.28 0.96 0.62 Tm 0.30 0.28 0.37 0.19 0.14 0.09 Yb 2.02 1.87 2.52 1.25 0.95 0.61 Lu 0.30 0.28 0.37 0.18 0.14 0.09 ∑REE 25.93 21.49 46.04 20.66 14.88 9.68 Li 24.25 22.97 18.80 13.54 7.58 6.10 Be 0.43 0.15 0.67 0.17 0.15 0.09 Sc 35.72 33.84 27.58 31.62 26.68 20.47 V 230.74 232.38 238.76 236.02 198.75 121.84 Cr 1602.60 2132.36 1528.25 1573.17 2278.36 3468.39 Co 73.56 73.56 88.01 95.37 96.26 123.05 Ni 479.02 546.63 436.18 579.53 629.24 1274.77 Cu 252.66 49.09 123.09 2.67 1.52 6.38 Zn 95.09 72.27 104.79 85.02 82.14 70.01 Ga 11.66 11.17 14.24 11.06 10.03 6.46 Rb 51.61 16.44 33.15 1.42 1.81 0.80 Sr 132.99 85.10 90.61 88.89 69.85 27.76 Y 19.60 17.52 24.03 12.95 9.91 6.45 Zr 34.69 32.58 58.77 22.40 15.96 13.07 Nb 2.13 1.90 3.39 1.49 1.23 0.72 Cd 0.27 0.21 0.26 0.12 0.11 0.05 In 0.06 0.05 0.06 0.05 0.04 0.03 Cs 0.91 0.74 0.51 0.06 0.04 0.43 Ba 214.68 51.35 153.04 15.14 14.59 11.98 Hf 1.00 0.95 1.63 0.69 0.48 0.39 Ta 0.51 0.36 0.85 0.55 0.81 0.26 Pb 7.77 5.84 25.40 1.71 1.82 0.89 Bi 0.55 0.14 0.11 0.03 0.03 0.01 Th 0.36 0.27 1.08 0.22 0.21 0.20 U 0.17 0.08 0.34 0.06 0.06 0.53 δEu 1.09 1.05 0.99 1.20 1.36 1.14 (La/Sm)N 1.03 1.06 1.62 1.30 1.24 1.16 (La/Yb)N 0.83 0.73 1.67 1.37 1.29 1.21 (Gd/Yb)N 0.90 0.82 1.05 1.16 1.13 1.14 注:m/f=(Mg2++Ni2+)/(Mn2++Fe2+)(摩尔比);Mg#=Mg2+/(Mg2++Fe2+)×100(摩尔比);δEu=2×EuN/(SmN+GdN);“N”下标表示数值为球粒陨石标准化的值,标准化数据据McDonough and Sun, 1995。主量元素含量单位为%;微量和稀土元素含量单位为10−6 -
[1] Amelin Y, Lee D C, Halliday A N, et al. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 399(6733): 252−255.
[2] Arculus R J, Johnson R W. 1981. Island−arc magma sources: A geochemical assessment of the roles of slab−derived components and crustal contamination[J]. Geochemical Journal, 15(3): 109−133. doi: 10.2343/geochemj.15.109
[3] Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu−Hf and Sm−Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters, 273(1/2): 48−57. doi: 10.1016/j.jpgl.2008.06.010
[4] Boynton W V. 1984. Cosmochemistry of the rare earth elements: meteorite studies[C]//Developments in geochemistry. Elsevier; 2: 63−114.
[5] Chen L M, Song X Y, Hu R Z, et al. 2021a. Mg−Sr−Nd isotopic insights into Petrogenesis of the Xiarihamu mafic−ultramafic intrusion, northern Tibetan plateau, China[J]. Journal of Petrology, 62(2): egaa113.
[6] Chen W, Zhang G, Ruan M, et al. 2021b. Genesis of intermediate and silicic arc magmas constrained by Nb/Ta fractionation[J]. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB020708.
[7] Chen X H, Shao Z G, Xiong X S, et al. 2019. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 46(5): 995−1020 (in Chinese with English abstract).
[8] Chen Y X, Xia X H, Song S G, et al. 2012. Petrogenesis of Aoyougou high−silica adakite in the North Qilian orogen, NW China: Evidence for decompression melting of oceanic slab[J]. Chinese Science Bulletin, 57(22): 2072−2085 (in Chinese with English abstract).
[9] Claesson S, Vetrin V, Bayanova T, et al. 2000. U−Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 51(1/2): 95−108. doi: 10.1016/S0024-4937(99)00076-6
[10] Cong Z C. 2017. Study on metallogenic regularity of copper polymetallic deposit in the north Qilian, Qinghai[D]. PhD Thesis of Jilin University (in Chinese with English abstract).
[11] Ding X, Sun W D. 2014. Nb/Ta differentiation and diagenesis and mineralization significance of deep earth processes: From micro to macro[C]//Annual Meeting of Chinese Geoscience Union. Beijing: Chinese Geophysical Society, Organizing Committee of the National Symposium on Petrology and Geodynamics, Special Committee of Structural Geology and Geodynamics, Chinese Geological Society, Regional Geology and Metallogeny Committee of Chinese Geological Society, 2014: 6 (in Chinese).
[12] Duan J, 2012. Petrogenesis and metallogenic potential of Zangbutai mafic−ultramafic intrusion in Longshoushan, Gansu province[D]. Master Thesis of Chang’an University (in Chinese with English abstract).
[13] Duan J, Li C, Qian Z, et al. 2015. Geochronological and geochemical constraints on the petrogenesis and tectonic significance of Paleozoic dolerite dykes in the southern margin of Alxa Block, North China Craton[J]. Journal of Asian Earth Sciences, 111: 244−253. doi: 10.1016/j.jseaes.2015.07.012
[14] Duan J, Qian Z Z, Jiao J G, et al. 2015. Genesis of the Xijing intrusion from longshoushan terrane and tectonic significance[J]. Journal of Jilin University (Earth Science Edition), 45(3): 832−846 (in Chinese with English abstract).
[15] Ducea M N, Saleeby J, Morrison J, et al. 2005. Subducted carbonates, metasomatism of mantle wedges, and possible connections to diamond formation: an example from California[J]. American Mineralogist, 90(5/6): 864−870.
[16] Fan X X, Kong W Q, Yang Z X, et al. 2020. U−Pb chronology, geochemical characteristics and petrogenesis of the Chelugou pluton in the western part of North Qilian orogenic belt[J]. Geology in China, 47(3): 755−766 (in Chinese with English abstract).
[17] Frey F, Green D, Roy S. 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 19(3): 463−513.
[18] Fujinawa A. 1988. Tholeiitic and calc−alkaline magma series at Adatara volcano, northeast Japan: 1. Geochemical constraints on their origin[J]. Lithos, 22(2): 135−158.
[19] Ge X H, Liu J L. 1999. Formation and tectonic background of the northern Qilian orogenic belt[J]. Earth Science Frontiers, (4): 223−230 (in Chinese with English abstract).
[20] Gong Z Z, Yang Z X, Zhao J C, et al. 2025. The first discovery of medium scale magmatic molten nickel deposit in the western part of the north Qilian orogenic belt[J/OL]. Geology in China: 1-3[2025-03-17]. http://kns.cnki.net/kcms/detail/11.1167.p.20230220.1509.002.html (in Chinese with English abstract).
[21] Gong Z Z, Yang Z X, Zhou D F, et al. 2024. The Zircon U−Pb age of the ultrabasic intrusion of Hongchuan copper−nickel deposit in the west of the Northern Qilianshan Orogenic[J]. Geology in China, 51(1): 364−365 (in Chinese with English abstract).
[22] Griffin W L, Pearson N J, Belousova E, et al. 2000. The Hf isotope composition of cratonic mantle: LAM−MC−ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64(1): 133−147.
[23] Griffin W, Wang X, Jackson S, et al. 2002. Zircon chemistry and magma mixing, SE China: in−situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3/4): 237−269.
[24] Hanyu T, Tatsumi Y, Nakai S I, et al. 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry[J]. Geochemistry, Geophysics, Geosystems, 7(8): Q08002.
[25] Hawkesworth C, Gallagher K. 1993. Mantle hotspots, plumes and regional tectonics as causes of intraplate magmatism[J]. Terra Nova, 5(6): 552−559.
[26] Hess P C. 1992. Dissolution of Plagioclase and the Origin of Mg−Suite Parent Magmas[C]//Abstracts of the Lunar and Planetary Science Conference, XXIII: 529−530.
[27] Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 90(3): 297−314. doi: 10.1016/0012-821X(88)90132-X
[28] Hoskin P, Black L. 2000. Metamorphic zircon formation by solid−state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4): 423−439.
[29] Hunter A. 1998. Intracrustal controls on the coexistence of tholeiitic and calc−alkaline magma series at Aso Volcano, SW Japan[J]. Journal of Petrology, 39(7): 1255−1284.
[30] LI C M. 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons[J]. Geological Survey and Research, 32(3): 161−174 (in Chinese with English abstract).
[31] Li S J. 2011. Geodynamic evolution of Qilian orogenic belt and metallogenesis of endogenous metals[D]. PhD Thesis of Jilin University (in Chinese with English abstract).
[32] Li W Y. 2004. Main mineral deposit associations in the Qilian Mountains and their metallogenic dynamics[J]. Acta Geoscientica Sinica, 25(3): 313−320 (in Chinese with English abstract).
[33] Li W Y. 2022. Study of ore−forming theoretical innovation and prospecting breakthrough of magmatic copper−nickel−cobalt sulfide deposits in China[J]. Journal of Geomechanics, 28(5): 793−820 (in Chinese with English abstract).
[34] Liu Y X, Sha X, Ma Z, et al. 2018. Geochemical characteristics and tectonic implication of the shuanglong mafic−ultramafic rocks in western section of the north Qilian[J]. Acta Petrologica Sinica, 34(2): 383−397 (in Chinese with English abstract).
[35] Liu Y, Gao S, Hu Z, et al. 2010. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans−North China Orogen: U−Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571.
[36] Ludwig K. 2003. A geochronological toolkit for Microsoft Excel[J]. Isoplot, 3: 1−70.
[37] Mao J W, Pirajno F, Zhang Z H, et al. 2008. A review of the Cu−Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore−forming processes[J]. Journal of Asian Earth Sciences, 32(2/4): 184−203. doi: 10.1016/j.jseaes.2007.10.006
[38] McCulloch M T, Gamble J. 1991. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 102(3/4): 358−374. doi: 10.1016/0012-821X(91)90029-H
[39] McDonough W F, Sun S S. 1995. The composition of the Earth[J]. Chemical geology, 120(3/4): 223−253. doi: 10.1016/0009-2541(94)00140-4
[40] Mohr P A. 1987. Crustal contamination in mafic sheets: a summary[J]. Mafic Dyke Swarms. Special Publication−Geological Association of Canada, 34: 75−80.
[41] Neal C, Mahoney J, Chazey III W. 2002. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183[J]. Journal of Petrology, 43(7): 1177−1205. doi: 10.1093/petrology/43.7.1177
[42] Oyhantçabal P, Siegesmund S, Wemmer K, et al. 2007. Post−collisional transition from calc−alkaline to alkaline magmatism during transcurrent deformation in the southernmost Dom Feliciano Belt (Braziliano–Pan−African, Uruguay)[J]. Lithos, 98(1/4): 141−159. doi: 10.1016/j.lithos.2007.03.001
[43] Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 100(1/4): 14−48. doi: 10.1016/j.lithos.2007.06.016
[44] Plank T, Wade J. 2005. Constraints from water on mantle melting and slab fluid composition[C]//AGU Fall Meeting, London.
[45] Qin H P, Wu C L, Wang Ci S, et al. 2014. LA−ICP−MS Zircon U−Pb geochronology and geochemical characteristical of Xiagucheng granite in North Qilian[J]. Acta Geologica Sinica, 88(10): 1832−1842 (in Chinese with English abstract).
[46] Qin K Z, Tang D M, Su B X, et al. 2012. The tectonic setting, style, basic feature, relative erosion degree, ore−bearing evaluation sign, potential analysis of mineralization of Cu−Ni−bearing Permian mafic ultramafic complexes, Northern Xinjiang[J]. Northwestern Geology, 45(4): 83−116 (in Chinese with English abstract).
[47] Rollinson H. 1993. Using geochemical data: Evaluation, presentation, interpretation[M]. London: Longman: 171−214.
[48] Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics, 33(3): 267−309. doi: 10.1029/95RG01302
[49] Saunders A, Norry M, Tarney J. 1991. Fluid influence on the trace element compositions of subduction zone magmas[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 335(1638): 377−392. doi: 10.1098/rsta.1991.0053
[50] Scherer E E, Cameron K L, Blichert−Toft J. 2000. Lu−Hf garnet geochronology: closure temperature relative to the Sm−Nd system and the effects of trace mineral inclusions[J]. Geochimica et Cosmochimica Acta, 64(19): 3413−3432. doi: 10.1016/S0016-7037(00)00440-3
[51] Scherer E, Munker C, Mezger K. 2001. Calibration of the lutetium−hafnium clock[J]. Science, 293(5530): 683−687. doi: 10.1126/science.1061372
[52] Sha X, Chen S Q, He Z X, et al. 2016. Geochemical Features of Kawa Iron Ore Deposit in the Western Section of the North Qilian Mountains and Their Geological Significance[J]. Geology and exploration, 52(4): 657−666 (in Chinese with English abstract).
[53] Song S, Niu Y, Su L, et al. 2013. Tectonics of the north Qilian orogen, NW China[J]. Gondwana Research, 23(4): 1378−1401. doi: 10.1016/j.gr.2012.02.004
[54] Song X Y, Deng Y F, Xie W, et al. 2021. Prolonged basaltic magmatism and short−lived magmatic sulfide mineralization in orogenic belts[J]. Lithos, 390: 106114.
[55] Song X Y, Yi J N, Chen L M, et al. 2016. The giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun orogenic belt, northern Tibet plateau, China[J]. Economic Geology, 111(1): 29−55. doi: 10.2113/econgeo.111.1.29
[56] Spandler C, Pettke T, Hermann J. 2014. Experimental study of trace element release during ultrahigh−pressure serpentinite dehydration[J]. Earth and Planetary Science Letters, 391: 296−306. doi: 10.1016/j.jpgl.2014.02.010
[57] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.
[58] Tang D M, Qin K Z, Sun H, et al. 2009. Lithological, chronological and geochemical characteristics of Tianyu Cu−Ni deposit: Constraints on source and genesis of mafic−ultramafic intrusions in eastern Xinjiang[J]. Acta Petrologica Sinica, 25(4): 817−831 (in Chinese with English abstract).
[59] Taylor S R, McLennan S M. 1985. The continental crust: its composition and evolution[M]. Oxford Press, Blackwell: 1−312.
[60] Vervoort J D, Patchett P J. 1996. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites[J]. Geochimica et Cosmochimica Acta, 60(19): 3717−3733. doi: 10.1016/0016-7037(96)00201-3
[61] Wang R M, Liu De Q, Yin D T. 1987. Study of metallogenitic and ore−controlling factors with prospecting direction of Cu−Ni sulfide deposits in Tudun−Huangshan region, Hami, Xinjiang[J]. Journal of Mineralogy and Petrology, 7(1): 1−152 ( in Chinese).
[62] Wang Y X, Pu W F, Li T G, et al. 2024. Main types of magmatism gold deposits and their mineralization in Gansu Province. Geological Bulletin of China, 43(6): 869−884 (in Chinese with English abstract).
[63] Wu F Y, Li X H, Zheng Y F, et al. 2007. Lu−Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185−220 (in Chinese with English abstract).
[64] Wu Y B, Zheng Y F. 2004. Genesis of zircon and its constraints on interpretation of U−Pb age[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
[65] Xia L Q, Xia Z C, Xu X Y, 1996. Characteristics of Mid Late Proterozoic Volcanic Rocks and Cleavage of Precambrian Continental in Southern Qinling Mountains[J]. Science China Earth Sciences, (3): 237−243 (in Chinese).
[66] Xia X H, Song S G. 2010. Forming age and tectono−petro−genises of the Jiugequan ophiolite in the North Qilian Mountain, NW China[J]. Chinese Science Bulletin, 55(15): 1465−1473 (in Chinese with English abstract). doi: 10.1360/csb2010-55-15-1465
[67] Xue S C, Liu J Y, Zhou Y, et al. 2024. Genetic correlation of metasomatized mantle source with Ni−Cu mineralization in orogenic belt[J]. Acta Petrologica Sinica, 40(1): 60−78(in Chinese with English abstract). doi: 10.18654/1000-0569/2024.01.03
[68] Xue S, Li C, Qin K, et al. 2018. Sub−arc mantle heterogeneity in oxygen isotopes: evidence from Permian mafic–ultramafic intrusions in the Central Asian Orogenic Belt[J]. Contributions to Mineralogy and Petrology, 173: 1−13. doi: 10.1007/s00410-017-1425-2
[69] Xue S, Qin K, Li C, et al. 2016. Geochronological, petrological, and geochemical constraints on Ni−Cu sulfide mineralization in the Poyi ultramafic−troctolitic intrusion in the northeast rim of the Tarim craton, western China[J]. Economic Geology, 111(6): 1465−1484. doi: 10.2113/econgeo.111.6.1465
[70] Yang H Q, Zhao D H, Wang Y H, et al. 2009. Essential factors and model for prediction of Jingti−eshan−type copper deposits in the western segment of the North Qilian mountains[J]. Geoscience, 23(2): 269−276 (in Chinese with English abstract).
[71] Yu J Y, Li X M, Wang G Q, et al. 2010. LA−ICP−MS U−Pb dating of zircon from the Hamandaban granite body in the Honggou area, Qinghai Province: New Evidence For metallogenic age and causes of the Honggou copper polymetallic deposit[J]. Geology and Exploration, 46(4): 592−598 (in Chinese with English abstract).
[72] Zanetti A, Mazzucchelli M, Rivalenti G, et al. 1999. The Finero phlogopite−peridotite massif: an example of subduction−related metasomatism[J]. Contributions to Mineralogy and Petrology, 134: 107−122. doi: 10.1007/s004100050472
[73] Zhang Z, Mao J, Chai F, et al. 2009. Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, northwest China: implications for the genesis of magmatic Ni−Cu sulfide deposits[J]. Economic Geology, 104(2): 185−203. doi: 10.2113/gsecongeo.104.2.185
[74] Zheng Y F, Chen R X, Zhang S B, et al. 2007. Zircon Lu−Hf isotope study of ultrahigh−pressure eclogite and granitic gneiss in the Dabie orogen[J]. Acta Petrologica Sinica, 23(2): 317−330 (in Chinese with English abstract).
[75] Zhu X H, Chen D L, Feng Y M, et al. 2022. Granitic magmatism and tectonic evolution in the Qilian Mountain range in NW China: A review[J]. Earth Science Frontiers, 29(2): 241−260 (in Chinese with English abstract).
[76] Zindler A, Hart S R. 1986. Chemical Geodynamics[J]. Annual review of Earth and Planetary Sciences, 14: 493−571. doi: 10.1146/annurev.ea.14.050186.002425
[77] Zong K, Liu Y. 2018. Carbonate metasomatism in the lithospheric mantle: Implications for cratonic destruction in North China[J]. Science China Earth Sciences, 61: 711−729. doi: 10.1007/s11430-017-9185-2
[78] 陈宣华, 邵兆刚, 熊小松, 等. 2019. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 46(5): 995−1020. doi: 10.12029/gc20190504
[79] 陈育晓, 夏小洪, 宋述光. 2012. 北祁连山西段志留纪高硅埃达克岩: 洋壳减压熔融的证据[J]. 科学通报, 57(22): 2072−2085.
[80] 丛智超. 2017. 青海北祁连铜多金属矿床成矿规律研究[D]. 吉林大学博士学位论文.
[81] 丁兴, 孙卫东. 2014. 地球深部过程的Nb/Ta分异及成岩成矿意义: 从微观到宏观[C]//2014年中国地球科学联合学术年会-专题44: 造山带深部地质过程论文集. 北京: 中国地球物理学会, 全国岩石学与地球动力学研讨会组委会, 中国地质学会构造地质学与地球动力学专业委员会, 中国地质学会区域地质与成矿专业委员会, 2014.
[82] 段俊, 钱壮志, 焦建刚, 等. 2015. 甘肃龙首山岩带西井镁铁质岩体成因及其构造意义[J]. 吉林大学学报(地球科学版), 45(3): 832−846.
[83] 段俊. 2012. 甘肃龙首山地区藏布台镁铁-超镁铁质岩体岩石成因及成矿潜力[D]. 长安大学硕士学位论文.
[84] 樊新祥, 孔维琼, 杨镇熙, 等. 2020. 北祁连造山带西段车路沟岩体U−Pb年代学、地球化学特征及岩石成因[J]. 中国地质, 47(3): 755−766. doi: 10.12029/gc20200314
[85] 葛肖虹, 刘俊来. 1999. 北祁连造山带的形成与背景[J]. 地学前缘, (4): 223−230. doi: 10.3321/j.issn:1005-2321.1999.04.004
[86] 龚振中, 杨镇熙, 赵吉昌, 等. 2023. 北祁连造山带西段首次发现中型岩浆熔离型镍矿床[J/OL]. 中国地质: 1-3[2025-03-17]. http://kns.cnki.net/kcms/detail/11.1167.p.20230220.1509.002.html.
[87] 龚振中, 杨镇熙, 周登峰, 等. 2024. 北祁连西段红川铜镍矿超基性岩体锆石U−Pb年龄[J]. 中国地质: 51(01): 364−365.
[88] 李世金. 2011. 祁连造山带地球动力学演化与内生金属矿产成矿作用研究[D]. 吉林大学博士学位论文.
[89] 李文渊. 2004. 祁连山主要矿床组合及其成矿动力学分析[J]. 地球学报, 25(3): 313−320. doi: 10.3321/j.issn:1006-3021.2004.03.007
[90] 李文渊. 2022. 中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破[J]. 地质力学学报, 28(5): 793−820. doi: 10.12090/j.issn.1006-6616.20222810
[91] 李长民. 2009. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 32(3): 161−174.
[92] 刘懿馨, 沙鑫, 马蓁, 等. 2018. 北祁连西段双龙镁铁质-超镁铁质岩地球化学特征及构造意义[J]. 岩石学报, 34(2): 383−397.
[93] 秦海鹏, 吴才来, 王次松, 等. 2014. 北祁连下古城花岗岩体LA−ICP−MS锆石U−Pb年代学及岩石化学特征[J]. 地质学报, 88(10): 1832−1842.
[94] 秦克章, 唐冬梅, 苏本勋, 等. 2012. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J]. 西北地质, 45(4): 83−116. doi: 10.3969/j.issn.1009-6248.2012.04.009
[95] 沙鑫, 陈世强, 何兆祥, 等. 2016. 北祁连西段卡瓦铁矿的地球化学特征及其地质意义[J]. 地质与勘探, 52(4): 657−666.
[96] 唐冬梅, 秦克章, 孙赫, 等. 2009. 天宇铜镍矿床的岩相学、锆石U−Pb年代学、地球化学特征: 对东疆镁铁—超镁铁质岩体源区和成因的制约[J]. 岩石学报, 25(4): 817−831.
[97] 王润民, 刘德权, 殷定泰. 1987. 新疆哈密土墩—黄山一带铜镍硫化物矿床成矿控制条件及找矿方向的研究[J]. 矿物岩石, 7(1): 1−152.
[98] 王玉玺, 蒲万峰, 李通国, 等. 2024. 甘肃省主要岩浆作用金矿床类型及其成矿作用[J]. 地质通报, 43(6): 869−884. doi: 10.12097/gbc.2022.12.012
[99] 吴福元, 李献华, 郑永飞, 等. 2007. Lu−Hf同位素体系及其岩石学应用[J]. 岩石学报, (2): 185−220. doi: 10.3969/j.issn.1000-0569.2007.02.001
[100] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[101] 夏林圻, 夏祖春, 徐学义. 1996. 南秦岭中—晚元古代火山岩性质与前寒武纪大陆裂解[J]. 中国科学(D辑), (3): 237−243.
[102] 夏小洪, 宋述光. 2010. 北祁连山肃南九个泉蛇绿岩形成年龄和构造环境[J]. 科学通报, 55(15): 1465−1473.
[103] 薛胜超, 刘金宇, 周翊, 等. 2024. 交代地幔源区与造山带铜镍成矿作用[J]. 岩石学报, 40(1): 60−78.
[104] 杨合群, 赵东宏, 王永和, 等. 2009. 北祁连西段镜铁山式铜矿预测要素及预测模型[J]. 现代地质, 23(2): 269−276.
[105] 余吉远, 李向民, 王国强, 等. 2010. 青海红沟地区哈曼大阪花岗岩体锆石LA−ICP−MS测年——对红沟铜矿床形成时代和成因的认识[J]. 地质与勘探, 46(4): 592−598.
[106] 郑永飞, 陈仁旭, 张少兵, 等. 2007. 大别山超高压榴辉岩和花岗片麻岩中锆石Lu−Hf同位素研究[J]. 岩石学报, 23(2): 317−330.
[107] 朱小辉, 陈丹玲, 冯益民, 等. 2022. 祁连山地区花岗质岩浆作用及构造演化[J]. 地学前缘, 29(2): 241−260.
-