内蒙古白音乌拉钨锡矿床蚀变矿物短波红外光谱特征及铍矿化的发现

任美桥, 李真真, 许健, 徐文坦, 孙珍军, 任鹏, 赵永春, 张世昕, 赵俊兴, 张昕. 2025. 内蒙古白音乌拉钨锡矿床蚀变矿物短波红外光谱特征及铍矿化的发现. 地质通报, 44(6): 1033-1047. doi: 10.12097/gbc.2024.03.043
引用本文: 任美桥, 李真真, 许健, 徐文坦, 孙珍军, 任鹏, 赵永春, 张世昕, 赵俊兴, 张昕. 2025. 内蒙古白音乌拉钨锡矿床蚀变矿物短波红外光谱特征及铍矿化的发现. 地质通报, 44(6): 1033-1047. doi: 10.12097/gbc.2024.03.043
REN Meiqiao, LI Zhenzhen, XU Jian, XU Wentan, SUN Zhenjun, REN Peng, ZHAO Yongchun, ZHANG Shixin, ZHAO Junxing, ZHANG Xin. 2025. Short-wave infrared spectroscopy characteristics of alteration minerals and discovery of Be mineralization from Baiyinwula W−Sn deposit in Inner Mongolia. Geological Bulletin of China, 44(6): 1033-1047. doi: 10.12097/gbc.2024.03.043
Citation: REN Meiqiao, LI Zhenzhen, XU Jian, XU Wentan, SUN Zhenjun, REN Peng, ZHAO Yongchun, ZHANG Shixin, ZHAO Junxing, ZHANG Xin. 2025. Short-wave infrared spectroscopy characteristics of alteration minerals and discovery of Be mineralization from Baiyinwula W−Sn deposit in Inner Mongolia. Geological Bulletin of China, 44(6): 1033-1047. doi: 10.12097/gbc.2024.03.043

内蒙古白音乌拉钨锡矿床蚀变矿物短波红外光谱特征及铍矿化的发现

  • 基金项目: 国家自然科学基金面上项目《富B锡-银铅锌成矿系统中锡与银铅锌共生富集机制研究——以内蒙古白音查干矿床为例》(批准号:42272105)、河北省自然科学基金面上项目《大兴安岭南段白音查干锡多金属矿床中铟的赋存状态与富集机制研究》(批准号:D2023512031)、克什克腾旗银达矿业有限公司综合研究项目《内蒙古自治区白音乌拉矿区找矿潜力评价综合研究》(编号:GS2022094)
详细信息
    作者简介: 任美桥(2000− ),女,在读硕士生,资源与环境专业。E−mail:1134468990@qq.com
    通讯作者: 李真真(1984− ),女,博士,副教授,从事矿床学及矿产普查与勘探的教学和科研工作。E−mail:windylizhenzhen@163.com
  • 中图分类号: P618.72; P627

Short-wave infrared spectroscopy characteristics of alteration minerals and discovery of Be mineralization from Baiyinwula W−Sn deposit in Inner Mongolia

  • Fund Project: Supported by National Natural Science Foundation of China (No. 42272105), Natural Science Foundation of Hebei Province (No. D2023512031), and Comprehensive research project of Keshiketeng Banner Yinda Mining Company Limited. (No.GS2022094)
More Information
    Author Bio: REN Meiqiao, female, born in 2000, master candidate, mainly engaged in resources and environment study; E−mail: 1134468990@qq.com .
    Corresponding author: LI Zhenzhen, female, born in 1984, Ph.D., associate professor, mainly engaged in teaching and research work in mineral deposit science, mineral survey and exploration; E−mail: windylizhenzhen@163.com
  • 研究目的

    内蒙古白音乌拉矿床位于大兴安岭南段锡银铅锌多金属成矿带,具有良好的稀有金属找矿前景,但在找矿勘查过程中,一直存在热液矿化中心不明、矿床成因认识不足等问题,影响了找矿效果。

    研究方法

    运用短波红外光谱技术对该矿区内13个钻孔的蚀变矿物类型和相对含量进行了详细分析。

    研究结果

    结果表明,矿区的主要蚀变矿物包括白云母族矿物(白云母、多硅白云母、伊利石)、绿泥石族矿物(铁绿泥石、铁镁绿泥石、镁绿泥石)、黑云母、黄玉和电气石,同时含有少量高岭石、地开石、蒙脱石和方解石。根据蚀变矿物填图,矿区的围岩蚀变总体可分为2个带:中深部的强云英岩化带(石英-多硅白云母-黄玉-绿泥石-萤石±黑云母±电气石)和浅部及外围的白云母-绿泥石蚀变带(石英-绿泥石-白云母±黑云母±电气石),强云英岩带与深部黑云母花岗岩的空间关系表明,成矿流体来自于黑云母花岗岩,该带也代表了本矿区的热液矿化中心。白云母族矿物的特征光谱参数显示,强云英岩化带内Pos2200和IC值均较高,远离该带则变低,Pos2200的增大受成矿流体成分、pH值、围岩性质及温度共同影响,而IC值主要与热液活动的温度相关。

    结论

    白云母高IC值(>2)可作为白音乌拉矿区的找矿标志。短波红外光谱技术在富F且发育云英岩化的花岗质岩浆-热液系统中是非常有效的勘查方法,富F矿物黄玉的快速识别,也可能暗示良好的锂、铍找矿潜力。该矿床以绿柱石为主的岩浆热液型铍矿化的发现,证明短波红外光谱技术良好的应用前景,同时也揭示了大兴安岭地区铍成矿类型的多样性,暗示区域上良好的铍找矿潜力,对区内稀有金属未来勘查目标和方向有一定启示意义。

  • 加载中
  • 图 1  大兴安岭南段地区大地构造位置图(a)和典型矿床分布图(b)(据Li et al., 2020修改)

    Figure 1. 

    图 2  大兴安岭南段白音乌拉矿区平面地质图

    Figure 2. 

    图 3  白音乌拉矿区代表性蚀变矿物的手标本和显微镜下照片

    Figure 3. 

    图 5  15线剖面矿化、蚀变矿物及伊利石特征光谱参数填图

    Figure 5. 

    图 7  剖面2剖面矿化、蚀变矿物及伊利石特征光谱参数填图

    Figure 7. 

    图 4  白音乌拉矿区典型蚀变矿物特征光谱曲线

    Figure 4. 

    图 6  剖面1剖面矿化、蚀变矿物及伊利石特征光谱参数填图

    Figure 6. 

    图 8  白音乌拉矿区白云母族矿物特征光谱参数Pos2200、IC值及Pos2200与IC相关性统计图

    Figure 8. 

  • [1]

    Barton M D, Yong S. 2002. Non−pegmatitic deposits of beryllium: Mineralogy, geology, phase equilibria and origin[J]. Reviews in Mineralogy and Geochemistry, 50(1): 591−691. doi: 10.2138/rmg.2002.50.14

    [2]

    Chang Z S, Hedenquist J W, White N C, et al. 2011. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion−centered Cu−Au district, Luzon, Philippines[J]. Economic Geology, 106: 1365−1398. doi: 10.2113/econgeo.106.8.1365

    [3]

    Chang Z S, Yang Z M. 2012. Evaluation of inter−instrument variations among Short Wavelength Infrared (SWIR) devices[J]. Economic Geology, 107(7): 1479−1488. doi: 10.2113/econgeo.107.7.1479

    [4]

    Chen H Y, Zhang S T, Chu G B, et al. 2019. The short wave infrared (SWIR) spectral characteristics of alteration of alteration minerals and applications for ore exploration in the typical skarn−porphyry deposits, Edong ore district, eastern China[J]. Acta Petrologica Sinica, 35(12): 3629−3643 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.12.04

    [5]

    Chen Z, Zhou J B, Li G Y, et al. 2023. The nature and spatial–temporal evolution of suture zones in Northeast China[J]. Earth−Science Reviews, 241: 104437. doi: 10.1016/j.earscirev.2023.104437

    [6]

    Chen X K, Zhou Z H. 2023. Deposit types, metallogenesis and resource prospect of Li−Be−Nb−Ta deposits in the Great Xing’an Range[J]. Acta Petrologica Sinica, 39(7): 1973−1991 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.07.06

    [7]

    Ding L L, Mao Q G, Wang Y W. 2022. Comparison on the Characteristics of Cassiterite−Bearing and Barren Granites in the Beidashan Region, Southern Great Xing’an Range[J]. Earth Science, 47(9): 3371−3388 (in Chinese with English abstract).

    [8]

    Doublier M P, Roache A, Potel S. 2010. Application of SWIR spectroscopy in very low−grade metamorphic environments: A comparison with XRD methods[J]. Geological Survey of Western Australia, 7: 61.

    [9]

    Du L H, Huang Y, Gao X, et al. 2025. Characteristics of strong reducing metallogenic porphyry and its constraints on the genesis of the rare metal-tin-polymetallic deposit in Weilasituo, Inner Mongolia[J]. Geological Bulletin of China, 44(4): 633−648(in Chinese with English abstract).

    [10]

    Duke E F. 1994. Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing[J]. Geology, 22(7): 621−624. doi: 10.1130/0091-7613(1994)022<0621:NISOMT>2.3.CO;2

    [11]

    Hao J Y, Duan L A, Zhang Y, et al. 2024. Machine learning on white mica short−wave infrared (SWIR) spectral data in the Tengjia Au deposit, Jiaodong peninsula (Eastern China): A prospecting indicator for lode gold deposits[J]. Ore Geology Reviews, 173: 106230. doi: 10.1016/j.oregeorev.2024.106230

    [12]

    Harraden C L, Mcnulty B A, Gregory M J, et al. 2013. Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble porphyry copper−gold−molybdenum deposit, Iliamna, Alaska[J]. Economic Geology, 108: 483−494. doi: 10.2113/econgeo.108.3.483

    [13]

    Herrmann W, Blake M, Doyle M, et al. 2001. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and western Tharsis, Tasmania, and highway−reward, Queensland[J]. Economic Geology, 96: 939−955.

    [14]

    Hou X Z, Liu Z N, Han W, et al. 2017. The occurrence state of tin and beryllium in polymetallic ore from Huanggangliang area, Hexigten County, Inner Mongolia, China[J]. Acta Mineralogica Sinica, 37(6): 807−812 (in Chinese with English abstract).

    [15]

    Hou Z D, Zhao Z, Liu Z J, et al. 2023. Metallogenetic regularity and prospecting direction of granite related Li−Be−Nb−Ta deposit in the Nanling region, South China[J]. Acta Petrologica Sinica, 39(7): 1950−1972 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.07.05

    [16]

    Hu S X, Ye Y, Fang C Q. 2004. Petrology of accounted altered rocks and its significance in finding minerals[M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    [17]

    Jiang S Y, Zhao K D, Jiang H, et al. 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposit in China: An overview[J]. Chin Sci Bull., 65: 3730−3745 (in Chinese with English abstract).

    [18]

    Laakso K, Rivard B, Peter J M, et al. 2015. Application of airborne, laboratory, and field hyperspectral methods to mineral exploration in the Canadian arctic: Recognition and characterization of volcanogenic massive sulfide−associated hydrothermal alteration in the Izok Lake deposit area, Nunavut, Canada[J]. Economic Geology, 110: 925−941. doi: 10.2113/econgeo.110.4.925

    [19]

    Launay G, Branquet Y, Sizaret S, et al. 2023. How greisenization could trigger the formation of large vein−and−greisen Sn−W deposits: A numerical investigation applied to the Panasqueira deposit[J]. Ore Geology Reviews, 153: 105299. doi: 10.1016/j.oregeorev.2023.105299

    [20]

    Lecumberri−Sanchez P, Vieira R, Heinrich C A, et al. 2017. Fluid−rock interaction is decisive for the formation of tungsten deposits[J]. Geology, 45: 579−582.

    [21]

    Li J K, Zou T R, Wang D H, et al. 2017. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 36(4): 951−978 (in Chinese with English abstract).

    [22]

    Li Z Z, Qin K Z, Zhao J X, et al. 2019. Basic characteristics, research progresses and prospects of Sn−Ag−base metal metallogenic system[J]. Acta Petrologica Sinica, 35(7): 1979−1998 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.03

    [23]

    Li Z Z, Qin K Z, Pei B, et al. 2020. Mineralogical features of tourmaline in Baiyinchagan Sn−Ag−Pb−Zn deposit, southern Great Xing’an Range, and its implications for magmatic−hydrothermal evolution[J]. Acta Petrologica Sinica, 36(12): 3797−3812 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.14

    [24]

    Li X F, Wu F Y, Wei X L, et al. 2022. Metallogenic potential and prospcting prospect of volcanic−hosted beryllium−uranium deposit in eastern China[J]. Acta Petrologica Sinica, 38(7): 1861−1878 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.03

    [25]

    Lian Y C, Zhang G, Yuan C H, et al. 2005. Application of short−wave infrared spectrometry mineralogical measurement technology in hydrothermal alteration mineral mapping−A case study of the Toiya porphyry copper deposit[J]. Geology in China, 32(3): 483−495 (in Chinese with English abstract).

    [26]

    Liu X, Wang J B, Zhu X Y, et al. 2017a. Mineralization process of the Baiyinchagan tin polymetallic deposit in Inner Mongolia I: Metallic mineral assemblage and metallogenic mechanism[J]. Mineral Exploration, 8(6): 967−980 (in Chinese with English abstract).

    [27]

    Liu X, Li X G, Zhu X Y, et al. 2017b. Mineralization process of the Baiyinchagan tin polymetallic deposit in Inner Mongolia II: Chronology of ore−bearing porphyry, geochemical characteristics and geological implications of the granite porphyry[J]. Mineral Exploration, 8(6): 981−996 (in Chinese with English abstract).

    [28]

    Liu Y J, Li W M, Feng Z W, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013

    [29]

    Liu Y J, Li W M, Ma Y F, et al. 2021. An orocline in the wastern Central Asian orogenic belt[J]. Earth Science Reviews, 221: 103808. doi: 10.1016/j.earscirev.2021.103808

    [30]

    Mao J W, Li H Y, B Guy, et al. 1996. Geology and mineralization of Kakizhuyuan silica−dacite−type W−Sn−Mo−Bi deposits, Hunan, China[J]. Mineral Deposits, 15(1): 1−15 (in Chinese with English abstract).

    [31]

    Mao J W, Zhou Z H, Wu G, et al. 2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas[J]. Mineral Deposits, 32(4): 716−730 (in Chinese with English abstract).

    [32]

    Mao J W, Ouyang H G, Song S W, et al. 2019. Geology and metallogeny of tungsten and tin deposits in China[J]. Economic Geology, SEG Special Publications, 22: 411−482.

    [33]

    Mao X X, Peng H J, Zhang Y L, et al. 2023. Short wave infrared spectrum characteristics of sericite and its application to mineral exploration[J]. Mineral Deposits, 42(3): 646−659 (in Chinese with English abstract).

    [34]

    Ni P, Pan J Y, Han L, et al. 2023. Large−scale granite−related tungsten and tin mineralization in South China: Temporal and spatial distribution, metallogenic models and exploration[J]. Acta Geologica Sinica, 97(11): 3497−3544 (in Chinese with English abstract).

    [35]

    Ouyang H G, Mao J W, Zhou Z H, et al. 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, Northeastern China[J]. Gondwana Research, 27(3): 1153−1172. doi: 10.1016/j.gr.2014.08.010

    [36]

    Qin K Z, Zhai M G, Li G M, et al. 2017. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China[J]. Acta Petrologica Sinica, 33(2): 305−325 (in Chinese with English abstract).

    [37]

    Rao C, Wang R C, Che X D, et al. 2022. Metallogenic mechanism and prospect of key metal beryllium[J]. Acta Petrologica Sinica, 38(7): 1848−1860 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.02

    [38]

    Rao C, Wang R C, Che X D, et al. 2025. Discovery of hydrothermal beryllium deposit in the Changshan area of Northwest Zhejiang Province[J]. Geological Bulletin of China, 44(1): 33−41(in Chinese with English abstract).

    [39]

    Shao J A, Tian W, Tang K D, et al. 2018. Preliminary discussion on the role of microcontinental blocks in the evolution of the Central Asian orogenic belt: taking the Xilinhaote microcontinental block as an example[J]. Earth Science Frontiers, 25(4): 1−10 (in Chinese with English abstract).

    [40]

    Shi G H, Liu D Y, Zhang F Q, et al. 2003. SHRIMP U−Pb zircon geochronology and its implications on the Xilin Gol complex, Inner Mongolia, China[J]. Chinese Science Bulletin, 48(24): 2742−2748. doi: 10.1007/BF02901768

    [41]

    Shi R Z, Zhao J X, Noreen J E, et al. 2021. Temporal−spatial variations in Li−Fe mica compositions from the Weilasituo Sn−polymetallic deposit (NE China): Implications for deposit−scale fluid evolution[J]. Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration, 134(1): 104132.

    [42]

    Sun Y Y, Seccombe P K, Yang K. 2001. Application of short−wave infrared spectroscopy to define alteration zones associated with the Elura zinc−lead−silver deposit, NSW, Australia[J]. Journal of Geochemical Exploration, 73: 11−26. doi: 10.1016/S0375-6742(01)00167-4

    [43]

    Sun Y, Lai Y, Shu Q H. 2012. Study on the relationship between the degree of magma crystallization and the mineralization of Be by magmatic fluids−−Taking the example of Tailai granite−type Be−Ta deposits in the southern section of the Daxing'anling Mountains[J]. Mineral Deposits, 31(S1): 345−346 (in Chinese with English abstract).

    [44]

    Tang N, Qin Z P, Li Y B, et al. 2022. Mineralogical characteristics and short−wave infrared spectra of chlorite as indicators of hydrothermal centers: A case study of the gaint porphyry copper−molybdenum deposit at Qulong, Tibet[J]. Acta Geologica Sinica (English Edition), 96(2): 490−505. doi: 10.1111/1755-6724.14809

    [45]

    Wang J B, Wang Y W, Wang L J, et al. 2001. Tin−polymetallic mineralization in the southern part of the Da Hinggan Mountains, China[J]. Resource Geology, 51(4): 283−291. doi: 10.1111/j.1751-3928.2001.tb00102.x

    [46]

    Wang J B, Wang Y W, Wang L J. 2005. Tin polymetallic mineralization series in the southern setion of Great Xing’an Range[J]. Geology and Prospecting, 41(6): 18−23 (in Chinese with English abstract).

    [47]

    Wang L J, Wang J B, Wang Y W, et al. 2015. Metallogenic mechanism of fluid and prospecting forecast of Dajing Sn−Cu polymetallic deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 31(4): 991−1001 (in Chinese with English abstract).

    [48]

    Wang L, Percival J B, Hedenquist J W, et al. 2021. Alteration mineralogy of the Zhengguang epithermal Au−Zn deposit, Northeast China: Interpretation of shortwave infrared analyses during mineral exploration and assessment[J]. Economic geology and the bulletin of the Society of Economic Geologists, 116(2): 389−406. doi: 10.5382/econgeo.4792

    [49]

    Wang L, Qin K Z, Song G X, et al. 2019. A review of intermediate sulfidation epithermal deposits and subclassification[J]. Ore Geology Reviews, 107: 434−456. doi: 10.1016/j.oregeorev.2019.02.023

    [50]

    Wang Q F, Deng J, Zhao H S, et al. 2019. Review on Orogenic Gold Deposits[J]. Earth Science, 44(6): 2155−2186(in Chinese with English abstract).

    [51]

    Wang T, Zhang J J, Li S, et al. 2022. Distinctive spatial−temporal evolution of Late Paleozoic to Mesozoic magmatic systems in Northeast Asia: Evidences for identification of the extent and superposition of multiple plate tectonic regimes[J]. Earth Science Frontiers, 29(2): 28−44 (in Chinese with English abstract).

    [52]

    Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1−30. doi: 10.1016/j.jseaes.2010.11.014

    [53]

    Wu F Y, Guo C L, Hu F Y, et al. 2023. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China[J]. Acta Petrologica Sinica, 39(1): 1−36(in Chinese with English abstract).

    [54]

    Wu G, Liu R L, Chen G Z, et al. 2021. Mineralization of the Weilasituo rare metal−tin−polymetallic ore deposit in Inner Mongolia: Insights from fractional crystallization of gtanitic magmas[J]. Acta Petrologica Sinica, 37(3): 637−664 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.01

    [55]

    Wu H H, Huang H, Zhang Z C, et al. 2020. Geochronology, geochemistry, mineralogy and metallogenic implications of the Zhaojinggou Nb−Ta deposit in the northern margin of the North China Craton, China[J]. Ore Geology Review, 125: 103692. doi: 10.1016/j.oregeorev.2020.103692

    [56]

    Wu H R, Yang H, Ge W C, et al. 2022. Formation age and genesis of the Nasigatu greisen−type beryllium mineralization in the southern Great Xing’an Range: Monazite chronological and geochemical evidence[J]. Acta Petrologica Sinica, 38(7): 1915−1936 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.07

    [57]

    Xu C, Chen H Y, Noel W, et al. 2017. Alteration and mineralization of Xinan Cu−Mo ore deposit in Zijinshan orefield, Fujian Province, and application of short wavelength infra−red technology (SWIR) to exploration[J]. Mineral Deposits, 36(5): 1013−1038 (in Chinese with English abstract).

    [58]

    Xu J X, Zeng Z L, Wang D H, et al. 2008. New type of tungsten ore in Gannan and the “five−story + basement” mineral search model[J]. Acta Geologica Sinica, 82(7): 880−887 (in Chinese with English abstract).

    [59]

    Yang F, Wu G, Chen G Z, et al. 2024. Petrogenesis and implications for tin mineralization of the Beidashan granitic pluton, southern Great Xing’an Range, NE China: Constraints from whole−rock and accessory mineral geochemistry[J]. Journal of Asian Earth Sciences, 259: 105883. doi: 10.1016/j.jseaes.2023.105883

    [60]

    Yang K, Lian C, Huntington J F, et al. 2005. Infra red spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu−Au deposit Xinjiang China[J]. Mineralium Deposita, 40: 324−336.

    [61]

    Yang S Y, Jiang S Y, Zhao K D, et al. 2015. Tourmaline as a recorder of magmatic−hydrothermal evolution: An in situ major and trace element analysis of tourmaline from the Qitianling batholith, South China[J]. Contributions to Mineralogy and Petrology, 170(5/6): 42. doi: 10.1007/s00410-015-1195-7

    [62]

    Yang Z M, Hou Z Q, Yang Z S, et al. 2012. Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district: A case study of Niancun ore district, Tibet[J]. Mineral Deposits, 31(4): 699−717 (in Chinese with English abstract).

    [63]

    Yao L, Lü Z C, Ye T Z, et al. Zircon U−Pb age, geochemical and Nd−Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Xing’an Range, China[J]. Acta Petrologica Sinica, 33(10): 3183−3199 (in Chinese with English abstract).

    [64]

    Yao L, Lü Z C, Ye T Z, et al. 2021. Geological and Sr−Nd−S−Pb isotopic constraints on the genesis of the Baiyinchagan tin polymetallic deposit, southern Great Xing’an Range, China[J]. Acta Petrologica Sinica, 37(6): 1731−1748 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.06.06

    [65]

    Zhai D G, Williams−Jones A E, Liu J J, et al. 2020. The Genesis of the Giant Shuangjianzishan Epithermal Ag−Pb−Zn Deposit, Inner Mongolia, Northeastern China[J]. Economic Geology, 115(1): 101−128. doi: 10.5382/econgeo.4695

    [66]

    Zhang S T, Chen H Y, Zhang X B, et al. 2017. Application of short wavelength infrared ( SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu−Fe−Au deposit, Edongnan (southeast Hubei) ore concentration area[J]. Mineral Deposits, 36(6): 1263−1288 (in Chinese with English abstract).

    [67]

    Zhang X H, Yuan L L, Xue F H, et al. 2015. Early Permian A−type granites from central Inner Mongolia, North China: Magmatic tracer of post−collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 28(1): 311−327. doi: 10.1016/j.gr.2014.02.011

    [68]

    Zhao C, Qin K Z, Song G X, et al. 2019. Early Palaeozoic high−Mg basalt−andesite suite in the Duobaoshan porphyry Cu deposit NE China: Constraints on petrogenesis, mineralization, and tectonic setting[J]. Gondwana Research, 71: 91−116. doi: 10.1016/j.gr.2019.01.015

    [69]

    Zhao H T, Zhang Y, Xu Y B, et al. 2024. Machine learning model for deep exploration: Utilizing short wavelength infrared (SWIR) of hydrothermal alteration minerals in the Qianchen gold deposit, Jiaodong Peninsula, Eastern China[J]. Ore Geology Reviews, 168: 106060. doi: 10.1016/j.oregeorev.2024.106060

    [70]

    Zhao L X, Dai J J, Lin B, et al. 2023. Short−wave−thermal infrared spectra characteristics of altered minerals from the Jiama 3000m deep borehole in Tibet[J]. Acta Geologica Sinica, 97(4): 1342−1359 (in Chinese with English abstract).

    [71]

    Zheng S L, Wu S, Zheng Y Y, et al. 2022. Identifying potential porphyry copper mineralization at the Zhu’nuo ore−cluster district in western Gangdese, southern Tibet: Insights from shortwave infrared (SWIR) spectrometry and geochemical anomalies[J]. Ore Geology Reviews, 151: 105202. doi: 10.1016/j.oregeorev.2022.105202

    [72]

    Zhou Y, Chen S Z, Li L M, et al. 2023. Mapping hydrothermal alteration of the Au−Cu deposits in the Zhenghe magmatic−hydrothermal mineralization system, SE China, using short wavelength infrared (SWIR) reflectance spectroscopy[J]. Journal of Geochemical Exploration, 244: 107113. doi: 10.1016/j.gexplo.2022.107113

    [73]

    Zhou Z H, Chen Z. 2023. Assembly processes in the eastern Northern Orogenic Belt and implications for the spatiotemporal transition of major tectonic domains in Northeast Asia[J]. Science China Earth Sciences, 66(11): 2648−2652 (in Chinese with English abstract). doi: 10.1007/s11430-023-1192-4

    [74]

    Zhou Z H, Mao J W. 2022. Metallogenic patterns and ore deposit model of the tin polymetallic deposits in the southern segment of Great Xing’an Range[J]. Earth Science Frontiers, 29(1): 176−199 (in Chinese with English abstract).

    [75]

    Zhu X Y, Zhang Z H, Fu X, et al. 2016. Geological and geochemical characteristics of the Weilasituo Sn−Zn deposit, Inner Mongolia[J]. Geology in China, 43(1): 188−208 (in Chinese with English abstract).

    [76]

    陈华勇, 张世涛, 初高彬, 等. 2019. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J]. 岩石学报, 35(12): 3629−3643. doi: 10.18654/1000-0569/2019.12.04

    [77]

    陈新凯, 周振华. 2023. 大兴安岭锂-铍-铌-钽等关键金属矿床类型、成矿规律与资源展望[J]. 岩石学报, 39(7): 1973−1991. doi: 10.18654/1000-0569/2023.07.06

    [78]

    丁磊磊, 毛启贵, 王玉往, 等. 2022. 大兴安岭南段北大山含锡石与不含锡石花岗岩特征对比[J]. 地球科学, 47(9): 3371−3388. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209017

    [79]

    杜立华, 黄宇, 高雄, 等. 2025. 内蒙古维拉斯托稀有金属-锡多金属矿床强还原性成矿斑岩特征及其对矿床成因的约束[J]. 地质通报, 44(4): 633−648.

    [80]

    侯晓志, 刘占宁, 韩炜, 等. 2017. 内蒙古克什克腾旗黄岗梁多金属矿锡、铍的赋存状态[J]. 矿物学报, 37(6): 807−812.

    [81]

    侯占德, 赵正, 柳振江, 等. 2023. 南岭花岗岩区锂铍铌钽成矿规律与找矿方向[J]. 岩石学报, 39(7): 1950−1972. doi: 10.18654/1000-0569/2023.07.05

    [82]

    胡受奚, 叶瑛, 方长泉. 2004. 交代蚀变岩岩石学及其找矿意义[M]. 北京: 地质出版社.

    [83]

    蒋少涌, 赵葵东, 姜海, 等. 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J]. 科学通报, 65(33): 3730−3745.

    [84]

    李建康, 邹天人, 王登红, 等. 2017. 中国铍矿成矿规律[J]. 矿床地质, 36(4): 951−978.

    [85]

    李真真, 秦克章, 赵俊兴, 等. 2019. 锡-银多金属成矿系统的基本特征、研究进展与展望[J]. 岩石学报, 35(7): 1979−1998. doi: 10.18654/1000-0569/2019.07.03

    [86]

    李真真, 秦克章, 裴斌, 等. 2020. 大兴安岭南段白音查干Sn−Ag−Zn−Pb矿床电气石矿物学特征及对岩浆-热液演化过程的启示[J]. 岩石学报, 36(12): 3797−3812. doi: 10.18654/1000-0569/2020.12.14

    [87]

    李晓峰, 吴福元, 韦星林, 等. 2022. 中国东部火山岩型铍铀矿床成矿潜力与找矿远景[J]. 岩石学报, 38(7): 1861−1878. doi: 10.18654/1000-0569/2022.07.03

    [88]

    连长云, 章革, 元春华, 等. 2005. 短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例[J]. 中国地质, 32(3): 483−495. doi: 10.3969/j.issn.1000-3657.2005.03.019

    [89]

    刘新, 李学刚, 祝新友, 等. 2017a. 内蒙古白音查干锡多金属矿床成矿作用研究Ⅱ: 成矿花岗斑岩年代学、地球化学特征及地质意义[J]. 矿产勘查, 8(6): 981−996. doi: 10.3969/j.issn.1674-7801.2017.06.008

    [90]

    刘新, 王京彬, 祝新友, 等. 2017b. 内蒙古白音查干锡多金属矿床成矿作用研究Ⅰ: 金属矿物组合及其成因机制[J]. 矿产勘查, 8(6): 967−980. doi: 10.3969/j.issn.1674-7801.2017.06.007

    [91]

    毛景文, 李红艳, Guy B, 等. 1996. 湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用[J]. 矿床地质, 15(1): 1−15.

    [92]

    毛景文, 周振华, 武广, 等. 2013. 内蒙古及邻区矿床成矿规律与成矿系列[J]. 矿床地质, 32(4): 716−730. doi: 10.3969/j.issn.0258-7106.2013.04.006

    [93]

    毛星星, 彭惠娟, 张云龙, 等. 2023. 绢云母短波红外光谱特征及其在矿产勘查中的应用[J]. 矿床地质, 42(3): 646−659.

    [94]

    倪培, 潘君屹, 韩亮, 等. 2023. 华南与花岗岩有关大规模钨锡成矿作用的时空分布、成矿模式及找矿方向[J]. 地质学报, 97(11): 3497−3544.

    [95]

    秦克章, 翟明国, 李光明, 等. 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系[J]. 岩石学报, 33(2): 305−325.

    [96]

    饶灿, 王汝成, 车旭东, 等. 2022. 关键金属铍的成矿机制与找矿前景[J]. 岩石学报, 38(7): 1848−1860. doi: 10.18654/1000-0569/2022.07.02

    [97]

    饶灿, 王汝成, 车旭东, 等. 2025. 浙西北常山地区新发现热液型铍矿[J]. 地质通报, 44(1): 33−41.

    [98]

    邵济安, 田伟, 唐克东, 等. 2018. 初论微陆块在中亚造山带演化中的作用: 以锡林浩特微陆块为例[J]. 地学前缘, 25(4): 1−10.

    [99]

    孙艺, 赖勇, 舒启海. 2012. 岩浆结晶程度与岩浆流体Be成矿关系研究——以大兴安岭南段台来花花岗岩型Be−Ta矿床为例[J]. 矿床地质, 31(S1): 345−346.

    [100]

    王京彬, 王玉往, 王莉娟. 2005. 大兴安岭南段锡多金属成矿系列[J]. 地质与勘探, (6): 18−23. doi: 10.3969/j.issn.0495-5331.2005.06.003

    [101]

    王莉娟, 王京彬, 王玉往, 等. 2015. 内蒙古大井锡铜多金属矿床流体成矿机理及外围找矿预测[J]. 岩石学报, 31(4): 991−1001.

    [102]

    王庆飞, 邓军, 赵鹤森, 等. 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用[J]. 地球科学, 44(6): 2155−2186.

    [103]

    王涛, 张建军, 李舢, 等. 2022. 东北亚晚古生代—中生代岩浆时空演化: 多重板块构造体制范围及叠合的鉴别证据[J]. 地学前缘, 29(2): 28−44.

    [104]

    武广, 刘瑞麟, 陈公正, 等. 2021. 内蒙古维拉斯托稀有金属-锡多金属矿床的成矿作用: 来自花岗质岩浆结晶分异的启示[J]. 岩石学报, 37(3): 637−664.

    [105]

    吴福元, 郭春丽, 胡方泱, 等. 2023. 南岭高分异花岗岩成岩与成矿[J]. 岩石学报, 39(1): 1−36.

    [106]

    吴浩然, 杨浩, 葛文春, 等. 2022. 大兴安岭南段那斯嘎吐云英岩型铍矿化的形成时代和成因探讨: 独居石年代学和地球化学证据[J]. 岩石学报, 38(7): 1915−1936.

    [107]

    许建祥, 曾载淋, 王登红, 等. 2008. 赣南钨矿新类型及“五层楼+地下室”找矿模型[J]. 地质学报, 82(7): 880−887. doi: 10.3321/j.issn:0001-5717.2008.07.003

    [108]

    许超, 陈华勇, Noel W, 等. 2017. 福建紫金山矿田西南铜钼矿段蚀变矿化特征及SWIR勘查应用研究[J]. 矿床地质, 36(5): 1013−1038.

    [109]

    杨志明, 侯增谦, 杨竹森, 等. 2012. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J]. 矿床地质, 31(4): 699−717.

    [110]

    姚磊, 吕志成, 叶天竺, 等. 2017. 大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U−Pb年龄、地球化学和Nd−Hf同位素特征及地质意义[J]. 岩石学报, 33(10): 3183−3199.

    [111]

    姚磊, 吕志成, 叶天竺, 等. 2021. 大兴安岭南段白音查干Sn多金属矿床成因: 矿床地质特征及Sr−Nd、S、Pb同位素证据[J]. 岩石学报, 37(6): 1731−1748. doi: 10.18654/1000-0569/2021.06.06

    [112]

    张世涛, 陈华勇, 张小波, 等. 2017. 短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例[J]. 矿床地质, 36(6): 1263−1288.

    [113]

    赵龙贤, 代晶晶, 林彬, 等. 2023. 西藏甲玛3000m深钻蚀变矿物短波-热红外光谱特征[J]. 地质学报, 97(4): 1342−1359. doi: 10.3969/j.issn.0001-5717.2023.04.022

    [114]

    周振华, 毛景文. 2022. 大兴安岭南段锡多金属矿床成矿规律与矿床模型[J]. 地学前缘, 29(1): 176−199.

    [115]

    周建波, 陈卓. 2023. 北方造山带东段聚合过程及其对东北亚三大构造域时空转换的启示[J]. 中国科学: 地球科学, 53(11): 2682−2686.

    [116]

    祝新友, 张志辉, 付旭, 等. 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J]. 中国地质, 43(1): 188−208. doi: 10.12029/gc20160114

  • 加载中

(8)

计量
  • 文章访问数:  45
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2024-03-26
修回日期:  2024-10-20
刊出日期:  2025-06-15

目录