Exploration of the relationship between dome structure and the formation of pegmatite lithium deposits: A case study of the Ke’eryin rare metal ore field
-
摘要:
研究目的 四川可尔因稀有金属矿田是松潘-甘孜造山带内最重要的伟晶岩型锂矿密集区之一,产于马尔康穹隆中。目前对该穹隆构造如何控制伟晶岩(矿)脉产出尚不清楚,一定程度上限制了对该地区矿体赋存规律的理解。本文探讨可尔因矿田穹隆构造与伟晶岩型锂矿的形成关系,进而指导该地区伟晶岩型锂矿勘查。
研究方法 对可尔因地区穹隆构造与典型矿床伟晶岩脉产出特征开展了深入的野外地质调查与构造解析。
研究结果 对穹隆构造变形特征的调查结果显示,可尔因地区穹隆构造主要包含4期变形:第一期为早期区域收缩变形,第二期为可尔因韧性拆离带的发育,第三期为顶面向外滑脱+张性破裂的发育,第四期为后期叠加变形。对伟晶岩脉产出特征的分析显示,典型矿床伟晶岩脉的产出可能与下部隐伏岩体的抬升有关,而非简单受控于穹隆核部主岩体部分。
结论 结合区域构造演化资料分析认为,上述穹隆变形的第一期与造山早期双向挤压碰撞有关,第二期韧性拆离带的发展是引发可尔因穹隆核部抬升的重要因素,第三期变形中张性破裂是该地区伟晶岩矿脉的主要容矿构造,第四期变形中新生代逆冲断层的发育使得矿田东南部穹隆幔部得以保存,其中的大型—超大型锂矿床受较低程度的构造剥蚀。整个可尔因矿田花岗岩和上覆三叠系可视作主穹隆系统,而局部隐伏花岗岩株和上覆地层可视作子穹隆系统,区内典型锂矿床中伟晶岩(矿)脉的产出受控于子穹隆系统。根据穹隆控矿的特征,指出核部物质来源、幔部容矿空间及伟晶岩空间分带效应是影响并控制可尔因地区穹隆成矿系统的3个重要因素,针对伟晶岩型锂矿的地质找矿尤其要注意梳理子穹隆系统的上述三要素。上述创新思路已在四川加达、高壤等矿床(区)找矿中成功应用,为在以深切割、厚覆盖为特征的高原地区进一步提升伟晶岩型锂矿找矿效率提供了参考依据。
Abstract:Objective The Ke’eryin lithium ore field in Sichuan is one of the most significant pegmatite−type lithium mineralization zones within the Songpan−Ganzi orogenic belt, situated within the Markam dome. However, the tectonic control exerted by this dome on the emplacement of pegmatite (ore) veins remains unclear, which somewhat limits understanding of the ore−hosting patterns in this region. This paper aims to explore the relationship between the dome structure in the Ke’eryin ore field and the formation of pegmatite−type lithium deposits, providing guidance for the exploration of pegmatite−type lithium resources in the region.
Methods Comprehensive field geological investigations and structural analyses were conducted to examine the dome structure and the distribution characteristics of pegmatite veins in typical deposits in the Ke'eryin area.
Results The investigation into the deformation characteristics of the dome structure reveals that the dome has underwent four phases of deformation. The first phase is early regional contractional deformation. The second phase involves the development of the Ke'eryin ductile detachment zone. The third phase includes the formation of outward−slipping detachments and tensional fractures, and the fourth stage represents late superimposed deformation. Analysis of the occurrence characteristics of pegmatite veins indicates that the distribution of these veins in typical deposit is likely related to the uplift of concealed bodies rather than the outcropped portions of the dome core.
Conclusions Based on regional tectonic evolution, it is suggested that the first stage of dome deformation is related to bi−directional compressional collision during the early orogenic stage, while the development of the detachment zone in the second stage was a key factor in uplifting the dome core. The tensional fractures formed during the third stage serve as the primary ore−hosting structures for the pegmatite veins in this region. In the fourth stage, the development of Cenozoic thrust faults preserved the mantle of the dome in the southeastern part of the ore field, protecting large to super−large lithium deposits from significant denudation. The granite and overlying Triassic strata in the Ke'eryin ore field can be regarded as the main dome system, while locally concealed granite stocks and overlying strata form sub−dome systems that controled the occurrence of pegmatite (ore) veins in typical lithium deposits. Based on the ore−controlling characteristics of domes, this paper further points out that the core material source, the ore−hosting space in the mantle, and the spatial zoning effect of pegmatites are the three key factors influencing and controlling the dome mineralization system in the Ke'eryin area. For the geological exploration of pegmatite−type lithium deposits, it is particularly important to identify and analyze these three elements within sub−dome systems. The above innovative ideas have been successfully applied and demonstrated in lithium deposits (areas) such as Jiada, and Gaorang, providing a reference for further improving the exploration efficiency of pegmatite type lithium resources in plateau areas characterized by deep cutting and thick coverage.
-
Key words:
- dome structure /
- pegmatites /
- lithium ore /
- Ke’eryin ore field /
- Songpan-Ganzi orogenic belt
-
-
图 1 松潘-甘孜造山带构造格架(a,据Roger et al., 2004; Xu et al., 2020修改)与可尔因锂矿田地质简图(b, 据Dai et al., 2021修改;矿田东部南部逆冲断层KEYT与韧性拆离带KDZ据Zheng et al., 2020)
Figure 1.
图 5 李家沟矿床地质简图(据邓运等,2018)
Figure 5.
图 7 可尔因矿田东部穹隆构造与伟晶岩型锂矿床形成关系示意图(剖面图)(剖面位置见图1;该剖面地形参考实际地形,比例不代表实际比例)
Figure 7.
图 8 高壤地区地质简图(据中国地质科学院矿产资源研究所,2022)
Figure 8.
图 9 加达矿床地质简图(据Li et al., 2024a)
Figure 9.
-
[1] Bureau of Geology and Mineral Resources of Sichuan Province. 1991. Regional geology of Sichuan Province[M]. Beijing: Geological Publishing House: 1−732 (in Chinese).
[2] Dai H Z, Wang D H, Liu S B, et al. 2021. Newly discovered euxenite and Polycrase in the Jiada pegmatite−type lithium deposit, Ke’eryin lithium ore field, and its geological significance[J]. Acta Geologica Sinica (English Edition), 95(5): 1782−1783. doi: 10.1111/1755-6724.14756
[3] de Sigoyer J, Vanderhaeghe O, Duchêne S, et al. 2014. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary−orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China[J]. Journal of Asian Earth Sciences, 88: 192−216. doi: 10.1016/j.jseaes.2014.01.010
[4] Deng Y, Fei G C, Li J, et al. 2018. Study of C−HO isotopes and geochronology of the Lijiagou pegmatite spodumene deposit in Sichuan Province[J]. Mineralogy and Petrology, 38(3): 40−47 (in Chinese with English abstract).
[5] Deschamps F, Duchêne S, de Sigoyer J, et al. 2017. Coeval mantle−derived and crust − derived magmas forming two neighbouring plutons in the Songpan Garze accretionary orogenic wedge (SW China)[J]. Journal of Petrology, 58: 2221−2256. doi: 10.1093/petrology/egy007
[6] Dong Y P, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29: 1−40. doi: 10.1016/j.gr.2015.06.009
[7] Fei G C, Li T R, Menuge J F, et al. 2023. Petrogenesis of aplites in the Ke'eryin rare metal orefield in the Songpan−Garze Fold Belt, Eastern Tibet: Evidence from mineralogy, geochemistry, geochronology and Hf−Nd isotopes[J]. Lithos, 438/439: 107017.
[8] Geochemical Exploration Team of Sichuan Bureau of Geology and Mineral Resources. 2022. Lithium exploration and resource reserve verification report of Dangba mining area, Markam City, Sichuan Province[R]. 1−165 (in Chinese).
[9] Gu C H. 2014. Metallogenic regularity of spodumene deposits in the closely spaced pegmatite area in the southeastern Ke’eryin pegmatite field, Sichuan province[J]. Contributions to Geology and Mineral Resources Research, 29(1): 59−65 (in Chinese with English abstract).
[10] Guo X, Gao R, Randy Keller G, et al. 2013. Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range[J]. Earth and Planetary Science Letters, 379: 72−80. doi: 10.1016/j.jpgl.2013.08.005
[11] Harrowfield M J, Wilson J L. 2005. Indosinian deformation of the Songpan Garze Fold Belt, northeast Tibetan Plateau[J]. Journal of Structural Geology, 27: 101−117. doi: 10.1016/j.jsg.2004.06.010
[12] Institute of Mineral Resources (IMR), Chinese Academy of Geological Sciences (CAGS). 2022. Report on the results of the second−level project of comprehensive investigation and evaluation of large lithium−beryllium polymetallic resource base in Songpan−Ganzi lithium metallogenic belt[R]. 1−337 (in Chinese).
[13] Li J K, Li P, Yan Q G, et al. 2023. Geology and mineralization of the Songpan−Ganze−West Kunlun pegmatite−type rare−metal metallogenic belt in China: An overview and synthesis[J]. Science China Earth Sciences, 66(8): 1702−1724 (in Chinese with English abstract). doi: 10.1007/s11430-022-1084-x
[14] Li J K. 2006. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in western Sichuan, China[D]. Doctoral Dissertation of China University of Geosciences (Beijing): 1−226 (in Chinese with English abstract).
[15] Li J K, Wang D H, Fu X F. 2006. 40Ar/39Ar ages of the Keeryin pegmatite type rare metal deposit, WesternSichuan, and its tectonic significances[J]. Acta Geologica Sinica, 80(6): 843−848 (in Chinese with English abstract).
[16] Li S, Miller C F, Wang T, et al. 2021. Role of sediment in generating contemporaneous, diverse “type” granitoid magmas[J]. Geology, 50: 427−431.
[17] Li X, Dai H Z, Huang F, et al. 2024a. Genesis of the Jiada pegmatite lithium deposit in the Ke'eryin ore field, Western Sichuan, China: Evidence from whole−rock trace element and Li isotope[J]. Ore Geology Reviews, 170: 106106. doi: 10.1016/j.oregeorev.2024.106106
[18] Li X, Dai H Z, Liu S B, et al. 2024b. Genesis of the Ke’eryin two−mica monzogranite in the Ke’eryin pegmatite−type lithium ore field, Songpan−Garze Orogenic Belt: Evidence from lithium isotopes[J]. Minerals, 14: 687.
[19] Li X, Dai H Z, Wang D H, et al. 2024c. Metallogenic regularity and exploration of the Ke’eryin lithium ore field in Aba, Sichuan[J]. Acta Petrologica Sinica, 40(9): 2819−2840 (in Chinese with English abstract).
[20] Li X, Dai H Z, Wang D H, Liu S B, et al. 2022. Geochronological and geochemical constraints on magmatic evolution and mineralization of the northeast Ke’eryin pluton and the newly discovered Jiada pegmatite−type lithium deposit, Western China[J]. Ore Geology Reviews, 150: 105164. doi: 10.1016/j.oregeorev.2022.105164
[21] Lowenstern J B. 1995. Intrusive degassing at the magma/wall rock interface[C]//Brown M, Picolli P M. The Origin of Granites and Related Rocks. Third Hutton Symposium: Abstracts, USGS Circular 1129: 92.
[22] Ma S C, Wang D H, Liu S B, et al. 2020. The application of comprehensive prospecting methods on the hardrock type lithium deposit--A case study of the Jiada lithium mine in the Maerkang rare metals orefield[J]. Acta Geologica Sinica, 94(8): 2341-2353 (in Chinese with English abstract).
[23] Mattauer M, Malavielle J, Calassou S. 1992. La chane triasique de Songpan−Ganze (oust Sichun at east Tibet): une chane de plissment−decollement sur margepassive[J]. ComptesRendus de I’ Acad. Sci. Paris 314 (6): 619−626.
[24] Mulja T, Williams−Jones A E. 2018. The physical and chemical evolution of fluids in rare−element granitic pegmatites associated with the Lacorne pluton, Quebec, Canada[J]. Chemical Geology, 493: 281−297. doi: 10.1016/j.chemgeo.2018.06.004
[25] Nabelek P I, Whittington A G, Sirbescu M L C. 2010. The role of H2O in rapid emplacement and crystallization of granitic pegmatites: Resolving the paradox of large crystals in highly undercooled melts[J]. Contributions to Mineralogy and Petrology, 160: 313−325. doi: 10.1007/s00410-009-0479-1
[26] Roger F, Jolivet M, Malavieille J. 2010. The tectonic evolution of the Songpan−Garze (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis[J]. Journal of Asian Earth Sciences, 39: 254−269. doi: 10.1016/j.jseaes.2010.03.008
[27] Roger F, Malavieille J, Leloup P H, et al. 2004. Timing of granite emplacement and cooling in the Songpan−Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 22: 465−481. doi: 10.1016/S1367-9120(03)00089-0
[28] Roger F. 1994. Datations et tracage des granitoides associes a la chainede Songpan − Garze ( Ouest Sichuan , Chine) par les methodes U/Pb, Rb/Sr et Sm/Nd[J]. These de doctorat, Montpellier II: 1−239.
[29] Sengor A M C. 1985. Tectonic subdivisions and evolution of Asia[J]. Bull. Tech. Univ. Istanbul, 46: 355−435.
[30] Shi Z L, Zhang H F, Cai H M. 2009. Petrogenesis of strongly peraluminous granites in Markan area, Songpan Fold Belt and its tectonic implication[J]. Earth Science, 34(4): 569−584 (in Chinese with English abstract).
[31] Sichuan Provincial Bureau of Geology and Mineral Resources. 1991. Regional geology of Sichuan Province[M]. Beijing: Geological Publishing House: 1−732 (in Chinese).
[32] Geological team 404 of Sichuan provincial geological Bureau. 1965. Preliminary survey report on the Kerin granite megalite field in Sichuan Province[R]. National Geological Data Center, DOI:10.35080/n01.c.36860 (in Chinese).
[33] Sirbescu M L C, Schmidt C, Veksler I V, et al. 2017. Experimental crystallization of undercooled felsic liquids: generation of pegmatitic texture[J]. Journal of Petrology, 58: 539−568. doi: 10.1093/petrology/egx027
[34] Wang D H, Dai H Z, Liu S B, et al. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 28(5): 743−764 (in Chinese with English abstract).
[35] Wang D H, Dai H Z, Yu Y, et al. 2021. Theory, method and practice of survey and evaluation of large−scale lithium resource base: A case study of the Jiajika super−large lithium mine in western Sichuan[M]. Beijing: Science Press: 1−458 (in Chinese).
[36] Wang D H, Liu S B, Yu Y, et al. 2019. Exploration progress and development suggestion for the large−scale mining base of strategic critical mineral resources in western Sichuan[J]. Acta Geologica Sinica, 93(6): 1444−1453 (in Chinese with English abstract).
[37] Wang D H, Dai H Z, Sun Y, et al. 2023. Theory and practice of deep exploration of lithium energy metal minerals[M]. Beijing: Geological Publishing House (in Chinese).
[38] Wang D H, Zou T R, Xue Z G, et al. 2004. Advance in the study of using pegmatite deposits as the tracer of orogenic process[J]. Advances in Earth Science, 19(4): 614−620 (in Chinese with English abstract).
[39] Wang Z P, Liu S B, Ma S C, et al. 2018. Metallogenic regularity, deep and periphery prospecting of Dangba superlarge spodumene deposit in Aba, Sichuan Province[J]. Earth Science, 43(6): 2029−2041 (in Chinese with English abstract).
[40] Weislogel A L, Graham S A, Chang E Z, et al. 2010. Detrital zircon provenance from three turbidite depocenters of the Middle−Upper Triassic Songpan−Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production[J]. Geological Society of America Bulletin, 122(11/12): 2041−2062. doi: 10.1130/B26606.1
[41] Xiao L, Zhang H F, Clemens J D, et al. 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution[J]. Lithos, 96(3/4): 436−452. doi: 10.1016/j.lithos.2006.11.011
[42] Xu Z Q, Fu X F, Ma X X, et al. 2016. The gneiss domes in Tibetan Plateau and their potential for prospecting[J]. Acta Geologica Sinica, 90(11): 2971−2981 (in Chinese with English abstract).
[43] Xu Z Q, Fu X F, Wang R C, et al. 2020. Generation of lithiumbearing pegmatite deposits within the Songpan−Ganze orogenic belt, East Tibet[J]. Lithos, 354−355: 105281. doi: 10.1016/j.lithos.2019.105281
[44] Xu Z Q, Fu X F, Zhao Z B, et al. 2019. Discussion on relationships of gneiss dome and metallogenic regularity of pegmatite type lithium deposits[J]. Earth Science, 44(5): 1452−1463 (in Chinese with English abstract).
[45] Xu Z Q, Hou L W, Wang Z X, et al. 1992. Orogenic process of the Songpan−Ganzi orogenic belt, China[M]. Beijing: Geological Publishing House: 1−202 (in Chinese).
[46] Xu Z Q, Wang R C, Zhao Z B, et al. 2018. On the structural backgrounds of the large−scale "Hard−rock type" lithium ore belts in China[J]. Acta Geologica Sinica, 92(6): 1091−1106 (in Chinese with English abstract).
[47] Yang Y Q, Liu S B, Wang D H, et al. 2023. Discussion on the difference of metallogenic characteristics and genesis of the Jiajika and Keeryin rare metals ore fields in Western Sichuan[J]. Acta Geoscientica Sinica, 44(3): 419−433 (in Chinese with English abstract).
[48] Yin A, Harrison T M. 2000. Geologic evolution of the Himalayane Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211−280. doi: 10.1146/annurev.earth.28.1.211
[49] Yuan C, Zhou M F, Min S, et al. 2010. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere[J]. Earth and Planetary Science Letters, 290(3/4): 481−492.
[50] Zhang H F, Parrish R, Zhang L, et al. 2007. A−type granite and adakitic magmatism association in Songpan−Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination[J]. Lithos, 97: 323−335. doi: 10.1016/j.lithos.2007.01.002
[51] Zhang H F, Zhang L, Harris N, et al. 2006. U−Pb zircon ages, geochemical and isotopic compositions of granitoids in songpan−garze fold belt, eastern Tibetan plateau: constraints on petrogenesis and tectonic evolution of the basement[J]. Contributions to Mineralogy and Petrology, 152: 75−88. doi: 10.1007/s00410-006-0095-2
[52] Zhao Z B, Du J X, Liang F H, et al. 2019. Structure and metamorphism of Markam gneiss dome from the eastern Tibetan plateau and its implications for crustal thickening, metamorphism, and exhumation[J]. Geochemistry, Geophysics, Geosystems, 20: 24−45.
[53] Zheng Y L, Xu Z Q, Gao W Q, et al. 2020. Tectonic genesis of the Markam gneiss dome and pegmatitic lithium deposits in western Sichuan Province[J]. Acta Geologica Sinica, 95(10): 3069−3084 (in Chinese with English abstract).
[54] Zheng Y L, Xu Z Q, Li G W, et al. 2020. Genesis of the Markam gneiss dome within the Songpan−Garze orogenic belt, eastern Tibetan Plateau[J]. Lithos, 362/363: 105475. doi: 10.1016/j.lithos.2020.105475
[55] Zhu H P, Fei G C, Tan H, et al. 2023. Geological characteristics and metallogenic age of pegmatites in the central zone of the Dangba pegmatite−type rare−metal deposit in the Ke’eryin orefield, Sichuan province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 42(2): 350−359 (in Chinese with English abstract).
[56] 邓运, 费光春, 李剑, 等. 2018. 四川李家沟伟晶岩型锂辉石矿床碳氢氧同位素及成矿时代研究[J]. 矿物岩石, 38(3): 40−47.
[57] 古城会. 2014. 四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律[J]. 地质找矿论丛, 29(1): 59−65.
[58] 李建康, 李鹏, 严清高, 等. 2023. 松潘-甘孜-西昆仑花岗伟晶岩型稀有金属成矿带成矿规律[J]. 中国科学: 地球科学, 53(8): 1718−1740.
[59] 李建康. 2006. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D]. 中国地质大学(北京)博士学位论文: 1−226.
[60] 李建康, 王登红, 付小方. 2006. 川西可尔因伟晶岩型稀有金属矿床的40Ar/39Ar年代及其构造意义[J]. 地质学报, 80(6): 843−848.
[61] 李鑫, 代鸿章, 王登红, 等. 2024. 四川阿坝可尔因锂矿田成矿规律与成矿预测[J]. 岩石学报, 40(9): 2819−2840.
[62] 马圣钞, 王登红, 刘善宝, 等. 2020. 综合勘查方法在硬岩型锂矿找矿中的应用——以马尔康稀有金属矿田加达锂矿为例[J]. 地质学报, 94(8): 2341−2353.
[63] 时章亮, 张宏飞, 蔡宏明. 2009. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J]. 地球科学, 34(4): 569−584.
[64] 四川省地质矿产局. 1991. 四川省区域地质志[M]. 北京: 地质出版社: 1−732.
[65] 四川省地质局四〇四地质队. 1965. 四川省可尔因花岗伟晶岩田初步普查报告[R]. 全国地质资料馆, DOI:10.35080/n01.c.36860.
[66] 四川省地质矿产勘查开发局化探队. 2022. 四川省马尔康市党坝矿区锂矿勘探及资源储量核实报告[R]. 1−165.
[67] 王登红, 代鸿章, 刘善宝, 等. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 28(5): 743−764.
[68] 王登红, 代鸿章, 于扬, 等. 2021. 大型锂资源基地调查评价的理论方法与实践以川西甲基卡超大型锂矿为例[M]. 北京: 科学出版社: 1−458.
[69] 王登红, 刘善宝, 于扬, 等. 2019. 川西大型战略性新兴产业矿产基地勘查进展及其开发利用研究[J]. 地质学报, 93(6): 1444−1453.
[70] 王登红, 代鸿章, 孙艳, 等. 2023. 锂能源金属矿产深部探测理论与实践[M]. 北京: 地质出版社.
[71] 王登红, 邹天人, 徐志刚, 等. 2004. 伟晶岩矿床示踪造山过程的研究进展[J]. 地球科学进展, 19(4): 614−620.
[72] 王子平, 刘善宝, 马圣钞, 等. 2018. 四川阿坝州党坝超大型锂辉石矿床成矿规律及深部和外围找矿方向[J]. 地球科学, 43(6): 2029−2041.
[73] 许志琴, 付小方, 马绪宣, 等. 2016. 青藏高原片麻岩穹窿与找矿前景[J]. 地质学报, 90(11): 2971−2981.
[74] 许志琴, 付小方, 赵中宝, 等. 2019. 片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨[J]. 地球科学, 44(5): 1452−1463.
[75] 许志琴, 侯立玮, 王宗秀, 等. 1992. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社: 1−190.
[76] 许志琴, 王汝成, 赵中宝, 等. 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 92(6): 1091−1106.
[77] 杨岳清, 刘善宝, 王登红, 等. 2023. 川西甲基卡和可尔因矿田稀有金属成矿特征差异性及成因探讨[J]. 地球学报, 44(3): 419−433.
[78] 郑艺龙, 许志琴, 高文琦, 等. 2020. 川西马尔康片麻岩穹隆与伟晶岩型锂矿的构造成因[J]. 地质学报, 95(10): 3069−3084.
[79] 中国地质科学院矿产资源研究所. 2022. 松潘-甘孜成锂带锂铍多金属大型资源基地综合调查评价二级项目成果报告[R].
[80] 朱汇派, 费光春, 谭华, 等. 2023. 四川可尔因矿田党坝伟晶岩型稀有金属矿床中带伟晶岩地质特征及成矿时代[J]. 矿物岩石地球化学通报, 42(2): 350−359.
-