The thrust-nappe structural system and oil and gas resource effects of the Jiangnan-Xuefeng orogenic belt in South China
-
摘要:
研究目的 华南地区复杂的构造特征,使得油气勘探充满了挑战和风险,亟需探索复杂构造区油气勘探突破路径。本次研究旨在剖析江南−雪峰造山带油气地质条件,探寻该区油气勘探新方向。
研究方法 综合地表构造填图、地球物理探测、钻井等地质手段,结合古油藏与残余油气藏石油地质条件解剖,分析烃源岩、储层、盖层、构造期次等关键要素。
研究结果 研究发现,江南−雪峰造山带推覆岩片下部可能存在被掩埋的海相中生界、古生界 “影子盆地”;推覆构造虽破坏部分油气藏,但可有效遮挡下伏地层油气逸散;油气源主要为古生界3套优质烃源岩,最终成藏期为燕山晚期,与造山带定型期一致;同时推覆构造活动有利于构成区域不整合面,形成优质储集层和构造圈闭,为二次成藏创造了良好的生储盖时空匹配关系,有利于逆冲推覆型油气藏的形成。
结论 基于上述成果,创新性提出江南−雪峰造山带常规天然气与页岩气 “一井双探” 新思路,突破传统单一资源勘探模式,开辟油气资源综合勘探的新范式。
Abstract:Objectives The complex tectonic characteristics of South China present significant challenges and risks for hydrocarbon exploration, necessitating exploration of breakthrough pathways in structurally complex areas. This study aims to analyze the petroleum oil and gas conditions of the Jiangnan−Xuefeng orogenic belt and identify new exploration directions in this region.
Methods By integrating surface structural mapping, geophysical surveys, drilling data, and geological analyses of paleo−reservoirs and residual oil and gas accumulations, we systematically evaluated key elements including source rocks, reservoirs, cap rocks, and tectonic evolution.
Results (1) Buried marine Mesozoic−Paleozoic "shadow basins" may exist beneath the thrust nappes of the Jiangnan−Xuefeng orogenic belt; (2) Thrust structures, while disrupting some oil and gas accumulations, effectively seal underlying formations to prevent hydrocarbon escape; (3) Oil and gas are primarily sourced from three sets of high−quality Paleozoic source rocks, with final accumulation occurring during the Late Yanshanian phase, coinciding with the orogenic belt's structural stabilization; (4) Thrusting facilitates the development of regional unconformities, creating favorable reservoirs and structural traps, thereby establishing optimal spatiotemporal relationships among source−reservoir−cap systems for secondary oil and gas accumulation and promoting the formation of thrust−nappe−type oil and gas reservoirs.
Conclusions Based on these findings, we innovatively propose a "dual−exploration" approach targeting both conventional natural gas and shale gas within the Jiangnan−Xuefeng orogenic belt, breaking through traditional single−resource exploration models and establishing a new paradigm for integrated oil and gas resource exploration.
-
-
图 1 江南−雪峰造山带位置图(据邓大飞等,2014修改)
Figure 1.
图 4 江西萍乐坳陷东段余干地区叠瓦状推覆构造示意图(据刘杨等,2021修改)
Figure 4.
图 5 江南−雪峰造山带及邻区构造格架及演化框架模式剖面(据邓大飞等,2014修改)
Figure 5.
图 6 华南早寒武世沉积古地理图(据刘宝珺等,1994修改)
Figure 6.
图 8 华南晚二叠世沉积古地理图(据周小进等,2009修改)
Figure 8.
图 9 华南中生界、古生界油气藏分布与古隆起关系示意图(据赵宗举等,2003修改)
Figure 9.
-
[1] Aamir A, Matee U, Matloob H, et al. 2017. Estimation of the shale oil/gas potential of a Paleocene–Eocene succession: A case study from the Meyal area, Potwar Basin, Pakistan[J]. Acta Geologica Sinica-English Edition, 91(6): 2180−2199. doi: 10.1111/1755-6724.13457
[2] Ahmad Z, Akhter G, Bashir F, et al. 2009. Structural interpretation of seismic profiles integrated with reservoir characteristics of Bitrism block (Sind Province), Pakistan[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(4): 303−314.
[3] Bai D Y, Jiang W, Xiong X, et al. 2015. Control of tectonic evolution and tectonic framework on the hydrocarbon accumulation in the western side of the Xuefeng Mountain[J]. Geology and Mineral Resources of South China, 31(2): 199−209 (in Chinese with English abstract).
[4] Bao S J, Lin T, Nie H K, et al. 2016. Preliminary study of the transitional facies shae gas reservoir characteristics: Taking Permian in the Xiangzhong depression as an example[J]. Earth Science Frontiers, 23(1): 44−53 (in Chinese with English abstract).
[5] Bian H D, Liu Z L, Feng S M, et al. 2024. Tectonic shortening at plate spreading centers[J]. East China Geology, 45(4): 381−386 (in Chinese with English abstract).
[6] Chen H D, Qin J X, Wang C S, et al. 1999. Sequence−based lithofacies and paleogeographic characteristics and evolution of Permian in South China[J]. Acta Sedimentologica Sinica, 17(4): 13−24(in Chinese with English abstract).
[7] Chen J J, Fan M T, Tao G L, et al. 2001. Applying new ideas and new technologies to find oil and rejuvenating old oilfields: Oil and gas exploration practice in Jiuxi Basin[J]. China Petroleum Exploration, 6(3): 15−20(in Chinese with English abstract).
[8] Chen J P, Li W, Ni Y Y, et al. 2018. The Permian source rocks in the Sichuan Basin and its natural gas exploration potential (Part 1): Spatial distribution of source rocks[J]. Natural Gas Industry, 38(5): 1−16(in Chinese with English abstract).
[9] Chen K, Zhai G Y, Bao S J, et al. 2020. Tectonic evolution of the Huangling uplift and its control effect on shale gas preservation in South China[J]. Geology in China, 47(1): 161−172(in Chinese with English abstract).
[10] Chen P, Zhang M Q, Xu Y Z, et al. 2013. The shale reservoir characteristic of Dalong Formation Upper Permian in Chaohu−Jingxian, Lower Yangtze area[J]. Acta Petrologica Sinica, 29(8): 2925−2935(in Chinese with English abstract).
[11] Chen X, Chen Q, Zhen Y Y, et al. 2018. The circle distribution pattern of black graptolite shale of Yichang uplift and its surrounding Longmaxi formation at the beginning of Silurian[J]. Science China (Earth Science), 48(9): 1198−1206(in Chinese with English abstract).
[12] Chu P L, Jin G D, Zhang W, et al. 2022. Geologic Features and Evolution of Wangzhoushan Caldera in Cangnan County, Zhejiang Province[J]. East China Geology, 43(4): 460−473(in Chinese with English abstract).
[13] Cui X M, Wang J R, LI Q, et al. 2011. Discussion on hydrocarbon accumulation conditions of the metamorphic rock reservoir in the Xinhe uplift of the Jizhong depression[J]. Special Oil & Gas Reservoirs, 18(2): 29−32, 136 (in Chinese with English abstract).
[14] Dai S W, He Z, Wang J Y. 2001. Characteristics of nitrogen isotope in different depositonal environments[J]. Oil & Gas Geology, 22(3): 195−202(in Chinese with English abstract).
[15] Dan Y, Yan J F, Bao S J, et al. 2023. Discovery of Sinian−Cambrian multi−tier shale gas in Guidandi−1 well of southwest margin of Xuefeng uplift[J]. Geology in China, 50(1): 291−292(in Chinese with English abstract).
[16] Deng D F, Mei L F, Shen C B, et al. 2014. Maior Factors of accumulation and Destruction Mechanisms of Marine StrataRelated Hydrocarbon in the Northern Margin of the Jiangnan−Xuefeng Uplift[J]. Journal of Jilin University (Earth Science Edition), 44(5): 1466−1477(in Chinese with English abstract).
[17] Deng D F. 2014. Study on the intracontinental structure of the enrichment of marine paleo−reservoirs in the northern margin of Jiangnan−Xuefeng Uplift, Southern China[D]. Doctoral Dissertation of China University of Geosciences(in Chinese with English abstract).
[18] Dewitt W, Milici R C. 1989. Energy resources of the Appalachian orogeny[C]∥Hatcher R D J, T homas W A, Viele G W. The Geology of North America. V0l. F−2, The Appalachian−Ouachita Orogen in the United States. Boulder: Geological Society of America: 495−460.
[19] Ding D G, Liu G X, Lu J X, et al. 2007a. Progresive deformation of Middle Paleozoic marine basins in the Yangtze plate, China[J]. Geological Bulletin of China, 26(9): 1178−1188(in Chinese with English abstract).
[20] Ding D G, Guo T L, Liu Y L, et al. 2007b. Structural attribute of the Jiangnan−Xuefengshan belt, China: A discussion[J]. Geological Bulletin of China, 26(7): 801−809(in Chinese with English abstract).
[21] Ding D G, Liu G X, Chen Y H, et al. 2007c. Hydrocarbon accumulation and oil−source correlation in the front of Jiangnan Xuefeng Mountain—series 3 of the structural studies[J]. Petroleum Geology & Experiment, 29(4): 345−354(in Chinese with English abstract).
[22] Dong S W, Zhang Y Q, Gao R., et al. 2015. A possible buried Paleoproterozoic collisional orogen beneath central South China: Evidence from seismic−reflection profiling[J]. Precambrian Research, 264: 1−10. doi: 10.1016/j.precamres.2015.04.003
[23] Du J B, He M X, Zhang Y X, et al. 2007. Tectonic evolution and sedimentary characteristics of foreland basin in the northern part of Lower Yangtze area[J]. Petroleum Geology & Experiment, 29(2): 133−137(in Chinese with English abstract).
[24] Du Y L, Li S Y, Kong W L, et al. 2010. The Permian sedimentary facies and depositional environment analysis in Jingxian−Nanling region of Anhui[J]. Journal of Stratigraphy, 34(4): 431−444(in Chinese with English abstract).
[25] Du Y S, Huang H W, Huang Z Q, et al. 2009. Basin translation from late Palaeozoic to Triassic of Youjiang Basin and its tectonic significance[J]. Geological Science and Technology Information, 28(6): 10−15(in Chinese with English abstract).
[26] Fan J X, Melchin M J, Chen X, et al. 2012. Biostratigraphy of Ordovician Silurian Longmaxi Formation black graptolite shales in South China[J]. Science China(Earth Sciences), 42(1): 130−139(in Chinese with English abstract).
[27] Fan Y F, Feng Y. 2005. Formation and analysis destruction factors of the Nanshanping fossil oil pool[J]. Mineral Resources and Geology, 19(3): 296−298(in Chinese with English abstract).
[28] Fang C G, Huang Z Q, Teng L, et al. 2020. Lithofacies palaeogeography of the Late Ordovician Kaitian Stage−the early Silurian Rhuddanian Stage in Lower Yangtze region and its petroleum geological significance[J]. Geology in China, 47(1): 144−160(in Chinese with English abstract).
[29] Friedman G M, Keith B D, Buyce M R. 1983. Eastern overthrust belt in New York state and Vermont: Gas potential recognized[J]. Northeastern Geology, 5(3/4): 128−131.
[30] Friedman G M, Possant S A. 1985. Petroleum geology in the United States[J]. Journal of Geological Education, 33: 217−226. doi: 10.5408/0022-1368-33.4.217
[31] Fu G, Liu J T. 2006. Sealing and preservation conditions for large and medium gas fields of China[J]. Petroleum Exploration & Development, 33(6): 662−666(in Chinese with English abstract).
[32] Fu X D, Qin J Z, Teng G E, et al. 2010. Evaluation on Dalong Formation source rock in north Sichuan Basin[J]. Petroleum Geology & Experiment, 32(6): 566−571,577(in Chinese with English abstract).
[33] Gao B, Zhou Y, Wu YJ, et al. 2015. Geochemical research on the multi−period petroleum accumulation of Kaili residual reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 37(2): 21−28(in Chinese with English abstract).
[34] Gao P, Lin T, Yuan K, et al. 2022. Carboniferous shale gas drilled in Qianningdi Well 1, northwest margin of Yaziluo Rift Trough[J]. Geology in China, 49(4): 1348−1349(in Chinese with English abstract).
[35] Gao X M. 2021. Research on the influence of Wujiang fault structure evolution on shale gas production[D]. Master Thesis of Yangtze University(in Chinese with English abstract).
[36] Gao X, Fang C G, Huang Z Q, et al. 2023. Lithofacies paleogeography and shale oil and gas prospective analysis of the Ordovician Ningguo−Hule period in the Lower Yangtze region[J]. Geology in China, 50(4): 1122−1137(in Chinese with English abstract).
[37] Guo N F, Yan J Z, Chen H, et al. 2002. Marine oil and gas geological characteristics and exploration targets in the Jiangsu, Zhejiang and Anhui provinces[J]. Geological Review, 48(5): 552−560(in Chinese with English abstract).
[38] Guo T L. 2016. Discovery and characteristics of the Fuling shale gas field and its enlightenment and thinking[J]. Earth Science Frontiers, 23(1): 29−43(in Chinese with English abstract).
[39] Guo X S, Hu D F, Duan J B. 2020. Marine petroleum exploration in South China[J]. Petroleum Geology & Experiment, 42(5): 675−686(in Chinese with English abstract).
[40] Guo X S, Hu D F, Li Y P, et al. 2017. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration & Development, 44(4): 481−491(in Chinese with English abstract).
[41] Guo X S, Hu D F, Wei Z H, et al. 2016. Discovery and exploration understanding of Fuling shale gas field[J]. China Petroleum Exploration, 21(3): 24−37(in Chinese with English abstract).
[42] Guo X S, Huang R C, Zhang D W, et al. 2024. Hydrocarbon accumulation and orderly distribution of whole petroleum system in marine carbonate rocks of the Sichuan Basin, Southwest China[J]. Petroleum Exploration & Development, 51(4): 743−758(in Chinese with English abstract).
[43] Guo X S, Zhao Y Q, Shen B J, et al. 2022. Marine shale gas exploration theory in southern China: Review and prospects[J]. Acta Geologica Sinica, 96(1): 172−182(in Chinese with English abstract).
[44] He D F, Li D S, Zhang G W, et al. 2011. Formation and evolution of polycyclic superposition basin in Sichuan[J]. Chinese Journal of Geology, 46(3): 589−606(in Chinese with English abstract).
[45] He L L, He J G, Huo H Y, et al. 2023. Sedimentary paleogeographic characteristics of marine Paleozoic in South China and exploration potential of the Lower Yangtze[J]. Geophysical Prospecting for Petroleum, 62(S1): 134−146(in Chinese with English abstract).
[46] Hong W T, Yu M G, Yang Z L, et al. 2020. Cenozoic tectonic units and their stratigraphic characteristics of southern West Pacific region: Implication for Himalayan orogeny[J]. Geological Bulletin of China, 39(6): 839−860(in Chinese with English abstract).
[47] Hou G F, Zhou J G, Gu M F, et al. 2017. Lithofacies paleogeography and exploration realms of Middle Permian Oixia Formation and Maokou Formation, Sichuan Basin[J]. Marine Origin Petroleum Geology, 22(1): 25−31(in Chinese with English abstract).
[48] Hu J F, Liu Y Q, Yang M H, et al. 2004. Characteristics of salt structure and its relationship with oil and gas in Kuqa Depression, Tarim Basin[J]. Chinese Journal of Geology, 39(4): 580−588(in Chinese with English abstract).
[49] Huang X B, Yu Z Z, Zou G Q. 2003. Sedimentary features of the mesoproterozoic Shuangqiaoshan Group in northwestern Jiangxi[J]. Geological Bulletin of China, 22(1): 43−49 (in Chinese with English abstract).
[50] Huang X Y, Gao M S, Hou G H, et al. 2023. Grain size characteristics and environmental response of marine sediments in Laizhou Bay[J]. East China Geology, 44(4): 402−414 (in Chinese with English abstract).
[51] Huang Z Q, Zhou D R, Li J Q, et al. 2019. Shale gas accumulation conditions and resource potential evaluation of the Cambrian in the Lower Yangtze area[J]. Petroleum Geology & Experiment, 41(1): 94−98(in Chinese with English abstract).
[52] Jiang P F, Wu J F, Zhu Y Q, et al. 2023. Enrichment conditions and favorable areas for exploration and development of marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 44(1): 91−109(in Chinese with English abstract).
[53] Li H H, Du J, Chen K, et al. 2020. Permian shale gas discovery in Wufeng area, Hubei Province[J]. Geology in China, 47(6): 1932−1933(in Chinese with English abstract).
[54] Li H J, Xie X N, Lin Z L, et al. 2009. Organic matter enrichment of Dalong Formationin Guangyuan area of the Sichuan Basin[J]. Geological Science and Technology Information, 28(2): 98−103(in Chinese with English abstract).
[55] Li J C, Ma Y S, Zhang D J, et al. 1998. Some important scientific problems in marine oil and gas exploration in China[J]. Petroleum Exploration & Development, 25(5): 17−18,3,9(in Chinese with English abstract).
[56] Li J Q, Zhang C C, Huang Z Q, et al. 2021. Discovery of overpressure gas reservoirs in the complex structural area of the Lower Yangtze and its key elements of hydrocarbon enrichment[J]. Geological Bulletin of China, 40(4): 577−585(in Chinese with English abstract).
[57] Li J Q. 2012. Study on the evaluation system of marine shale gas constituency in South China[D]. Doctoral Dissertation of Northwestern University, China (in Chinese with English abstract).
[58] Li J Y, Li W B, Zhang P F, et al. 2024. Isotope fractionation during the formation−decomposition of natural gas hydrate and its energy−environmental implications[J]. East China Geology, 45(4): 387−401 (in Chinese with English abstract).
[59] Li J Z, Dong D Z, Chen G G, et al. 2009. Prospects and strategic position of shale gas resources in China[J]. Natural Gas Industry, 29(5): 11−16,134(in Chinese with English abstract).
[60] Li X G, Yang K G, Hu X Y, et al. 2012. Structure and formation and evolution of Kaili−Sandu fault in East Guizhou Province[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 39(1): 18−26(in Chinese with English abstract).
[61] Li Z D, Luo Z L, Liu J F, et al. 2006. Assessment of petroleum resources in lower assemblage under Xuefeng thrust nappe[J]. Oil & Gas Geology, 27(3): 392−398(in Chinese with English abstract).
[62] Li Z H, Zeng G G, Ling Y X, et al. 2017. Determination of Yongshun−Daming thrust nappe structure on the NW margin of Xuefeng orogenic belt and its geological significance[J]. Mineralogy and Petrology, 37(4): 62−73(in Chinese with English abstract).
[63] Liang C M, Friedman G M, Sanders J E. 1992. Petrofacies analyses of parts of Sauk−sequences carbonates Upper Cambrian—Lower Ordovician‚ Dutchess County‚ north−central Appalachinas‚ southeastern New York State[J]. Northeastern Geology, 14(1): 44−58.
[64] Liang C M, Friedman G M. 1992. Petrophysical characteristics of Cambro−Ordovician Arbuckle dolostone, Arkomo Basin, Wilburton Field, Latime County‚Oklahoma[C]∥Oklahoma Geological Survey Special Publication.
[65] Liang C M. 2011. Hydrocarbon potential of the southern margin of North China continent based on reservoir model of the Appalachianhian−Ouachita Overthrust belts[J]. Earth Science Frontiers, 18(4): 193−200(in Chinese with English abstract).
[66] Liang M, Wang Z, Gao L, et al. 2017. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel, 197: 310−319. doi: 10.1016/j.fuel.2017.02.035
[67] Liao Z W, Hu W X, Wang X L, et al. 2016a. Volcanic origin of claystone near the Permian−Triassic boundary in the deep water environment of the Lower Yangtze region and its its implications for LPME[J]. Acta Geologica Sinica, 90(4): 785−800(in Chinese with English abstract).
[68] Liao Z W, Hu W X, Cao J, et al. 2016b. A preliminary investigation of the development and hydrocarbon potential of the black shales in the Upper Permian Dalong Formation, Southern Anhui Province in the Lower Yangze region, China[J]. Geological Journal of China Universities, 22(1): 138−151(in Chinese with English abstract).
[69] Lin W D. 2008. Characteristics and reservoir−forming models of oil−bearing systems in the Indus Basin[J]. Natural Gas Industry, 28(8): 19−24(in Chinese with English abstract).
[70] Liu B J, Xu X S. 1994. Lithofacies paleogeography atlas of South China: Sinian−Triassic[M]. Beijing: Science Press (in Chinese).
[71] Liu S G, Deng B, Zhong Y, et al. 2016. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 23(1): 11−28(in Chinese with English abstract).
[72] Liu T, Wu T, Fang C G, et al. 2023. Overpressure characteristics and genesis of the Triassic gas reservoirs in Wuwei Depression of Lower Yangtze Region[J]. East China Geology, 44(4): 415−423(in Chinese with English abstract).
[73] Liu Y L, Shen Z M, Ding D G, et al. 2008. The characters of the old asphalt−oil pool in the Jiangnan−Xuefengthrust nappe front and the correlation of oil sources[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 35(1): 34−40(in Chinese with English abstract).
[74] Liu Y, Wu F J, Fang J H, et al. 2021. The characteristics and prospecting significance of Yugan thrust nappe structure[J]. Mineral Resources and Geology, 35(6): 1111−1115(in Chinese with English abstract).
[75] Liu Z B, Wang P W, Nie H G, et al. 2022. Enrichment conditions and favorable prospecting targets of Cambrian shale gas in Middle−Upper Yangtze[J]. Journal of Central South University (Science and Technology), 53(9): 3694−3707(in Chinese with English abstract).
[76] Lu L F, Liu W X, Yu L J, et al. 2020. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology & Experiment, 42(3): 363−370(in Chinese with English abstract).
[77] Lu Y B, Ma Y G, Wang Y X, et al. 2017. The sedimentary response to the major geological events and lithofacies characteristics of Wufeng Formation Longmaxi Formation in the Upper Yangtze area[J]. Earth Science, 42(7): 1169−1184(in Chinese with English abstract).
[78] Luo Z L. 1986. Is central Sichuan an ancient land core[J]. Journal of Chengdu College of Geology, 13(3): 65−73(in Chinese with English abstract).
[79] Ma X, Gao T S, Zhou X H, et al. 2019. Analysis of sedimentary environment of Neoproterozoic Shuangqiaoshan Group in the eastern part of Jiangnan Orogenic Belt[J]. Journal of Stratigraphy, 43(3): 295−305(in Chinese with English abstract).
[80] Ma Y S, Cai X Y, Zhao P R. 2014. Characteristics and formation mechanism of reef shoal reservoir in Changxing Formation and Feixianguan Formation, Yuanba gas field[J]. Acta Petrolei Sinica, 35(6): 1001−1011(in Chinese with English abstract).
[81] Mei M X, Ma Y S, Deng J, et al. 2007. Sequence stratigraphic framework and paleogeographic setting of Permian Leping Series in Yunnan, Guizhou and adjacent areas[J]. Science China(Series D: Earth Sciences), 37(5): 605−617(in Chinese with English abstract).
[82] Miao F B, Peng Z Q, Wang C S, et al. 2019. Gas−bearing capacity and controlling factors of Niutitang Formation shale in Well XZD−1, western margin of Xuefeng Uplift[J]. Earth Science, 44(11): 3662−3677(in Chinese with English abstract).
[83] Mou C L, Xu X S. 2010. Sedimentary evolution and petroleum geology in South China during the Early Palaeozoic[J]. Sedimentary Geology and Tethyan Geology, 30(3): 24−29(in Chinese with English abstract).
[84] Mou C L, Zhou K K, Liang W, et al. 2011. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle−Upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 85(4): 526−532(in Chinese with English abstract).
[85] Qi J F, Lei G L, Li M G, et al. 2009. Analysis of structure model and formation mechanism of Kelasu structure zone Kuqa Depression[J]. Geotectonica et Metallogenia, 33(1): 49−56(in Chinese with English abstract).
[86] Qiu X M, Liu Y D, Dong X L. 2019. Organic geochemical characteristics of shale from Dalong Formation in Jianshi area, western Hubei[J]. Lithologic reservoirs, 31(2): 96−104(in Chinese with English abstract).
[87] Qiu Y X, Zhang Y C, Ma W Y, et al. 1999. Tectonic properties and evolution of the Xuefeng Mountain: Formation and evolution model of intracontinental orogenic belt[M]. Beijing: Geology Press: 64−121(in Chinese with English abstract).
[88] Qiu Z, Wang C. 2010. Geochemical characteristics and sedimentary background of the Middle−Upper Permian Cherts in Xiang−Qian−Gui region[J]. Acta Petrologica Sinica, 26(12): 3612−3628(in Chinese with English abstract).
[89] Qiu Z, Zou C N, Wang H Y, et al. 2020. Discussion on characteristics and controlling factors of differential enrichment of Wufeng−Longmaxi formations shale gas in South China[J]. Natural Gas Geoscience, 31(2): 163−175(in Chinese with English abstract).
[90] Shen B B, Yang Y F, Teng G E, et al. 2016. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan Basin: A case study of the Wufeng−Longmaxi formations in Well Jiaoye1[J]. Petroleum Geology & Experiment, 38(4): 480−488, 495(in Chinese with English abstract).
[91] Shi G, Gong Z, Huang N, et al. 2023. The main controlling factors of the gas content in the Permian Dalong Formation of the Xuanjing area, the Lower Yangtze region: a case study of Gangdi 1 Well[J]. East China Geology, 44(1): 93−102(in Chinese with English abstract).
[92] Shi G, Xu Z Y, Zheng H J, et al. 2019. “Three−Gas−One−Oil” drilling findings and reservoir formation geological conditions in the lower Yangtze area: Exemplified by Gang Di 1 well in South Anhui[J]. Geological Bulletin of China, 38(9): 1564−1570(in Chinese with English abstract).
[93] Song S, Wu X, Yang Y K. 2009. Characteristic analysis and initial understanding of hydrocarbon distribution of foreland basins in the world[J]. Progress in Geophysics, 24(1): 205−210(in Chinese with English abstract).
[94] Song T, Li S Z, Zhang Y L, et al. 2023. Gas differential enrichment characteristics and controlling factors of Upper Permian marine shale in western Hubei area: Case study of Wujiaping Formation II in Hongxing block and Dalong Formation in Enshi area[J]. Natural Gas Geoscience, 34(8): 1425−1441(in Chinese with English abstract).
[95] Teng G E, Shen B J, Yu L J, et al. 2017. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng−Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration & Development, 44(1): 69−78(in Chinese with English abstract).
[96] Teng L, Fang C G, Zheng H J, et al. 2019. Discovery of "three gases" in Permian Leping Formation (Well 1, Ganfengdi), central Pingle Depression[J]. Geology in China, 46(1): 203−204(in Chinese with English abstract).
[97] Tian S T, Zhang X H. 2012. Diagenesis of dolomite reservoir in Dengying Formation, Nanshanping paleo−oil reservoir[J]. Petroleum Geology & Engineering, 26(4): 34−37,41,6(in Chinese with English abstract).
[98] Verma N K, Mohan C, Mukherjee B. 2012. Thermal modelling and hydrocarbon generation history of the Kangra−Mandi sub−basin of the Himalayan foreland basin, Himachal Pradesh, India[J]. Search and Discovery. Retrieved, 24.
[99] Wandrey C J, Law B E, Shah H A. 2004. Patala−Nammal composite total petroleum system, Kohat−Potwar geological province, Pakistan[C]// Wandrey C J. Petroleum Systems and Related Geologic Studies in Region 8, South Asia. United States Geological Survey Bulletin: 1−18.
[100] Wang K M, He X P, Xu Y P, et al. 2021. Geological characteristics of shale gas in Dalong Formation of Well Xiangye 1 in Lianyuan sag, Xiangzhong depression[J]. China Petroleum Exploration, 26(1): 86−98(in Chinese with English abstract).
[101] Wang K M. 2021. Geological characteristics and reservoir−forming control factors of Lower Cambrian shale gas in Lower Yangtze and southern Anhui[J]. China Petroleum Exploration, 26(5): 83−99(in Chinese with English abstract).
[102] Wang S J, Gao W, Guo T X, et al. 2020. The discovery of shale gas, coalbed gas and tight sandstone gas in Permian Longtan Formation, northern Guizhou Province[J]. Geology in China, 47(1): 249−250(in Chinese with English abstract).
[103] Wang Y G, Wen Y C, Hong H T, et al. 2006. Discovery of Dalong Formation in Kaijiang−Liangping Trough, Sichuan Basin[J]. Natural Gas Industry, 26(9): 32−36, 162−163(in Chinese with English abstract).
[104] Wang Y G, Zhang J, Yang Y, et al. 1997. Formation mechanism of reef gas reservoir in Upper Permian Changxing Formation, eastern Sichuan Basin[J]. Marine Origin Petroleum Geology, 5(1/2): 145−152(in Chinese with English abstract).
[105] Wang Z M. 2014. Formation mechanism and enrichment rule of Kelasu deep subsalt gas field in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 25(2): 153−166(in Chinese with English abstract).
[106] Wu Z R, He S, He X P, et al. 2019. Pore structure characteristics and comparison between Upper Permian Longtan Formation and Dalong Formation in Lianyuan Sag, Central Hunan Province[J]. Earth Science, 44(11): 3757−3772(in Chinese with English abstract).
[107] Xie Y, Qiu D Z, Wang J, et al. 2012. Prediction and evaluation of Sinian−Lower Paleozoic oil and gas prospects in the transition zone of the basin mountain on the west side of Xuefeng Mountain[J]. Geological Bulletin of China, 31(11): 1769−1780(in Chinese with English abstract).
[108] Xie Z, Lu S F, Yu L, et al. 2014. Evaluation of natural gas diffusion loss in shale source rocks: A case study of Jiumenchong Formation shale of Huangxin−1 well, Qiannan depression[J]. Acta Mineralogica Sinca, 34(1): 137−143(in Chinese with English abstract).
[109] Xing G F, Li J Q, Duan Z, et al. 2021. Mesozoic−Cenozoic volcanic cycle and volcanic reservoirs in East China[J]. Journal of Earth Science, 32(4): 742−765. doi: 10.1007/s12583-021-1476-1
[110] Xu A N, Wang Z C, Jiang X F, et al. 2014. Morphological characteristies of platform margins along the Kaijiang Liangping Trough and their influences on reservoir development in the Sichuan Basin[J]. Natural Gas Industry, 34(4): 37−43(in Chinese with English abstract).
[111] Xu J H. 1987. Some problems of geotectonics in southern China[J]. Geological Science and Technology Information, 6(2): 13−27(in Chinese with English abstract).
[112] Xu S H. 2007. Study on the relationship between Paleozoic reservoir fluids and accumulation and mineralization in Guizhou and Guangxi area[D]. Doctoral Dissertation of Chengdu University of Technology(in Chinese with English abstract).
[113] Xu Y G. 2010. Reasons for formation of typical palaeo−reservoirs of Paleozoic in Southern China and revelation to exploration[D]. Doctoral Dissertation of Chengdu University of Technology(in Chinese with English abstract).
[114] Yan D P, Qiu L, Chen F, et al. 2018. Structural style and kinematics of the Mesozoic Xuefengshan intraplate orogenic belt, South China Block[J]. Earth Science Frontiers, 25(1): 1−13(in Chinese with English abstract).
[115] Yan D T, Chen D Z, Wang C H, et al. 2009. Geochemical studies near the Ordovician−Silurian boundary in the Yangtze region[J]. Science China(Series D: Earth Sciences), 39(3): 285−299(in Chinese with English abstract).
[116] Yan Z K, Yan C Y, Shao C J, et al. 2023. Evolution of basin−range pattern in southwest margin of Yangtze block during Late Triassic to Early Jurassic: Evidence of detrital zircon U−Pb geochronology from Chuxiong basin[J]. Earth Science, 48(4): 1259−1270(in Chinese with English abstract).
[117] Yang T, Zeng L B, Nie H K, et al. 2019. Adsorption capacity and controlling factors of marine−continental transitional shale in Xiangzhong Depression[J]. Lithologic reservoirs, 31(2): 105−114(in Chinese with English abstract).
[118] Yang W, Xie W R, Wei G Q, et al. 2012. Sequence lithofacies paleogeography, favorable reservoir distribution and exploration zones of the Cambrian and Ordovician in Sichuan Basin, China[J]. Acta Petrolei Sinica, 33(S2): 21−34(in Chinese with English abstract).
[119] Yang W, Wang Y, Du W, et al. 2022. Behavior of organic matter−hosted pores within shale gas reservoirs in response to differential tectonic deformation: Potential mechanisms and innovative conceptual models[J]. Journal of Natural Gas Science and Engineering, 102: 104571. doi: 10.1016/j.jngse.2022.104571
[120] Yao S P, Wu Y Y, Yu W D, et al. 2022. Outcrop characteristic and lithofacies changes of both Gufeng and Dalong Formations in lower Yangtze region[J]. Reservoir Evaluation and Development, 12(1): 215−232, 245(in Chinese with English abstract).
[121] Yin H F, Tong J N, Ding M H, et al. 1994. Late Permian and Middle Triassic sea level Changes of Yangtze Region platform[J]. Earth Science, 19(5): 627−632(in Chinese with English abstract).
[122] Yu K H, Jin Z K, Su K, et al. 2013. Sedimentary characteristics of Cambrian in the Taibei margin of the Middle and Upper Yangtze region and its significance for oil and gas exploration[J]. Science China(Earth Sciences), 43(9): 1418−1435(in Chinese with English abstract).
[123] Yu M G, Hong W T, Liu K, et al. 2022. Geochronology, petrogenesis and tectonic setting of Midddle Jurassic volcanic rocks from Yinshan deposit in Dexing, Jiangxi Province[J]. East China Geology, 43(4): 428−447(in Chinese with English abstract).
[124] Zhang B M, Tian W, Zhang G T, et al. 2023. Discovery of Permian unconventional gas by drilling XiangShaodi 1, Shaoyang Sag, central Hunan Province[J]. Geology in China, 50(5): 1590−1591(in Chinese with English abstract).
[125] Zhang B, Zheng R C, Wen H G, et al. 2009. Identification criteria and prediction of reef and shoal facies reservoirs of the Changxing Formation in the eastern Kaijiang−Liangping area intraplatform trough[J]. Geological Journal of China Universities, 15(2): 273−284(in Chinese with English abstract).
[126] Zhang C C, Fang C G, Huang Z Q, et al. 2022. Sedimentary characteristics of the Early Silurian storm deposits and the effect of storms on shale properties in the Lower Yangtze Region[J]. Natural Gas Geoscience, 33(10): 1585−1596(in Chinese with English abstract).
[127] Zhang C C, Fang C G, Liu T, et al. 2024. Research progress of flood−triggered flows in sedimentary basins[J]. East China Geology, 45(1): 49−61(in Chinese with English abstract).
[128] Zhang C M, Zhang W S, Guo Y H. 2012. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou[J]. Earth Science Frontiers, 19(1): 136−145(in Chinese with English abstract).
[129] Zhang J Y, Zhou J G, Hao Y, et al. 2011. A sedimentary model of Changxing and Feixianguan reservoirs around Kaijiang−Liangping Trough in Sichuan basin[J]. Marine Origin Petroleum Geology, 16(3): 45−54(in Chinese with English abstract).
[130] Zhang J G, Zhao X L, Liu H, et al. 2022. Geochemical characteristics of Neoproterozoic − Early Paleozoic metasedimentary of Longquan Group and implications for tectonic evolution in South China[J]. Geological Bulletin of China, 41(12): 2202−2223(in Chinese with English abstract).
[131] Zhang S Y, Zhou X Y. 1992. A discussion on on the western edge nappe structure of the snow peak upheaval zone[J]. Geology Guizhou, 9(2): 143−149(in Chinese with English abstract).
[132] Zhang W B, He B, Tao G, et al. 2020. Geochemical characteristics of Neoproterozoic−Early Paleozoic meta−sedimentary of Longquan Group and implications for tectonic evolution in South China[J]. Northwestern Geology, 53(4): 51−65(in Chinese with English abstract).
[133] Zhang Y J, Liu G D. 2002. Characteristics and evolution of composite petroleum systems and the exploration strategy in Junggar basin, northwest China[J]. Petroleum Exploration & Development, 29(1): 36−39(in Chinese with English abstract).
[134] Zhao Z H, Zhang G Q, Xue X L. 2008. Paleo−oil and residual oil and gas reservoirs in lower combination of central Guizhou uplift[J]. Natural Gas Industry, (8): 39−42, 137−138(in Chinese with English abstract).
[135] Zhao Z J, Zhu Y, Deng H Y, et al. 2003. Control of Paleoutlifts to the Meso-Paleozoic primary oil and gas pools in the South of China[J]. Petroleum Geology & Experiment, 25(1): 10−17, 27(in Chinese with English abstract).
[136] Zhao Z J, Zhu Y, Li D C, et al. 2002. Control affect of tectonic deformation to oil − gas pools in southern China[J]. Oil & Gas Geology, 23(1): 19−25 (in Chinese with English abstract).
[137] Zhou W, Han X, Long Y, et al. 2024. Discussion on the geological features and sedimentary environment of the Early Carboniferous Jiujialu Formation in Jinsha area of central Guizhou[J]. East China Geology, 45(2): 187−197 (in Chinese with English abstract).
[138] Zhou X J, Yang F. 2009. Late Caledonian tectono−paleogeographic evolution in southern China[J]. Petroleum Geology & Experiment, 31(2): 128−135,141.
[139] Zhou Y, Hu C X, Lin J H, et al. 1999. Hydrocarbon generation characteristics and oil and gas exploration direction of Meso−Paleozoic in Jianghan Basin[J]. Jianghan Petroleum Science and Technology, 9(2): 2−6(in Chinese with English abstract).
[140] Zhu G Y, Zhang S C, Chen L, et al. 2009. Gas charging and formation of deep sandstone reservoirs: A case study of Kuqa Depression, Tarim Basin[J]. Petroleum Exploration & Development, 36(3): 347−357(in Chinese with English abstract).
[141] Zhu G, Xu J W, Liu G S, et al. 1998. Tectonic control of foreland basin along the Yangtze River in the Lower Yangtze region[J]. Geological Review, 44(2): 120−129(in Chinese with English abstract).
[142] Zhu H, Ju Y, Qi Y, et al. 2018. Impact of tectonism on pore type and pore structure evolution in organic−rich shale: Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel, 228: 272−289. doi: 10.1016/j.fuel.2018.04.137
[143] 柏道远, 姜文, 熊雄, 等. 2015. 雪峰山西侧构造演化和构造格局对区域油气成藏条件的控制[J]. 华南地质与矿产, 31(2): 199−209.
[144] 卞昊达, 刘仲兰, 冯书铭, 等. 2024. 板块扩张中心的构造缩短[J]. 华东地质, 45(4): 381−386.
[145] 包书景, 林拓, 聂海宽, 等. 2016. 海陆过渡相页岩气成藏特征初探: 以湘中坳陷二叠系为例[J]. 地学前缘, 23(1): 44−53.
[146] 陈洪德, 覃建雄, 王成善, 等. 1999. 中国南方二叠纪层序岩相古地理特征及演化[J]. 沉积学报, 17(4): 13−24.
[147] 陈建军, 范铭涛, 陶国立, 等. 2001. 应用新思路、新技术找油, 老油田焕发青春——酒西盆地油气勘探实践[J]. 中国石油勘探, 6(3): 15−20.
[148] 陈建平, 李伟, 倪云燕, 等. 2018. 四川盆地二叠系烃源岩及其天然气勘探潜力(一)——烃源岩空间分布特征[J]. 天然气工业, 38(5): 1−16.
[149] 陈科, 翟刚毅, 包书景, 等. 2020. 华南黄陵隆起构造演化及其对页岩气保存的控制作用[J]. 中国地质, 47(1): 161−172.
[150] 陈平, 张敏强, 许永哲, 等. 2013. 下扬子巢湖—泾县地区上二叠统大隆组泥页岩储层特征[J]. 岩石学报, 29(8): 2925−2935.
[151] 陈旭, 陈清, 甄勇毅, 等. 2018. 志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式[J]. 中国科学: 地球科学, 48(9): 1198−1206.
[152] 仇秀梅, 刘亚东, 董学林. 2019. 鄂西建始地区大隆组页岩有机地球化学特征[J]. 岩性油气藏, 31(2): 96−104.
[153] 褚平利, 靳国栋, 张炜, 等. 2022. 浙江苍南望州山破火山地质特征及其形成演化[J]. 华东地质, 43(4): 460−473.
[154] 崔秀梅, 王建瑞, 李清, 等. 2011. 冀中坳陷新河凸起变质岩油气藏成藏条件探讨[J]. 特种油气藏, 18(2): 29−32, 136.
[155] 戴少武, 贺自爱, 王津义. 2001. 中国南方中、古生界油气勘探的思路[J]. 石油与天然气地质, 22(3): 195−202.
[156] 淡永, 闫剑飞, 包书景, 等. 2023. 雪峰隆起西南缘(贵丹地1井)震旦—寒武系获多层系页岩气重大发现[J]. 中国地质, 50(1): 291−292.
[157] 邓大飞, 梅廉夫, 沈传波, 等. 2014. 江南−雪峰隆起北缘海相油气富集主控因素和破坏机制[J]. 吉林大学学报(地球科学版), 44(5): 1466−1477.
[158] 邓大飞. 2014. 雪峰隆起北缘海相古油气巨量富集的陆内构造研究[D]. 中国地质大学博士学位论文.
[159] 丁道桂, 刘光祥, 陈玉华, 等. 2007c. 江南—雪峰山前缘油气聚集及烃源对比——南方构造问题之三[J]. 石油实验地质, 29(4): 345−354.
[160] 丁道桂, 郭彤楼, 刘运黎, 等. 2007b. 对江南−雪峰带构造属性的讨论[J]. 地质通报, 26(7): 801−809.
[161] 丁道桂, 刘光祥, 吕俊祥, 等. 2007a. 扬子板块海相中古生界盆地的递进变形改造[J]. 地质通报, 26(9): 1178−1188.
[162] 杜建波, 何明喜, 张艳霞, 等. 2007. 下扬子北缘前陆盆地构造演化及沉积特征[J]. 石油实验地质, 29(2): 133−137.
[163] 杜叶龙, 李双应, 孔为伦, 等. 2010. 安徽泾县—南陵地区二叠纪沉积相与沉积环境分析[J]. 地层学杂志, 34(4): 431−444.
[164] 杜远生, 黄宏伟, 黄志强, 等. 2009. 右江盆地晚古生代—三叠纪盆地转换及其构造意义[J]. 地质科技情报, 28(6): 10−15.
[165] 凡元芳, 丰勇. 2005. 南山坪古油藏的形成及其破坏因素分析[J]. 矿产与地质, 19(3): 296−298.
[166] 樊隽轩, Melchin M J, 陈旭, 等. 2012. 华南奥陶—志留系龙马溪组黑色笔石页岩的生物地层学[J]. 中国科学: 地球科学, 42(1): 130−139.
[167] 方朝刚, 黄正清, 滕龙, 等. 2020. 下扬子地区晚奥陶世凯迪期—早志留世鲁丹期岩相古地理及其油气地质意义[J]. 中国地质, 47(1): 144−160.
[168] 付广, 刘江涛. 2006. 中国高效大中型气田形成的封盖保存条件[J]. 石油勘探与开发, 33(6): 662−666.
[169] 付小东, 秦建中, 腾格尔, 等. 2010. 四川盆地北缘上二叠统大隆组烃源岩评价[J]. 石油实验地质, 32(6): 566−571, 577.
[170] 高波, 周雁, 沃玉进, 等. 2015. 凯里残余油气藏多期成藏的地球化学示踪研究[J]. 西南石油大学学报(自然科学版), 37(2): 21−28.
[171] 高堋, 林拓, 苑坤, 等. 2022. 垭紫罗裂陷槽西北缘黔宁地1井钻获石炭系页岩气[J]. 中国地质, 49(4): 1348−1349.
[172] 高晓萌. 2021. 乌江断裂构造演化对页岩气开采效果影响研究[D]. 长江大学硕士学位论文.
[173] 高雪, 方朝刚, 黄正清, 等. 2023. 下扬子地区奥陶纪宁国—胡乐期岩相古地理及页岩油气远景分析[J]. 中国地质, 50(4): 1122−1137.
[174] 郭念发, 闫吉柱, 陈红, 等. 2002. 苏浙皖地区海相油气地质特征及勘探目标的选择[J]. 地质论评, 48(5): 552−560.
[175] 郭彤楼. 2016. 涪陵页岩气田发现的启示与思考[J]. 地学前缘, 23(1): 29−43.
[176] 郭旭升, 胡东风, 段金宝. 2020. 中国南方海相油气勘探展望[J]. 石油实验地质, 42(5): 675−686.
[177] 郭旭升, 胡东风, 李宇平, 等. 2017. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 44(4): 481−491.
[178] 郭旭升, 胡东风, 魏志红, 等. 2016. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 21(3): 24−37.
[179] 郭旭升, 黄仁春, 张殿伟, 等. 2024. 四川盆地海相碳酸盐岩全油气系统成藏特征与有序分布规律[J]. 石油勘探与开发, 51(4): 743−758.
[180] 郭旭升, 赵永强, 申宝剑, 等. 2022. 中国南方海相页岩气勘探理论: 回顾与展望[J]. 地质学报, 96(1): 172−182.
[181] 何登发, 李德生, 张国伟, 等. 2011. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 46(3): 589−606.
[182] 何兰兰, 何京国, 霍晗勇, 等. 2023. 南方海相古生界沉积古地理特征研究及下扬子勘探潜力探讨[J]. 石油物探, 62(S1): 134−146.
[183] 洪文涛, 余明刚, 杨祝良, 等. 2020. 西太平洋南段新生代构造单元划分、地层特征及其对喜马拉雅造山运动的指示[J]. 地质通报, 39(6): 839−860.
[184] 厚刚福, 周进高, 谷明峰, 等. 2017. 四川盆地中二叠统栖霞组、茅口组岩相古地理及勘探方向[J]. 海相油气地质, 22(1): 25−31.
[185] 胡剑风, 刘玉魁, 杨明慧, 等. 2004. 塔里木盆地库车坳陷盐构造特征及其与油气的关系[J]. 地质科学, 39(4): 580−588.
[186] 黄修保, 余忠珍, 邹国庆. 2003. 赣西北地区中元古界双桥山群沉积学特征[J]. 地质通报, 22(1): 43−49.
[187] 黄学勇, 高茂生, 侯国华, 等. 2023. 莱州湾海洋沉积物粒度特征及其环境响应分析[J]. 华东地质, 44(4): 402−414.
[188] 黄正清, 周道容, 李建青, 等. 2019. 下扬子地区寒武系页岩气成藏条件分析与资源潜力评价[J]. 石油实验地质, 41(1): 94−98.
[189] 姜鹏飞, 吴建发, 朱逸青, 等. 2023. 四川盆地海相页岩气富集条件及勘探开发有利区[J]. 石油学报, 44(1): 91−109.
[190] 李浩涵, 杜江, 陈科, 等. 2020. 湖北五峰地区发现二叠系页岩气[J]. 中国地质, 47(6): 1932−1933.
[191] 李红敬, 解习农, 林正良, 等. 2009. 四川盆地广元地区大隆组有机质富集规律[J]. 地质科技情报, 28(2): 98−103.
[192] 李佳玥, 李文镖, 张鹏飞, 等. 2024. 天然气水合物形成/分解过程中的同位素分馏效应及其能源−环境意义[J]. 华东地质, 45(4): 387−401.
[193] 李建青, 章诚诚, 黄正清, 等. 2021. 下扬子复杂构造区超高压含气层的发现及油气富集关键要素[J]. 地质通报, 40(4): 577−585.
[194] 李建青. 2012. 中国南方海相页岩气选区评价体系研究[D]. 西北大学博士学位论文.
[195] 李建忠, 董大忠, 陈更生, 等. 2009. 中国页岩气资源前景与战略地位[J]. 天然气工业, 29(5): 11−16, 134.
[196] 李晋超, 马永生, 张大江, 等. 1998. 中国海相油气勘探若干重大科学问题[J]. 石油勘探与开发, 25(5): 17−18, 3, 9.
[197] 李学刚, 杨坤光, 胡祥云, 等. 2012. 黔东凯里−三都断裂结构及形成演化[J]. 成都理工大学学报(自然科学版), 39(1): 18−26.
[198] 李泽泓, 曾广乾, 凌跃新, 等. 2017. 雪峰造山带北西缘永顺−大明逆冲推覆构造的厘定及其地质意义[J]. 矿物岩石, 37(4): 62−73.
[199] 李仲东, 罗志立, 刘树根, 等. 2006. 雪峰推覆体掩覆的下组合(Z−S)油气资源预测[J]. 石油与天然气地质, 27(3): 392−398.
[200] 梁传茂. 2011. 从阿巴拉契亚−阿钦塔造山带看中国北方大陆南缘古生代的油气前景[J]. 地学前缘, 18(4): 193−200.
[201] 廖志伟, 胡文瑄, 王小林, 等. 2016a. 下扬子PTB界线深水相区粘土岩的火山成因研究及其对LPME的指示意义[J]. 地质学报, 90(4): 785−800.
[202] 廖志伟, 胡文瑄, 曹剑, 等. 2016b. 下扬子皖南大隆组黑色岩系发育特征及油气资源潜力初探[J]. 高校地质学报, 22(1): 138−151.
[203] 林卫东. 印度河盆地含油气系统特征与成藏模式[J]. 天然气工业, 2008, 28(8): 19−24.
[204] 刘宝珺, 许效松. 1994. 中国南方岩相古地理图集: 震旦纪—三叠纪[M]. 北京: 科学出版社.
[205] 刘树根, 邓宾, 钟勇, 等. 2016. 四川盆地及周缘下古生界页岩气深埋藏−强改造独特地质作用[J]. 地学前缘, 23(1): 11−28.
[206] 刘桃, 吴通, 方朝刚, 等. 2023. 下扬子地区无为凹陷三叠系气藏超压特征及其成因分析[J]. 华东地质, 44(4): 415−423.
[207] 刘杨, 吴富江, 方俊华, 等. 2021. 余干逆冲推覆构造基本特征及意义[J]. 矿产与地质, 35(6): 1111−1115.
[208] 刘运黎, 沈忠民, 丁道桂, 等. 2008. 江南−雪峰山推覆体前缘沥青古油藏及油源对比[J]. 成都理工大学学报(自然科学版), 35(1): 34−40.
[209] 刘忠宝, 王鹏威, 聂海宽, 等. 2022. 中上扬子地区寒武系页岩气富集条件及有利区优选[J]. 中南大学学报(自然科学版), 53(9): 3694−3707.
[210] 卢龙飞, 刘伟新, 俞凌杰, 等. 2020. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 42(3): 363−370.
[211] 陆扬博, 马义权, 王雨轩, 等. 2017. 上扬子地区五峰组−龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学, 42(7): 1169−1184.
[212] 罗志立. 1986. 川中是一个古陆核吗[J]. 成都地质学院学报, 13(3): 65−73.
[213] 马雪, 高天山, 周效华, 等. 2019. 江南造山带东段新元古代双桥山群沉积环境分析[J]. 地层学杂志, 43(3): 295−305.
[214] 马永生, 蔡勋育, 赵培荣. 2014. 元坝气田长兴组−飞仙关组礁滩相储层特征和形成机理[J]. 石油学报, 35(6): 1001−1011.
[215] 梅冥相, 马永生, 邓军, 等. 2007. 滇黔桂盆地及邻区二叠系乐平统层序地层格架及其古地理背景[J]. 中国科学(D辑), 37(5): 605−617.
[216] 苗凤彬, 彭中勤, 王传尚, 等. 2019. 雪峰隆起西缘湘张地1井牛蹄塘组页岩含气性特征及控制因素[J]. 地球科学, 44(11): 3662−3677.
[217] 牟传龙, 许效松. 2010. 华南地区早古生代沉积演化与油气地质条件[J]. 沉积与特提斯地质, 30(3): 24−29.
[218] 牟传龙, 周恳恳, 梁薇, 等. 2011. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报, 85(4): 526−532.
[219] 漆家福, 雷刚林, 李明刚, 等. 2009. 库车坳陷克拉苏构造带的结构模型及其形成机制[J]. 大地构造与成矿学, 33(1): 49−56. doi: 10.3969/j.issn.1001-1552.2009.01.007
[220] 丘元禧, 张渝昌, 马文瑛, 等. 1999. 雪峰山的构造性质与演化个陆内造山带的形成与演化:一个陆内造山带的演化模式[M]. 北京: 地质出版社: 64−121.
[221] 邱振, 王清晨. 2010. 湘黔桂地区中上二叠统硅质岩的地球化学特征及沉积背景[J]. 岩石学报, 26(12): 3612−3628.
[222] 邱振, 邹才能, 王红岩, 等. 2020. 中国南方五峰组−龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 31(2): 163−175.
[223] 申宝剑, 仰云峰, 腾格尔, 等. 2016. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨——以焦页1井五峰−龙马溪组为例[J]. 石油实验地质, 38(4): 480−488, 495.
[224] 石刚, 龚赞, 黄宁, 等. 2023. 下扬子宣泾地区二叠系大隆组页岩含气量主控因素分析——以港地1井为例[J]. 华东地质, 44(1): 93−102.
[225] 石刚, 徐振宇, 郑红军, 等. 2019. 下扬子地区“三气一油”钻探发现及成藏地质条件——以皖南港地1井钻探发现为例[J]. 地质通报, 38(9): 1564−1570.
[226] 宋双, 吴小羊, 杨云坤. 2009. 国内外前陆盆地油气藏特征分析与初步认识[J]. 地球物理学进展, 24(1): 205−210.
[227] 宋腾, 李世臻, 张焱林, 等. 2023. 鄂西地区上二叠统海相页岩气富集条件差异与控制因素——以红星区块吴家坪组二段和恩施地区大隆组为例[J]. 天然气地球科学, 34(8): 1425−1441.
[228] 腾格尔, 申宝剑, 俞凌杰, 等. 2017. 四川盆地五峰组−龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 44(1): 69−78.
[229] 滕龙, 方朝刚, 郑红军, 等. 2019. 萍乐坳陷中部(赣丰地1井)二叠系乐平组获“三气”发现[J]. 中国地质, 46(1): 203−204.
[230] 田少亭, 张雄华. 2012. 南山坪古油藏灯影组白云岩储层成岩作用研究[J]. 石油地质与工程, 26(4): 34−37, 41, 6.
[231] 汪凯明, 何希鹏, 许玉萍, 等. 2021. 湘中坳陷涟源凹陷湘页1井大隆组页岩气地质特征[J]. 中国石油勘探, 26(1): 86−98.
[232] 汪凯明. 2021. 下扬子皖南地区下寒武统页岩气地质特征及成藏控制因素[J]. 中国石油勘探, 26(5): 83−99.
[233] 王胜建, 高为, 郭天旭, 等. 2020. 黔北金沙地区二叠系龙潭组取得页岩气、煤层气和致密砂岩气协同发现[J]. 中国地质, 47(1): 249−250.
[234] 王一刚, 文应初, 洪海涛, 等. 2006. 四川盆地开江−梁平海槽内发现大隆组[J]. 天然气工业, 26(09): 32−36, 162−163.
[235] 王一刚, 张静, 杨雨, 等. 1997. 四川盆地东部上二叠统长兴组生物礁气藏形成机理[J]. 海相油气地质, 5(1/2): 145−152.
[236] 王招明. 2014. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J]. 天然气地球科学, 25(2): 153−166.
[237] 吴忠锐, 何生, 何希鹏, 等. 2019. 湘中涟源凹陷上二叠统龙潭组和大隆组海陆过渡相泥页岩孔隙结构特征及对比[J]. 地球科学, 44(11): 3757−3772.
[238] 谢渊, 丘东洲, 王剑, 等. 2012. 雪峰山西侧盆山过渡带震旦系—下古生界油气远景区预测与评价[J]. 地质通报, 31(11): 1769−1780.
[239] 谢舟, 卢双舫, 于玲, 等. 2014. 泥质气源岩层内天然气扩散损失量评价——以黔南坳陷黄页1井九门冲组页岩为例[J]. 矿物学报, 34(1): 137−143.
[240] 徐安娜, 汪泽成, 江兴福, 等. 2014. 四川盆地开江−梁平海槽两侧台地边缘形态及其对储层发育的影响[J]. 天然气工业, 34(4): 37−43.
[241] 徐仕海. 2007. 黔桂地区古生界储层流体与成藏成矿的关系研究[D]. 成都理工大学博士学位论文.
[242] 徐言岗. 2010. 中国南方古生界典型古油气藏解剖及勘探启示[D]. 成都理工大学博士学位论文.
[243] 许靖华. 1987. 中国南方大地构造的几个问题[J]. 地质科技情报, 6(2): 13−27.
[244] 严德天, 陈代钊, 王清晨, 等. 2009. 扬子地区奥陶系—志留系界线附近地球化学研究[J]. 中国科学(D辑), 39(3): 285−299.
[245] 颜丹平, 邱亮, 陈峰, 等. 2018. 华南地块雪峰山中生代板内造山带构造样式及其形成机制[J]. 地学前缘, 25(1): 1−13.
[246] 颜照坤, 颜晨雨, 邵崇建, 等. 2023. 扬子西南缘晚三叠世—早侏罗世盆山格局演化过程: 来自楚雄盆地碎屑锆石U−Pb年代学的证据[J]. 地球科学, 48(4): 1259−1270.
[247] 杨滔, 曾联波, 聂海宽, 等. 2019. 湘中坳陷海陆过渡相页岩吸附能力及控制因素[J]. 岩性油气藏, 31(2): 105−114.
[248] 杨威, 谢武仁, 魏国齐, 等. 2012. 四川盆地寒武纪—奥陶纪层序岩相古地理、有利储层展布与勘探区带[J]. 石油学报, 33(S2): 21−34.
[249] 姚素平, 吴聿元, 余文端, 等. 2022. 下扬子区孤峰组−大隆组露头剖面特征与岩相变化[J]. 油气藏评价与开发, 12(1): 215−232, 245.
[250] 殷鸿福, 童金南, 丁梅华, 等. 1994. 扬子区晚二叠世—中三叠世海平面变化[J]. 地球科学, 19(5): 627−632.
[251] 余宽宏, 金振奎, 苏奎, 等. 2013. 中、上扬子地台北缘寒武纪沉积特征及油气勘探意义[J]. 中国科学: 地球科学, 43(9): 1418−1435.
[252] 余明刚, 洪文涛, 刘凯, 等. 2022. 江西德兴银山中侏罗世火山岩年代学、岩石成因及构造背景[J]. 华东地质, 43(4): 428−447.
[253] 张保民, 田巍, 张国涛, 等. 2023. 湘中邵阳凹陷湘邵地1井钻获二叠系非常规气[J]. 中国地质, 50(5): 1590−1591.
[254] 张兵, 郑荣才, 文华国, 等. 2009. 开江−梁平台内海槽东段长兴组礁滩相储层识别标志及其预测[J]. 高校地质学报, 15(2): 273−284.
[255] 张春明, 张维生, 郭英海. 2012. 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J]. 地学前缘, 19(1): 136−145.
[256] 张建勇, 周进高, 郝毅, 等. 2011. 四川盆地环开江−梁平海槽长兴组−飞仙关组沉积模式[J]. 海相油气地质, 16(3): 45−54.
[257] 张金国, 赵希林, 刘欢, 等. 2022. 浙江龙泉岩群新元古代—早古生代变沉积岩地球化学特征及其对华南构造演化的指示[J]. 地质通报, 41(12): 2202−2223.
[258] 张书元, 周希云. 1992. 关于雪峰隆起带西缘推覆构造问题的讨论[J]. 贵州地质, 9(2): 143−149.
[259] 张文斌, 何碧, 陶刚, 等. 2020. 黔北新仁地区上二叠统龙潭组煤质地球化学特征及聚煤规律[J]. 西北地质, 53(4): 51−65.
[260] 张义杰, 柳广弟. 2002. 准噶尔盆地复合油气系统特征、演化与油气勘探方向[J]. 石油勘探与开发, 29(1): 36−39.
[261] 章诚诚, 方朝刚, 黄正清, 等. 2022. 下扬子地区下志留统风暴沉积特征及风暴作用对泥页岩品质的影响[J]. 天然气地球科学, 33(10): 1585−1596.
[262] 章诚诚, 方朝刚, 刘桃, 等. 2024. 沉积盆地洪水异重流研究进展[J]. 华东地质, 45(1): 49−61.
[263] 赵泽恒, 张桂权, 薛秀丽. 2008. 黔中隆起下组合古油藏和残余油气藏[J]. 天然气工业, (8): 39−42, 137−138.
[264] 赵宗举, 朱琰, 邓红婴, 等. 2003. 中国南方古隆起对中、古生界原生油气藏的控制作用[J]. 石油实验地质, 25(1): 10−18.
[265] 赵宗举, 朱琰, 李大成, 等. 2002. 中国南方构造形变对油气藏的控制作用[J]. 石油与天然气地质, 23(1): 19−25.
[266] 周武, 韩雪, 龙宇, 等. 2024. 黔中金沙地区早石炭世九架炉组地质特征及沉积环境讨论[J]. 华东地质, 45(2): 187−197.
[267] 周小进, 杨帆. 2009. 中国南方大陆加里东晚期构造−古地理演化[J]. 石油实验地质, 31(2): 128−135,141.
[268] 周雁, 胡纯心, 林娟华, 等. 1999. 江汉盆地中古生界生烃特征及油气勘探方向[J]. 江汉石油科技, 9(2): 2−6.
[269] 朱光, 徐嘉炜, 刘国生, 等. 1998. 下扬子地区沿江前陆盆地形成的构造控制[J]. 地质论评, 44(2): 120−129. doi: 10.3321/j.issn:0371-5736.1998.02.002
[270] 朱光有, 张水昌, 陈玲, 等. 2009. 天然气充注成藏与深部砂岩储集层的形成——以塔里木盆地库车坳陷为例[J]. 石油勘探与开发, 36(3): 347−357. doi: 10.3321/j.issn:1000-0747.2009.03.010
-