Chemical characteristics and formation mechanism of shallow groundwater in Shijiazhuang area
-
摘要:
研究目的 为了全面了解石家庄地区浅层地下水化学特征及其成因机制,为水环境管理部门提供科学参考。
研究方法 基于2019—2020年石家庄地区浅层地下水水质监测数据,综合运用地理统计学、Piper图、Gibbs模型和离子比等方法,分析了石家庄地区不同水文地质单元浅层地下水化学特征、影响水质的主要化学指标及其形成机制。
研究结果 石家庄地区浅层地下水pH值在7.13~8.48之间,介于中性水和弱碱性水之间;TH(总硬度)和TDS(溶解性总固体)均值分别为391.03 mg/l和590.60 mg/l,沿地下水径流方向呈逐渐降低趋势;全区和各水文地质单元阴、阳离子基本以HCO3−、SO42−、Ca2+和Na+为主,台地、河谷平原区阳离子表现为以Ca2+和Mg2+为主,且Na+、Cl−、SO42−、NO3−等离子空间变异系数相对较大;浅层地下水化学类型以HCO3·SO4−Ca·Mg为主,其次为SO4·HCO3−Ca·Mg型,且从台地区到冲洪积平原区水化学类型逐渐变得复杂;浅层地下水化学组分形成主要受岩石风化作用影响,冲洪积平原和台地区部分地下水化学组分形成受到人类活动影响显著。研究区浅层地下水主要超标指标为TH、SO42−和NO3−,河谷平原区3项指标综合超标率最高,达到62.5%。TH、SO42−和NO3−三项指标超标的地下水样品的化学组分除受碳酸盐矿物溶解影响外,也受到硫酸盐矿物溶解和人类活动(农业活动和市政污水排放)影响。
结论 石家庄地区浅层地下水化学特征呈明显的分带性,从台地区到冲洪积平原区地下水的TH和TDS浓度逐渐降低,水化学类型逐渐复杂化,水质超标率逐渐降低,且水质超标现象是自然因素和人类活动共同作用的结果。本次对石家庄地区浅层不同水文地质单元的水化学特征及其成因机制研究,为水环境管理部门提供了重要科学依据。
Abstract:Objective To gain a comprehensive understanding of the chemical characteristics and formation mechanism of shallow groundwater in the Shijiazhuang area and provide scientific references for water environment management departments.
Methods Based on the shallow groundwater quality monitoring data of the Shijiazhuang area from 2019 to 2020, methods such as geostatistics, Piper diagram, Gibbs model, and ion ratio were comprehensively employed to analyze the chemical characteristics of shallow groundwater in different hydrogeological units of the Shijiazhuang area, the main chemical indicators affecting water quality, and their formation mechanisms.
Results The pH value of shallow groundwater in the Shijiazhuang area ranged from 7.13 to 8.48, falling between neutral water and weak alkaline water; the average values of TH (total hardness) and TDS (total dissolved solids) were 391.03 mg/l and 590.60 mg/l respectively, showing a gradually decreasing trend along the groundwater runoff direction; the anions and cations in the entire area and each hydrogeological unit were mainly HCO3−, SO42−, Ca2+ and Na+, and the cations in the platform and river valley plain area were mainly Ca2+ and Mg2+, and the spatial variation coefficients of ions such as Na+, Cl−, SO42−, NO3− were relatively large; the chemical type of shallow groundwater was mainly HCO3·SO4−Ca·Mg, followed by SO4·HCO3−Ca·Mg type, and the chemical type of water gradually became more complex from the platform area to the alluvial−proluvial plain area; The formation of chemical components in shallow groundwater is primarily controlled by rock weathering. In alluvial−proluvial plains and tableland regions, the formation of certain chemical components in groundwater is significantly influenced by human activities. The main indicators exceeding standards in shallow groundwater within the study area are total hardness (TH), sulfate (SO42−), and nitrate (NO3−). The comprehensive exceedance rate of these three indicators is highest in the valley plain area, reaching 62.5%. The formation of chemical components in groundwater samples with exceeded TH, SO42−, and NO3− standards is not only affected by the dissolution of carbonate minerals but also by the dissolution of sulfate minerals and anthropogenic factors, such as agricultural activities and municipal sewage discharge.
Conclusions The chemical characteristics of shallow groundwater in the Shijiazhuang area exhibit distinct zonation. From the tableland region to the alluvial−proluvial plain, the concentrations of TH and total dissolved solids (TDS) in groundwater gradually decrease, water chemistry types become increasingly complex, and the water quality exceedance rate progressively declines. Furthermore, the phenomenon of water quality exceedance results from the combined effects of natural and anthropogenic factors. This study on the hydrochemical characteristics and their formation mechanisms of shallow groundwater in different hydrogeological units in the Shijiazhuang area provides a critical scientific basis for water environment management departments.
-
-
表 1 浅层地下水主要离子含量统计
Table 1. Statistical table of main ion content in shallow groundwater
指标 全区 台地 山前冲洪积扇 冲洪积平原 河谷平原区 范围 均值 变异系数/% 均值 变异系数/% 均值 变异系数/% 均值 变异系数/% 均值 变异系数/% pH 7.13~8.48 7.77 5.04 7.85 7.56 7.63 2.99 7.77 3.78 7.72 5.94 TH 68.05~2437 391.03 59.74 461.61 69.03 464.49 36.56 336.07 57.91 438.99 31.44 TDS 115.5~3016 590.6 61.98 635.49 64.40 667.43 40.11 549.01 68.44 586.73 33.86 K+ 0.17~12.24 2.02 69.77 1.77 105.07 1.71 57.91 2.15 56.49 3.21 53.82 Na+ 8.62~521 48.4 115.04 29.25 68.99 42.44 68.16 60.09 115.13 21.78 42.34 Ca2+ 9.1~786.3 103.36 68.96 134.84 78.23 132.43 37.97 79.71 58.46 128.13 39.47 Mg2+ 5.98~178.7 32.28 61.6 30.32 51.98 32.50 38.28 33.27 70.65 28.90 17.80 Cl− 1.75~1105 67.52 131.53 79.59 183.64 78.18 80.91 60.36 99.15 48.23 58.72 SO42− 4.7~1749 138.59 121.49 148.63 65.33 164.24 65.31 125.87 164.01 153.56 59.19 HCO3− 29.59~876.6 257.82 36.47 213.83 45.51 276.55 25.43 273.43 34.55 226.71 25.37 NO3− 0~402.4 48.74 114.1 84.08 86.08 59.68 58.87 28.61 149.02 74.64 53.31 F− 0.2~1.42 0.44 39.23 0.40 51.67 0.34 25.37 0.48 33.23 0.39 29.49 COD 0.45~16.17 1.09 105.69 1.25 63.04 0.87 32.39 1.08 132.48 1.17 54.61 有效个案数/个 234 57 38 8 131 注:离子含量及其平均值单位为mg/L,pH除外 表 2 地下水水质超标率统计
Table 2. Statistics of Exceeding Standard Proportion of Groundwater Quality
指标 国标Ⅲ类(除PH
外,mg/L)全区 台地 山前冲
洪积扇河谷平原 冲洪积
平原超标率% PH 6.5~8.5 0 0 0 0 0 TH ≤450 29.91 38.6 55.26 62.5 16.79 TDS ≤1000 8.56 12.28 10.53 0 6.87 K + — — — — — — Na + ≤200 2.10 0 0 0 3.82 Ca2 + — — — — — — Mg2 + ≤50 8.55 3.51 5.26 0 6.43 Cl− ≤250 1.71 1.75 0 0 2.29 SO42− ≤250 13.68 14.04 18.42 12.5 12.21 HCO3− — — — — — — NO3− ≤88.6 12.82 24.56 7.89 0 7.63 F− ≤1.00 0.85 3.51 0 0 0 COD ≤3.29 2.14 5.26 0 0 1.53 -
[1] Chang S, Zhao X R, Liu Y, et al. 2016. Distribution characteristics and health risk assessment of volatile organic compounds in groundwater of Hutuo River Pluvial Fan[J]. Research of Environmental Sciences, 29(6): 854−862 (in Chinese with English abstract).
[2] Gao W H, Zhang J, Zhang W Z, et al. 2023. Hydrochemical Characteristics and Influencing Factors of Groundwater in Huanglong, a World Natural Heritage[J]. Water Resources, 50(4): 619−632. doi: 10.1134/S0097807823040164
[3] Jiang Y, Cao M, Yuan D, et al. 2018. Hydrogeological characterization and environmental effects of the deteriorating urban karst groundwater in a karst trough valley: Nanshan, SW China[J]. Hydrogeology Journal, 26(5): 1487−1497. doi: 10.1007/s10040-018-1729-y
[4] Kong X L, Chang Y R, Liu X, et al. 2023. Spatial variation characteristics, influencing factors, and sources of hydrogeochemical of surface water and groundwater in mountainous area of Hutuo River[J]. Environmental Science, 44(8): 4292−4302 (in Chinese with English abstract).
[5] Liu Y, Qiao X C, Jiang Q F, et al. 2016. Spatial distribution and influencing factors of nitrate content in groundwater of alluvial−pluvial fan of Hutuo River[J]. Journal of Agro−Environment Science, 35(5): 947−954 (in Chinese with English abstract).
[6] Li Y S, Zhang Z J, Fei Y H, et al. 2014. Groundwater quality and contamination characteristics in the Hutuo River Plain area, Hebei Province[J]. Acta Geoscientica Sinica, 35(2): 169−176 (in Chinese with English abstract).
[7] Li Z Y, Huang F Y, Liu D D, et al. 2019. Pollution and distribution characteristics of pesticides in groundwater in the alluvial−pluvial fan of the Hutuo River, Haihe River Basin[J]. Rock and Mineral Analysis, 38(2): 186−194 (in Chinese with English abstract).
[8] Miao L P, Meng R F, Wang H W, et al. 2020. Characteristics and source apportionment of groundwater sulfate pollution in Hutuo River basin[J]. Environmental Science & Technology, 43(S1): 91−97 (in Chinese with English abstract).
[9] Tu C L, Yin L H, He C Z, et al. 2022. Hydrochemical composition characteristics and control factors of Xiaohuangni River Basin in the Upper Pearl River[J]. Environmental Science, 43(4): 1885−1898 (in Chinese with English abstract).
[10] Wang H W, Guo X J, Zhang Q Q, et al. 2021. Evolution of groundwater hydrochemical characteristics and origin analysis in Hutuo River Basin[J]. Environmental Chemistry, 40(12): 3838−3845 (in Chinese with English abstract).
[11] Wang L, Deng J F, Cao Y T, et al. 2024. The chemical characteristics and formation mechanism of surface water−shallow groundwater in Maqinqu Basin, Ritu County, Tibet[J/OL]. Geological Bulletin of China, https://link.cnki.net/urlid/11.4648.P.20241022.1149.013.
[12] Wang S Y, Ma Z H, Chang M, et al. 2024. Hydrochemical characteristics and mechanism analysis of shallow groundwater in Beijing Plain area[J/OL]. Environmental Science, https://doi.org/10.13227/j.hjkx.202401100 (in Chinese with English abstract).
[13] Yang X Q, Li Y G, Hao X L, et al. 2020. Shijiazhuang Water Resources Bulletin(2020)[R]. Shijiazhuang: Shijiazhuang Water Resources Bureau: 11−14 (in Chinese with English abstract).
[14] Yan Y, Gao R Z, Liu T X, et al. 2023. Hydrochemical characteristics and control factors of groundwater in the Northwest Sale Lake Basin[J]. Environmental Science, 44(12): 6767−6777 (in Chinese with English abstract).
[15] Yu C, Xu Z F, Liu W J, et al. 2017. River water geochemistry of Hanjiang River, implications for silicate weathering and sulfuric acid participation[J]. Earth and Environment, 45(4): 390−398 (in Chinese with English abstract).
[16] Zhang C Y, Liu W S. 1996. Geochemical evolution simulation of sallow groundwater in Hebei Plan[J]. Earth Science Frontiers 3(1/2): 245−248 (in Chinese with English abstract).
[17] Zhang Q Q, Wang H W, Wang L, et al. 2018. Increasing mechanism of groundwater total hardness (TH) in the Hutuo River alluvial−pluvial Fan[J]. Environmental Science & Technology, 41(S2): 62−68 (in Chinese with English abstract).
[18] Zhang Q Q, Wang H W, Zhai T L, et al. 2017. Characteristics and source apportionment of groundwater nitrate contamination in the Hutuo River alluvial−pluvial fan regions[J]. Hydrogeology & Engineering Geology, 44(6): 110−117 (in Chinese with English abstract).
[19] Zhang T, Wang M, Zhang Z, et al. 2020. Hydrochemical Characteristics and Possible Controls of the Surface Water in Ranwu Lake Basin[J]. Environmental Science, 41(9): 4003−4010 (in Chinese with English abstract).
[20] Zhang W, Wang D W, Lei K, et al. 2020. Hydrochemical characteristics and impact factors in the middle and lower reaches of the Yellow River in the Wet Season[J]. Reserch of the Soil and Water Conservation, 27(1): 380−386,393 (in Chinese with English abstract).
[21] Zhang X W, He J T, He B N, et al. 2019. Assessment, formation mechanism, and different source contributions of dissolved salt pollution in the shallow groundwater of Hutuo River alluvial−pluvial fan in the North China Plain[J]. Environmental Science and Pollution Research, 26(35): 35742−35756. doi: 10.1007/s11356-019-06502-2
[22] Zhao M J, Miao Q Z, Geng B L, et al. 2024. Groundwater quality and main influencing factors in the northeast of Zhanjiang City, Guangdong Province[J/OL]. Geological Bulletin of China, https://link.cnki.net/urlid/11.4648.P.20241219.1150.004 (in Chinese with English abstract).
[23] Zheng T, Jiao T L, Hu B, et al. 2021. Hydrochemical characteristics and origin of groundwater in the Central Guohe River Basin[J]. Environmental Science, 42(2): 766−775 (in Chinese with English abstract).
[24] 昌盛, 赵兴茹, 刘琰, 等. 2016. 滹沱河冲洪积扇地下水中挥发性有机物的分布特征与健康风险[J]. 环境科学研究, 29(6): 854−862.
[25] 孔晓乐, 常玉儒, 刘夏, 等. 2023. 滹滹沱河流域山区地表水-地下水水化学空间变化特征\影响因素及其来源[J]. 环境化学, 44(8): 4292−4302.
[26] 刘琰, 乔肖翠, 江秋枫, 等. 2016. 滹沱河冲洪积扇地下水硝酸盐含量的空间分布特征及影响因素[J]. 农业环境科学学报, 35(5): 947−954. doi: 10.11654/jaes.2016.05.019
[27] 李亚松, 张兆吉, 费宇红, 等. 2014. 河北省滹沱河冲积平原地下水质量及污染特征研究[J]. 地球学报, 35(2): 169−176. doi: 10.3975/cagsb.2014.02.07
[28] 李泽岩, 黄福杨, 刘丹丹, 等. 2019. 海河流域滹沱河冲洪积扇地下水中农药污染及分布特征[J]. 岩矿测试, 38 (2): 186−194.
[29] 缪丽萍, 孟瑞芳, 王慧玮, 等. 2020. 滹沱河流域地下水硫酸盐污染特征及源解析[J]. 环境科学与技术, 43(S1): 91−97.
[30] 涂春霖, 尹林虎, 和成忠, 等. 2022. 珠江源区小黄泥河流域地表水水化学组成特征及控制因素[J]. 环境科学, 43(4): 1885−1898.
[31] 王慧玮, 郭小娇, 张千千, 等. 2021. 滹沱河流域地下水水化学特征演化及成因分析[J]. 环境化学, 40(12): 3838−3845. doi: 10.7524/j.issn.0254-6108.2020080301
[32] 王亮, 邓俊峰, 曹亚廷, 等. 2024. 西藏日土县玛钦曲流域地表水-浅层地下水化学特征及其形成机制[J/OL]. 地质通报. https://link.cnki.net/urlid/11.4648.P.20241022.1149.013.
[33] 王世玉, 马召辉, 常淼, 等. 2024. 北京市平原区浅层地下水水化学特征及成因分析[J/OL]. 环境科学. https://doi.org/10.13227/j.hjkx.202401100.
[34] 杨晓清, 李艳刚, 郝晓莉, 等. 2020. 石家庄市水资源公报(2020)[R]. 石家庄: 石家庄市水利局: 11−14.
[35] 艳艳, 高瑞忠, 刘廷玺, 等. 2023. 西北盐湖流域地下水水化学特征及控制因素[J]. 环境科学, 44(12): 6767−6777.
[36] 余冲, 徐志方, 刘文景, 等. 2017. 韩江流域河水地球化学特征与硅酸盐岩风化-风化过程硫酸作用[J]. 地球与环境, 45(4): 390−398.
[37] 张翠云, 刘文生. 1996. 河北平原浅层地下水地球化学演化模拟[J]. 地学前缘, 3(1/2): 245−248. doi: 10.3321/j.issn:1005-2321.1996.02.019
[38] 张千千, 王慧玮, 王龙, 等. 2018. 滹沱河冲洪积扇地区地下水硬度升高的机理研究[J]. 环境科学与技术, 41(S2): 62−68.
[39] 张千千, 王慧玮, 翟天伦, 等. 2017. 滹沱河冲洪积扇地下水硝酸盐的污染特征及污染源解析[J]. 水文地质工程地质, 44(6): 110−117.
[40] 张涛, 王明国, 张智印, 等. 2020. 然乌湖流域地表水水化学特征及控制因素[J]. 环境科学, 41(9): 4003−4010.
[41] 张旺, 王殿武, 雷坤, 等. 2020. 黄河中下游丰水期水化学特征及影响因素[J]. 水土保持研究, 27(1): 380−386,393.
[42] 赵明杰, 苗青壮, 耿百利, 等. 2024. 广东湛江市东北部地下水质量及主要影响因素成因[J/OL]. 地质通报. https://link.cnki.net/urlid/11.4648.P.20241219.1150.004.
[43] 郑涛, 焦团理, 胡波, 等. 2021. 涡河流域中部地区地下水化学特征及其成因分析[J]. 环境科学, 42(2): 766−775.
-