山西中条山2.5 Ga TTG岩石的暖俯冲成因

焦东晨, 曲军峰. 2024. 山西中条山2.5 Ga TTG岩石的暖俯冲成因——来自相平衡模拟的约束. 地质通报, 43(12): 2272-2287. doi: 10.12097/gbc.2024.08.005
引用本文: 焦东晨, 曲军峰. 2024. 山西中条山2.5 Ga TTG岩石的暖俯冲成因——来自相平衡模拟的约束. 地质通报, 43(12): 2272-2287. doi: 10.12097/gbc.2024.08.005
JIAO Dongchen, QU Junfeng. 2024. Warm subduction origin of 2.5 Ga TTG in Zhongtiao Mountains, Shanxi: Constraints from phase equilibrium modeling. Geological Bulletin of China, 43(12): 2272-2287. doi: 10.12097/gbc.2024.08.005
Citation: JIAO Dongchen, QU Junfeng. 2024. Warm subduction origin of 2.5 Ga TTG in Zhongtiao Mountains, Shanxi: Constraints from phase equilibrium modeling. Geological Bulletin of China, 43(12): 2272-2287. doi: 10.12097/gbc.2024.08.005

山西中条山2.5 Ga TTG岩石的暖俯冲成因

  • 基金项目: 中国地质科学院基本科研业务费专项经费(编号:JKYZD202309, YYMF201604)
详细信息
    作者简介: 焦东晨(1997− ),男,硕士,助理工程师,从事石油地质研究工作。E−mail:1711366090@qq.com
  • 中图分类号: P534.2; P58

Warm subduction origin of 2.5 Ga TTG in Zhongtiao Mountains, Shanxi: Constraints from phase equilibrium modeling

  • 2.5 Ga左右地球上发生的构造机制转换,是地球演化历史中最重要的地质阶段之一,制约着地球早期大陆生长及克拉通作用的方式。TTG(奥长花岗岩、英云闪长岩、花岗闪长岩岩石组合)作为太古宙大陆地壳主体,探究其形成环境有助于更好地理解太古宙的板块构造动力学机制。但由于TTG含水熔融形成过程中的P-T条件缺失,热力学性质控制的板块构造机制无法被很好地识别。以中条山约2.5 Ga的TTG 为研究对象,选取中条山文家坡约2.5 Ga 的变玄武岩为源岩,对其进行 TTG 岩浆的定量正演模拟计算。发现在900℃/GPa地温梯度下,发生25%的含水熔融能够满足中条山约2.5 Ga TTG 形成条件。据此推测,此类 TTG形成于暖俯冲环境,揭示约2.5 Ga华北克拉通已经存在与地球板块生长事件对应的水平生长机制。同时部分地球化学指标的异常,也揭示构造机制已开始走向类似现代板块构造的趋势。

  • 加载中
  • 图 1  华北克拉通前寒武纪地质体分布图 (据第五春荣, 2021修改)

    Figure 1. 

    图 2  中条山地质简图 (据白瑾等, 1997修改)

    Figure 2. 

    图 3  中条山夏县地质简图(据侯马市幅I49C001003 1∶25万区域地质图修改;刘成如等,2007

    Figure 3. 

    图 4  文家坡变玄武岩P-T相图(黑色虚线表示熔体的质量百分比(%);红色虚线表示地温梯度(°C/GPa);黄色区域表示在低压下产生的熔体组成(LP-TTG),绿色区域表示在中压下产生的熔融组成(MP-TTG),蓝色区域表示在高压下产生的熔化组成(HP-TTG)。高压、中压和低压型TTG的划分根据Moyen (2011) 。斜长石、角闪石、金红石和石榴子石的稳定域界线分别用紫色、橙色、蓝色和绿色线表示,红线表示固相线)

    Figure 4. 

    图 5  文家坡变玄武岩在不同熔融程度下熔体组分与TTG对比图(灰色阴影区域表示约2.5 Ga TTG片麻岩成分数值在2个标准差之内2σ的范围)

    Figure 5. 

    图 6  文家坡变玄武岩在不同熔融程度下矿物、熔体比例与温度的关系

    Figure 6. 

    图 7  文家坡变玄武岩在不同熔融程度下微量元素与TTG对比图(灰色阴影区域表示约2.5 Ga TTG片麻岩成分数值在2个标准差之内2σ的范围;TTG平均值指中条山约 2.5 Ga TTG片麻岩微量元素的平均值与原始地幔的比值,其他(10%,15%,20%……)指不同熔融程度下微量元素的成分与原始地幔的比值,二者进行对比可判断TTG形成时的熔融条件)

    Figure 7. 

    图 8  华北克拉通南部晚新太古代(约2.5 Ga)构造模式

    Figure 8. 

    表 1  源岩地球化学成分(FeO代表全铁含量,Fe3+/ ΣFe = 0.1(mol%))(据Berry et al., 2008)

    Table 1.  Bulk-rock compositions used for the phase diagram

    源岩化学成分 H2O SiO2 Al2O3 CaO MgO FeO K2O Na2O TiO2 O2
    数值/mol% 5.535 52.079 7.893 9.894 8.997 10.329 0.968 2.533 1.054 0.717
    下载: 导出CSV
  • [1]

    Abbott D. 1995. The structural and geochemical evolution of the continental crust: Support for the oceanic plateau model of continental growth[J]. Reviews of Geophysics, 33: 231−242. doi: 10.1029/95RG00551

    [2]

    Albarède F. 1998. The growth of continental crust[J]. Tectonophysics, 296(1): 1−14.

    [3]

    Arndt N. 2013. Formation and evolution of the continental crust[J]. Geochemical Perspectives, 2(3): 405−533. doi: 10.7185/geochempersp.2.3

    [4]

    Bai J. 1993. The Precambrian geology and Pb−Zn mineralization in the northern margin of North China Platform[M]. Geological Publishing House (China): 1−2, 90−96, 122 (in Chinese with English abstract).

    [5]

    Bai J, Dai F Y, Yan Y Y. 1997. Precambrian crustal evolution of the Zhongtiao Mountains[J]. Earth Science Frontiers (China University of Geosciences, Beijing), 4(3/4): 281−288 (in Chinese with English abstract).

    [6]

    Bédard J H. 2003. Evidence for regional−scale, pluton−driven, high−grade metamorphism in the Archaean Minto block, Northern Superior Province, Canada[J]. The Journal of Geology, 111(2): 183−205. doi: 10.1086/345842

    [7]

    Bédard J H. 2006. A catalytic delamination−driven model for coupled genesis of Archaean crust and sub−continental lithospheric mantle[J]. Geochimica et Cosmochimica Acta, 70(5): 1188−1214. doi: 10.1016/j.gca.2005.11.008

    [8]

    Bédard J H. 2013. How many arcs can dance on the head of a plume? A ‘Comment’ on: A critical assessment of Neoarchean ‘plume only’ geodynamics: Evidence from the Superior province, by Derek Wyman[J]. Precambrian Research, 229: 189−197. doi: 10.1016/j.precamres.2012.05.004

    [9]

    Berry A J, Danyushevsky L V, O Neill H St C, et al. 2008. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle[J]. Nature, 455(7215): 960−963. doi: 10.1038/nature07377

    [10]

    Brown M. 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean[J]. Geology, 34(11): 961−964. doi: 10.1130/G22853A.1

    [11]

    Brown M. 2014. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics[J]. Geoscience Frontiers, 5(4): 553−569. doi: 10.1016/j.gsf.2014.02.005

    [12]

    Brown M, Johnson T. 2018. Secular change in metamorphism and the onset of global plate tectonics[J]. American Mineralogist, 103(2): 181−196. doi: 10.2138/am-2018-6166

    [13]

    Brown M, Johnson T. 2019a. Metamorphism and the evolution of subduction on Earth[J]. American Mineralogist, 104(8): 1065−1082. doi: 10.2138/am-2019-6956

    [14]

    Brown M, Johnson T. 2019b. The 51st Hallimond lecture time's arrow, time's cycle: Granulite metamorphism and geodynamics[J]. Mineralogical Magazine, 83(3): 1−51.

    [15]

    Brown M, Johnson T, Gardiner N J. 2020. Plate tectonics and the Archean Earth[J]. Annual Review of Earth and Planetary Sciences, 48(1): 291−320. doi: 10.1146/annurev-earth-081619-052705

    [16]

    Cawood P A, Hawkesworth C J, Dhuime B. 2013. The continental record and the generation of continental crust[J]. GSA Bulletin, 125(1/2): 14−32. doi: 10.1130/B30722.1

    [17]

    Cawood P A, Hawkesworth C J, Pisarevsky S, et al. 2018. Geological archive of the onset of plate tectonics[J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 376(2132): 20170405. doi: 10.1098/rsta.2017.0405

    [18]

    Cawood P A. 2020. Metamorphic rocks and plate tectonics[J]. Science Bulletin, 65(12): 968−969. doi: 10.1016/j.scib.2020.02.016

    [19]

    Chen L M, Liu P H, Du L L, et al. 2023. Depositional age and provenance of the Anshan Group in the Gongchangling area, Liaoning Province: Constraints from detrital zircon U−Pb−Hf isotopic and rare earth element composition in the garnet−staurolite−mica−quartz schist[J]. Geological Bulletin of China, 42(12): 2037−2059 (in Chinese with English abstract).

    [20]

    Chen S W, Li J H, Yuan F, et al. 2023. Modern−style subduction during the late Neoarchean to early Paleoproterozoic? Geochemical evidence from ca. 2.45 Ga arc−type magmatism in the Feidong Complex, northeastern Yangtze Craton, South China[J]. Precambrian Research, 388(1/2): 106999.

    [21]

    Condie K C. 1975. Mantle−plume model for the origin of Archaean greenstone belts based on trace element distributions[J]. Nature, 258: 413−414. doi: 10.1038/258413a0

    [22]

    Condie K C. 1981. Archaean greenstone belts[J]. Developments in Precambrian Geology, 3: 1−434. doi: 10.1016/S0166-2635(08)70074-4

    [23]

    Condie K C. 1994. Chapter 3: Greenstones through time[J]. Developments in Precambrian Geology, 11: 85−120.

    [24]

    Condie K C. 1995. Episodic ages of Greenstones: A key to mantle dynamics?[J]. Geophysical Research Letters, 22(16): 2215−2218. doi: 10.1029/95GL01804

    [25]

    Condie K C. 1998. Episodic continental growth and supercontinents: A mantle avalanche connection[J]. Earth and Planetary Science Letters, 163(1): 97−108.

    [26]

    Condie K C. 2000. Episodic continental growth models: Afterthoughts and extensions[J]. Tectonophysics, 322(1): 153−162.

    [27]

    Condie K C, Kröner A. 2008. When did plate tectonics begin? Evidence from the geologic record[M]. Boulder: Geological Society of America, 440: 281−294.

    [28]

    Condie K C, Aster R, van Hunen J. 2016. A great thermal divergence in the mantle beginning 2.5 Ga: Geochemical constraints from greenstone basalts and komatiites[J]. Geoscience Frontiers, 7(4): 543−553. doi: 10.1016/j.gsf.2016.01.006

    [29]

    Condie K C, O'Neill C, Aster R C. 2009. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth[J]. Earth and Planetary Science Letters, 282(1): 294−298.

    [30]

    Cui Z X, Xia X P, Huang X L, et al. 2022. Meso− to Neoarchean geodynamic transition of the North China Craton indicated by H2O−in−zircon for TTG suite[J]. Precambrian Research, 371: 106574. doi: 10.1016/j.precamres.2022.106574

    [31]

    Davies G F. 1992. On the emergence of plate tectonics[J]. Geology, 20(11): 963−966. doi: 10.1130/0091-7613(1992)020<0963:OTEOPT>2.3.CO;2

    [32]

    Diwu C R. 2021. Crustal growth and evolution of Archean continental crust in the southern North China Craton[J]. Acta Petrologica Sinica. 37(2): 317−340 (in Chinese with English abstract).

    [33]

    Drummond M S, Defant M J. 1990. A model for trondhjemite−tonalite−dacite genesis and crustal growth via slab melting: Archean to modern comparisons[J]. Journal of Geophysical Research, 95(B13): 21503−21521. doi: 10.1029/JB095iB13p21503

    [34]

    Festa A, Barbero E, Remitti F, et al. 2022. Mélanges and chaotic rock units: Implications for exhumed subduction complexes and orogenic belts[J]. Geosystems and Geoenvironment, 1(2): 100030. doi: 10.1016/j.geogeo.2022.100030

    [35]

    Fischer R, Gerya T. 2016. Regimes of subduction and lithospheric dynamics in the Precambrian: 3D thermomechanical modelling[J]. Gondwana Research, 37(B7): 53−70.

    [36]

    Foley S, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones[J]. Nature, 417: 837−840. doi: 10.1038/nature00799

    [37]

    Fu J H, Liu S W, Zhang B, et al. 2019. A Neoarchean K−rich granitoid belt in the northern North China Craton[J]. Precambrian Research, 328: 193−216. doi: 10.1016/j.precamres.2019.04.021

    [38]

    Furnes H, Wit M J, Staudigel H, et al. 2007. A vestige of Earth's oldest ophiolite[J]. Science, 315: 1704−1707.

    [39]

    Furnes H, Dilek Y. 2021. Archean versus Phanerozoic oceanic crust formation and tectonics: Ophiolites through time[J]. Geosystems and Geoenvironment, 1(1): 100004.

    [40]

    Geng Y S, Du L L, Ren L D. 2012. Growth and reworking of the early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes[J]. Gondwana Research, 21(2): 517−529.

    [41]

    Green E C R, White R, Diener J F A, et al. 2016. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks[J]. Journal of Metamorphic Geology, 34(9): 845−869. doi: 10.1111/jmg.12211

    [42]

    Guiraud M, Powell R, Rebay G. 2001. H2O in metamorphism and unexpected behaviour in the preservation of metamorphc mineral assemblages[J]. Journal of Metamorphic Geology, 19: 445−454. doi: 10.1046/j.0263-4929.2001.00320.x

    [43]

    Guitreau M. 2012. Les isotopes de l'hafnium dans les TTG et leurs zircons: témoins de la croissance des premiers continents[Z]. Lyon: Ecole normale supérieure de lyon.

    [44]

    Guo L S, Liu S W, Liu Y L, et al. 2008. Zircon Hf isotopic features of TTG gneisses and formation environment of Precambrian Sushui complex in Zhongtiao mountains[J]. Acta Petrologica Sinica, 24(1): 139−148 (in Chinese with English abstract).

    [45]

    Hamilton W B. 2011. Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated[J]. Lithos, 123(1): 1−20.

    [46]

    Hartnady M I H, Johnson T, Schorn S, et al. 2022. Fluid processes in the early Earth and the growth of continents[J]. Earth and Planetary Science Letters, 594(B1): 117695.

    [47]

    Heilimo E, Halla J, Hölttä P. 2010. Discrimination and origin of the sanukitoid series: Geochemical constraints from the Neoarchean western Karelian Province (Finland)[J]. Lithos, 115(1): 27−39.

    [48]

    Herzberg C, Condie K C, Korenaga J. 2010. Thermal history of the Earth and its petrological expression[J]. Earth and Planetary Science Letters, 292(1): 79−88.

    [49]

    Holder R M, Viete D R, Brown M, et al. 2019. Metamorphism and the evolution of plate tectonics[J]. Nature, 572(7769): 378−381. doi: 10.1038/s41586-019-1462-2

    [50]

    Holland T J B, Powell R. 2003. Activity−composition relations for phases in petrological calculations: an asymmetric multicomponent formulation[J]. Contributions to Mineralogy and Petrology, 145: 492−501. doi: 10.1007/s00410-003-0464-z

    [51]

    Holland T J B, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 29: 333−383. doi: 10.1111/j.1525-1314.2010.00923.x

    [52]

    Huang B, Kusky T M, Johnson T, et al. 2020. Paired metamorphism in the Neoarchean: A record of accretionary−to−collisional orogenesis in the North China Craton[J]. Earth and Planetary Science Letters, 543: 116355. doi: 10.1016/j.jpgl.2020.116355

    [53]

    Huang B, Johnson T, Wilde S A, et al. 2022. Coexisting divergent and convergent plate boundary assemblages indicate plate tectonics in the Neoarchean[J]. Nature Communications, 13(1): 6450. doi: 10.1038/s41467-022-34214-8

    [54]

    Huang D M, Dong C Y, Wan Y S. 2020. Late Neoarchean−Late Paleoproterozoic magmato−tectonothermal events in the Xiaoqinling Area, southern margin of the North China Craton, as documented by zircon U−Pb−Hf isotope analyses and whole−rock geochemistry[J]. Earth Science, 45(9): 3330−3340(in Chinese with English abstract).

    [55]

    Huang J F, Zheng C Q, Liang C Y, et al. 2024. Petrogenetic mechanism of Neoarchean charnockitic gneiss in Tangtu, northern Liaoning Province[J]. Geological Bulletin of China. DOI: 10.12097/gbc.2024.08.007(in Chinese with English abstract).

    [56]

    Jahn B M, Glikson A Y, Peucat J J, et al. 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: Implications for the early crustal evolution[J]. Geochimica et Cosmochimica Acta, 45(9): 1633−1652. doi: 10.1016/S0016-7037(81)80002-6

    [57]

    Jenner F E, Bennett V C, Nutman A P, et al. 2009. Evidence for subduction at 3.8 Ga: Geochemistry of arc−like metabasalts from the southern edge of the Isua Supracrustal Belt[J]. Chemical Geology, 261(1): 83−98.

    [58]

    Jiao D C, Qu J F. 2023. Warm subduction−driven formation of ~2.7 Ga TTG gneiss in the Zhongtiao Mountains, Southern North China Craton: Constraints from phase equilibrium modeling[J]. The Journal of Geology, 131(2): 113−126. doi: 10.1086/727973

    [59]

    Jin W, Tian Y, Wang J, et al. 2022. New discovery of Neoarchean inherited zircon (2.65 Ga) in the Cretaceous granite from the North Dabie[J]. Geology in China, 49(1): 341−343(in Chinese with English abstract).

    [60]

    Kamber B S. 2015. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic[J]. Precambrian Research, 258: 48−82. doi: 10.1016/j.precamres.2014.12.007

    [61]

    Kankanamge D G J, Moore W B. 2019. A parameterization for volcanic heat flux in Heat Pipe Planets[J]. Journal of Geophysical Research: Planets, 124(1): 114−127. doi: 10.1029/2018JE005800

    [62]

    Korenaga J. 2012. Initiation and evolution of plate tectonics on Earth: Theories and observations[J]. Annual Review of Earth and Planetary Sciences, 41: 177−151.

    [63]

    Kusky T M, Li J H. 2003. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 22(4): 383−397. doi: 10.1016/S1367-9120(03)00071-3

    [64]

    Li L, Zhai W J. 2019. Geochemistry and Petrogenesis of the ca. 2.5 Ga High−K Granitoids in the Southern North China Craton[J]. Journal of Earth Science, 30(3/4): 1−19.

    [65]

    Li S Z, Dai L M, Zhang Z, et al. 2015. Precambrian geodynamics (III): General features of Precambrian geology[J]. Geoscience Frontiers, 22(6): 27−45(in Chinese with English abstract).

    [66]

    Li X Y, Zhang C, Almeev R, et al. 2020. GeoBalance: An Excel VBA program for mass balance calculation in geosciences[J]. Geochemistry, 80(2): 125629. doi: 10.1016/j.chemer.2020.125629

    [67]

    Liou P, Wang Z C, Mitchell R N, et al. 2022. Fe isotopic evidence that “high pressure” TTGs formed at low pressure[J]. Earth and Planetary Science Letters, 592: 117645. doi: 10.1016/j.jpgl.2022.117645

    [68]

    Liu B, Ma J X, Li P F, et al. 2024. First boron isotopes in the southern Jilin TTG series uncover a Neoarchean oceanic arc in the eastern North China Craton[J]. Gondwana Research. DOI: https://doi.org/10.1016/j.gr.2024.11.008.

    [69]

    Liu L, Kang S S, Liu H, et al. 2023. Formation and evolution of Archean TTG in southeastern North China Craton[J]. Geological Review, 69(1): 49−75 (in Chinese with English abstract).

    [70]

    Liu C R, Xue W Y, Li J R, et al. 2007. A regional geological survey report with the number I49C001003 and a scale of 1∶250,000 for Houma City[DS]. National Geological Archives of China, DOI:10.35080/n01.c.123489 (in Chinese).

    [71]

    Liu S W, Wang W, Bai X, et al. 2018. Lithological assemblages of Archean Meta−Igneous Rocks in Eastern Hebei−Western Liaoning Provinces of North China Craton, and Their Geodynamic Implications[J]. Earth Science, 43(1): 44−56(in Chinese with English abstract).

    [72]

    Martin E, Martin H, Sigmarsson O. 2008. Could Iceland be a modern analogue for the Earth’s early continental crust[J]. Terra Nova, 20(6): 463−468. doi: 10.1111/j.1365-3121.2008.00839.x

    [73]

    Martin H. 1987. Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from Eastern Finland: Major and trace element geochemistry[J]. Journal of Petrology, 28(5): 921−953. doi: 10.1093/petrology/28.5.921

    [74]

    Martin H. 1999. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 46(3): 411−429. doi: 10.1016/S0024-4937(98)00076-0

    [75]

    Martin H, Moyen J. 2002. Secular changes in TTG composition as markers of the progressive cooling of the Earth[J]. Geology, 30(4): 319−322. doi: 10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO;2

    [76]

    Martin H, Moyen J, Guitreau M, et al. 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones[J]. Lithos, 198−199: 1−13. doi: 10.1016/j.lithos.2014.02.017

    [77]

    Moyen J, Stevens G, Kisters A. 2006. Record of Mid−Archaean subduction from metamorphism in the Barberton Terrain, South Africa[J]. Nature, 442(7102): 559−562. doi: 10.1038/nature04972

    [78]

    Moyen J. 2011. The composite Archaean grey gneisses: Petrological significance, and evidence for a non−unique tectonic setting for Archaean crustal growth[J]. Lithos, 123(1): 21−36.

    [79]

    Moyen J, Martin H. 2012. Forty years of TTG research[J]. Lithos, 148: 312−336. doi: 10.1016/j.lithos.2012.06.010

    [80]

    Nair R, Chacko T. 2008. Role of oceanic plateaus in the initiation of subduction and origin of continental crust[J]. Geology, 36(7): 583−586. doi: 10.1130/G24773A.1

    [81]

    Palin R M, White R, Green E C R. 2016. Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling[J]. Precambrian Research, 287: 73−90. doi: 10.1016/j.precamres.2016.11.001

    [82]

    Palin R M, Santosh M. 2021. Plate tectonics: What, where, why, and when?[J]. Gondwana Research, 100(10): 3−24.

    [83]

    Powell R, Holland T J B. 1988. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program[J]. Journal of Metamorphic Geology, 6(2): 173−204. doi: 10.1111/j.1525-1314.1988.tb00415.x

    [84]

    Prouteau G, Scaillet B, Pichavant M, et al. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust[J]. Nature, 410(6825): 197−200. doi: 10.1038/35065583

    [85]

    Rapp R P, Watson E B, Miller C F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites[J]. Precambrian Research, 51(1): 1−25.

    [86]

    Rapp R P, Norman M, Laporte D, et al. 2010. Continent formation in the Archean and chemical evolution of the Cratonic Lithosphere: Mel−rock reaction experiments at 3−4 GPa and petrogenesis of Archean Mg−diorites[J]. Journal of Petrology, 51(6): 1237−1266. doi: 10.1093/petrology/egq017

    [87]

    Rollinson H. 1993. Using geochemical data: Evaluation, presentation, interpretation[M]. London: Routledge.

    [88]

    Rozel A B, Golabek G J, Jain C, et al. 2017. Continental crust formation on early Earth controlled by intrusive magmatism[J]. Nature, 545(7654): 332−335. doi: 10.1038/nature22042

    [89]

    Shan H X, Zhai M G, Lu X P. 2022. Petrogenesis delineation of the felsic intrusive rocks in the eastern North China Craton: Implications for crustal evolution and geodynamic regimes[J]. Lithos, 422/423(5): 106728.

    [90]

    Sizova E, Gerya T, Brown M, et al. 2010. Subduction styles in the Precambrian: Insight from numerical experiments[J]. Lithos, 116(3): 209−229.

    [91]

    Smithies R H. 2000. The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite[J]. Earth and Planetary Science Letters, 182(1): 115−125. doi: 10.1016/S0012-821X(00)00236-3

    [92]

    Sotiriou P, Polat A, Windley B, et al. 2023. Temporal variations in the incompatible trace element systematics of Archean TTGs: Implications for crustal growth and tectonic processes in the early Earth[J]. Earth−Science Reviews, 236: 104274. doi: 10.1016/j.earscirev.2022.104274

    [93]

    Springer W, Seck H A. 1997. Partial fusion of basic granulites at 5 to 15 kbar: Implications for the origin of TTG magmas[J]. Contributions to Mineralogy and Petrology, 127(1): 30−45.

    [94]

    Stein M, Hofmann A W. 1994. Mantle plumes and episodic crustal growth[J]. Nature, 372(6501): 63−68. doi: 10.1038/372063a0

    [95]

    Stern R J. 2006. Evidence from ophiolites, blueschists, and ultrahigh−pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time: Comment and Reply[J]. Geology, 34(1): 105−106.

    [96]

    Stern R J, Gerya T, Tackley P J. 2018. Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids[J]. Geoscience Frontiers, 9(1): 103−119. doi: 10.1016/j.gsf.2017.06.004

    [97]

    Sun D Z, Li H M, Lin Y X, et al. 1991. Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao mountains[J]. Acta Geologica Sinica, 3: 216−231 (in Chinese with English abstract).

    [98]

    Sun G Z, Liu S W, Wang M J, et al. 2020. Complex Neoarchean mantle metasomatism: Evidence from sanukitoid diorites−monzodiorites−granodiorites in the northeastern North China Craton[J]. Precambrian Research, 342(3/4): 105692.

    [99]

    Sun G Z. 2021. Meso− to Neoarchean granitoids and lithospheric thermal state in the Eastern North China Craton [D]. Doctor Thesis of Peking University (China) (in Chinese with English abstract).

    [100]

    Sun Y, Yu Z P. 1988. Geochemistry of archean Shushui complex[J]. Geochimica, 4: 319−325 (in Chinese with English abstract).

    [101]

    Tamblyn R, Hermann J, Hasterok D, et al. 2023. Hydrated komatiites as a source of water for TTG formation in the Archean[J]. Earth and Planetary Science Letters, 603: 117982. doi: 10.1016/j.jpgl.2022.117982

    [102]

    Tang C A, Webb A A G, Moore W B, et al. 2020. Breaking Earth’s shell into a global plate network[J]. Nature Communications, 11(1): 3621. doi: 10.1038/s41467-020-17480-2

    [103]

    Tang L Z. 1996. Division and Correlation of Archean Metamorphic Rock Units in the South−West of Zhongtiao Mountains[J]. North China Journal of Geology and Mineral Resources, 3: 131−136 (in Chinese with English abstract).

    [104]

    Tian G, Yang M H, Song L J, et al. 2023. Late Neoarchean plate subduction in Western North China Craton: Evidence from ca. 2.51 Ga to 2.46 Ga basement rocks in Northern Ordos Basin[J]. Precambrian Research, 387: 106979. doi: 10.1016/j.precamres.2023.106979

    [105]

    Tian W, Liu S W, Liu C H, et al. 2005. Zircon chronology and geochemistry of a series of rocks in the Zhongtiao Mountain Sushui Hybrid Rocks and their geological significance[J]. Progress in Natural Science. 12: 1476−1484 (in Chinese).

    [106]

    van Hunen J, Moyen J. 2012. Archean Subduction: Fact or Fiction?[J]. Annual Review of Earth and Planetary Sciences, 40(1): 195−219. doi: 10.1146/annurev-earth-042711-105255

    [107]

    van Hunen J, van den Berg A P. 2008. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere[J]. Lithos, 103(1): 217−235.

    [108]

    Wan Y S, Wang S J, Liu D Y, et al. 2012. Redefinition of depositional ages of Neoarchean supracrustal rocks in western Shandong Province, China: SHRIMP U–Pb zircon dating[J]. Gondwana Research, 21(4): 768−784. doi: 10.1016/j.gr.2011.05.017

    [109]

    Wan Y S, Xie S W, Yang C H, et al. 2014. Early Neoarchean (~2.7 Ga) tectono−thermal events in the North China Craton: A synthesis[J]. Precambrian Research, 247: 45−63. doi: 10.1016/j.precamres.2014.03.019

    [110]

    Wan Y S, Dong C Y, Ren P, et al. 2017. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: A synthesis[J]. Acta Petrologica Sinica; 33(5): 1405−1419(in Chinese with English abstract).

    [111]

    Wang C, Song S G, Su L, et al. 2022. Crustal maturation and cratonization in response to Neoarchean continental collision: The Suizhong granitic belt, North China Craton[J]. Precambrian Research, 377: 106732. doi: 10.1016/j.precamres.2022.106732

    [112]

    Wang W, Liu S W, Santosh M, et al. 2015. Neoarchean intra−oceanic arc system in the Western Liaoning Province: Implications for Early Precambrian crustal evolution in the Eastern Block of the North China Craton[J]. Earth−Science Reviews, 150: 329−364. doi: 10.1016/j.earscirev.2015.08.002

    [113]

    Wang X, Zhang J, Liu J, et al. 2024. Geochemistry and geochronology of the TTG−sanukitoid suite in the Zhulagou area: Constraints on the Neoarchean crustal evolution of the western North China Craton[J]. Lithos, 478−479: 107636. doi: 10.1016/j.lithos.2024.107636

    [114]

    Wang Y Q, Dong C Y, Wilde S A, et al. 2025. The Neoarchean granitoids in the Yanlingguan area, western Shandong, North China Craton record the transition from TTG to K−rich granitoids[J]. Precambrian Research, 417: 107633. doi: 10.1016/j.precamres.2024.107633

    [115]

    White R, Palin R M, Green E C R. 2016. High−grade metamorphism and partial melting in Archean composite grey gneiss complexes[J]. Journal of Metamorphic Geology, 35: 181−195.

    [116]

    White R, Powell R, Clarke G. 2002. The Interpretation of reaction textures in Fe−rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibria calculations in the system K2O−FeO−MgO−Al2O3−SiO2−H2O−TiO2−Fe2O3[J]. Journal of Metamorphic Geology, 20(1): 41−55. doi: 10.1046/j.0263-4929.2001.00349.x

    [117]

    White R, Powell R, Holland T J B, et al. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O−FeO−MgO−Al2O3−SiO2−H2O−TiO2−Fe2O3[J]. Journal of Metamorphic Geology, 18: 497−512. doi: 10.1046/j.1525-1314.2000.00269.x

    [118]

    Wicander R, Monroe J S. 2007. Historical geology: evolution of Earth and life through time[M]. Stanford: Cengage Learning.

    [119]

    Wiemer D, Schrank C E, Murphy D T, et al. 2018. Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns[J]. Nature Geoscience, 11(5): 357−361. doi: 10.1038/s41561-018-0105-9

    [120]

    Willbold M, Hegner E, Stracke A, et al. 2009. Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation[J]. Earth and Planetary Science Letters, 279(1): 44−52.

    [121]

    Windley B F, Kusky T M, Polat A. 2021. Onset of plate tectonics by the Eoarchean[J]. Precambrian Research, 352: 105980. doi: 10.1016/j.precamres.2020.105980

    [122]

    Winther K T, Newton R C. 1991. Experimental melting of hydrous low−K tholeiite: evidence onthe origin of Archaean cratons[J]. Copenhagen: Bulletin of the Geological Society of Denmark, 33: 213−288.

    [123]

    Wolf M B, Wyllie P J. 1994. Dehydration−melting of amphibolite at 10 kbar: the effects of temperature and time[J]. Contributions to Mineralogy & Petrology, 115(4): 369−383.

    [124]

    Wu Z Q, Zhao G C. 2022. Hydrous plumes in the Archean and the origin of continents[J]. Science Bulletin, 67(20): 2023−2025. doi: 10.1016/j.scib.2022.09.016

    [125]

    Xiang H, Connolly J. 2021. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria[J]. Journal of Metamorphic Geology, 40(2): 243−255.

    [126]

    Xiong X, Keppler H, Audetat A, et al. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt[J]. Geochimica et Cosmochimica Acta, 75(7): 1673−1692. doi: 10.1016/j.gca.2010.06.039

    [127]

    Xu X F, Gou L L, Long X P, et al. 2021. Phase equilibrium and trace−element modeling of the partial melting of basaltic rocks under low pressure: Implications for plagiogranite generation[J]. Journal of Petrology, 62(11): 1−29.

    [128]

    Yang C H, Du L L, Song H X, et al. 2020. Geochronology and petrogenesis of Neoarchean Yanzhuang syenogranites from Sushui Complex in the Zhongtiao Mountains: Implications for the crustal evolution of the North China Craton[J]. Earth Science, 45(9): 3161−3178 (in Chinese with English abstract).

    [129]

    Zhai M G, Bian A G. 2000. North China craton, late Neo−Archean supercontinent stitching and late Paleoproterozoic−MesoProterozoic splitting[J]. Science in China, 30(S1): 129−137 (in Chinese).

    [130]

    Zhai M G, Santosh M. 2011. The early Precambrian odyssey of the North China Craton: A synoptic overview[J]. Gondwana Research, 20(1): 6−25. doi: 10.1016/j.gr.2011.02.005

    [131]

    Zhai M G. 2015. Multi−stage crustal growth and cratonization of the North China Craton[J]. Geoscience Frontiers, 5(4): 457−469.

    [132]

    Zhai M G, Peng P. 2020a. Origin of early continents and beginning of plate tectonics[J]. Science Bulletin, 65(12): 970−973. doi: 10.1016/j.scib.2020.03.022

    [133]

    Zhai M G, Zhao L, Zhu X Y, et al. 2020b. Review and overview for the frontier hotspot: Early continents and start of plate tectonics[J]. Acta Petrologica Sinica, 36(8): 2249−2275. doi: 10.18654/1000-0569/2020.08.01

    [134]

    Zhang C, Holtz F, Koepke J, et al. 2013. Constraints from experimental melting of amphibolite on the depth of formation of garnet−rich restites, and implications for models of Early Archean crustal growth[J]. Precambrian Research, 231: 206−217. doi: 10.1016/j.precamres.2013.03.004

    [135]

    Zhang F, Liu J T. 1998. Greenstone petro−tectonic frameworkof cratonic basement, North China [C]. Beijing: Chinese Journal of Geophysics.

    [136]

    Zhang G W, Bai Y B, Sun Y, et al. 1985. Composition and evolution of the archaean crust in central Henan, China[J]. Precambrian Research, 27(1): 7−35.

    [137]

    Zhang R Y. 2015. The composition and evolution of the Sushui complex in the Zhongtiao Mountains, the south of North China Craton[D]. Doctor Thesis of Northwest University (China) (in Chinese with English abstract).

    [138]

    Zhang Z J, Kusky T M, Gao M, et al. 2023. Spatio−temporal analysis of big data sets of detrital zircon U−Pb geochronology and Hf isotope data: Tests of tectonic models for the Precambrian evolution of the North China Craton[J]. Earth−Science Reviews, 239(3): 104372.

    [139]

    Zhao B, Wang D H, Hou K J, et al. 2012. Isochronology study on Sushui Complex in Zhongtiao Mountains and its geological significance[J]. Journal of Earth Sciences and Environment, 34(1): 1−8.

    [140]

    Zhao G C, Wilde S A, Cawood P A, et al. 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting[J]. International Geology Review, 40(8): 706−721. doi: 10.1080/00206819809465233

    [141]

    Zhao G C, Zhai M G. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications[J]. Gondwana Research, 23(4): 1207−1240. doi: 10.1016/j.gr.2012.08.016

    [142]

    Zhao G C, Zhang G W. 2021. Origin of continents[J]. Acta Geologica Sinica. 95(1): 1−19 (in Chinese with English abstract).

    [143]

    Zheng Y F, Chen R X. 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins[J]. Journal of Asian Earth Sciences, 145: 46−73. doi: 10.1016/j.jseaes.2017.03.009

    [144]

    Zheng Y F, Zhao G C. 2020. Two styles of plate tectonics in Earth’s history[J]. Science Bulletin, 65(4): 329−334. doi: 10.1016/j.scib.2018.12.029

    [145]

    Zhou Y Y, Zhao T P, Zhai M G, et al. 2014. Petrogenesis of the Archean tonalite–trondhjemite–granodiorite (TTG) and granites in the Lushan area, southern margin of the North China Craton: Implications for crustal accretion and transformation[J]. Precambrian Research, 255(2): 514−537.

    [146]

    Zhu X Y, Zhai M G, Chen F, et al. 2013. ~2.7 Ga Crustal Growth in the North China Craton: Evidence from Zircon U−Pb Ages and Hf Isotopes of the Sushui Complex in the Zhongtiao Terrane[J]. The Journal of Geology, 121(3): 239−254. doi: 10.1086/669977

    [147]

    白瑾. 1993. 华北陆台北缘前寒武纪地质及铅锌成矿作用[M]. 北京: 地质出版社.

    [148]

    白瑾, 戴凤岩, 颜耀阳. 1997. 中条山前寒武纪地壳演化[J]. 地学前缘, Z2: 285−286.

    [149]

    陈丽梅, 刘平华, 杜利林, 等. 2023. 辽宁弓长岭鞍山群时代与物源——来自石榴十字云母片岩碎屑锆石U−Pb−Hf同位素特征与稀土元素组成的约束[J]. 地质通报, 42(12): 2037−2059.

    [150]

    第五春荣. 2021. 华北克拉通南部太古宙大陆地壳的生长和演化[J]. 岩石学报, 37(2): 317−340.

    [151]

    郭丽爽, 刘树文, 刘玉琳, 等. 2008. 中条山涑水杂岩中TTG片麻岩的锆石Hf同位素特征及其形成环境[J]. 岩石学报, 24(1): 139−148.

    [152]

    黄道袤, 董春艳, 万渝生. 2020. 华北克拉通南缘小秦岭地区新太古代晚期-古元古代晚期岩浆构造热事件: 锆石U-Pb-Hf同位素和地球化学证据[J]. 地球科学, 45(9): 3330−3340.

    [153]

    黄金凤, 郑常青, 梁琛岳, 等. 2024. 辽北汤图新太古代紫苏花岗质片麻岩成因[J/OL]. 地质通报. DOI: 10.12097/gbc.2024.08.007.

    [154]

    金巍, 田洋, 王晶, 等. 2022. 北大别白垩纪花岗岩中发现2.65 Ga新太古代继承锆石[J]. 中国地质, 49(1): 341−343.

    [155]

    李三忠, 戴黎明, 张臻, 等. 2015. 前寒武纪地球动力学(Ⅲ): 前寒武纪地质基本特征[J]. 地学前缘, 22(6): 27−45.

    [156]

    刘磊, 康诗胜, 刘恒, 等. 2023. 华北克拉通东南部太古宙英云闪长岩−奥长花岗岩−花岗闪长岩形成及演化[J]. 地质论评, 69(1): 49−75.

    [157]

    刘成如, 薛文彦, 李建荣, 等. 2007. 侯马市幅I49C001003 1/25万区域地质调查报告[DS]. 全国地质资料馆. DOI:10.35080/n01.c.123489.

    [158]

    刘树文, 王伟, 白翔, 等. 2018. 冀东-辽西太古宙火成岩岩石组合和动力学意义[J]. 地球科学, 43(1): 44−56.

    [159]

    孙大中, 李惠民, 林源贤, 等. 1991. 中条山前寒武纪年代学、年代构造格架和年代地壳结构模式的研究[J]. 地质学报, 3: 216−231.

    [160]

    孙国正. 2022. 华北克拉通东部中—新太古代花岗岩与岩石圈热状态研究[D]. 北京大学博士学位论文.

    [161]

    孙勇, 于在平. 1988. 涑水杂岩的地球化学特征[J]. 地球化学, 4: 319−325.

    [162]

    唐立忠. 1996. 中条山西南段太古宙变质岩石单位的划分与对比[J]. 华北地质矿产杂志, 3: 131−136.

    [163]

    田伟, 刘树文, 刘超辉, 等. 2005. 中条山涑水杂岩中TTG系列岩石的锆石SHRIMP年代学和地球化学及其地质意义[J]. 自然科学进展, 12: 1476−1484.

    [164]

    万渝生, 董春艳, 任鹏, 等. 2017. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化: 综述[J]. 岩石学报, 33(5): 1405−1419.

    [165]

    杨崇辉, 杜利林, 宋会侠, 等. 2020. 中条山地区涑水杂岩新太古代烟庄正长花岗岩年龄及成因: 对华北克拉通地壳演化的制约[J]. 地球科学, 45(9): 3161−3178.

    [166]

    翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解[J]. 中国科学(D辑: 地球科学), S1: 129−137.

    [167]

    张瑞英. 2015. 华北克拉通南部中条山地区涑水杂岩的组成与演化[D]. 西北大学博士学位论文.

    [168]

    赵斌, 王登红, 侯可军, 等. 2012. 中条山涑水杂岩的同位素年代学研究及其地质意义[J]. 地球科学与环境学报, 34(1): 1−8.

    [169]

    赵国春, 张国伟. 2021. 大陆的起源[J]. 地质学报, 95(1): 1−19.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  190
  • PDF下载数:  51
  • 施引文献:  0
出版历程
收稿日期:  2024-07-19
修回日期:  2024-10-26
刊出日期:  2024-12-15

目录