Numerical simulation study on the influence of primary mineral components on CO2 geological trapping forms
-
摘要:
研究目的 日益加剧的全球气候变化促使CO2捕集与封存(CCS)技术的实施势在必行。CO2-水岩相互作用机理和过程不仅直接影响CO2储层的安全性和稳定性,还决定了CO2的注入效率和储存量。
研究方法 基于中国首个全流程咸水层CCS示范工程,采用TOUGHREACT ECO2N构建内蒙古神华CCS储层长时间序列的水-CO2-热-化学反应耦合模型,研究储集层原生矿物组分对CO2不同捕获机制转化的影响。
研究结果 鄂尔多斯盆地深部咸水储层有利于CO2的矿化封存,1000年时的矿化封存量达总注入量的64.02%。储集层中方解石、奥长石、钠长石、绿泥石和高岭石均发生不同程度的溶解,生成蒙脱石、铁白云石和片钠铝石沉淀。铁白云石是主要的固碳矿物,水气两相区的封存量最大,最大可达15 kg/m3。奥长石、钠长石和方解石的含量变化对气体和溶解封存的影响较小,对矿化封存无影响。绿泥石的含量变化对3种封存形式影响较大,当绿泥石初始体积分数从1.9%升高到8.4%时,1000年时矿化封存量从7×108 kg升高至1.6×109 kg,变化量达到9×108 kg。
结论 原生矿物组分种类和含量均会影响CO2不同捕获机制的封存量。研究成果可作为优化现有CO2封存工程设计和合理评价未来CO2封存区选址的依据,助力实现中国碳中和目标。
Abstract:Objective The increasingly intensifying global climatic change necessitates carbon capture and storage (also referred to as CCS). The mechanisms and processes of CO2−water−rock interactions not only directly affect the safety and stability of CO2 reservoirs but also determine the injection efficiency and storage capacity of CO2.
Methods Based on China's first whole−process CCS demonstration project in saline aquifers and using the TOUGHREACT ECO2N software, this study constructed a water−CO2−thermal−chemical reaction coupling model for long−term CCS in reservoirs at the Shenhua CCS demonstration site.
Results Using this model, this study investigated the influence of primary mineral components in reservoirs on the transformation of different CO2 capture mechanisms. The results indicate that the deep saline aquifers in the Ordos Basin are favorable for CO2 storage capacity through the mineralization mechanism mineral trapping, with a storage capacity reaching up to 64.02% of the total injectivity at 1000 a. The calcite, orthoclase, albite, chlorite, and kaolinite in the reservoir undergo varying degrees of dissolution, resulting in the precipitation of montmorillonite, iron−bearing dolomite, and analcime. Iron dolomite is the main carbon fixing mineral, with the highest storage capacity in the water gas two−phase zone, reaching up to 15 kg/m3. The changes in the content of plagioclase, albite, and calcite have little impact on gas and dissolution trapping, and have no effect on mineralization trapping. The variation in the content of chlorite has a significant impact on the three types of trapping forms. When the initial volume fraction of chlorite increases from 1.9% to 8.4%, the mineralization trapping amount increases from 7×108 kg to 1.6×109 kg at 1000 a, with a change of 9×108 kg.
Conclusions The types and contents of primary mineral components can affect the sequestration capacity of CO2 by different trapping mechanisms. The results of this study can serve as a reference for the design optimization of existing CO2 storage projects and the proper assessment of the siting of future CO2 storage, assisting in the achievement of China's carbon neutrality target.
-
-
表 1 子储层孔渗特征
Table 1. Porosity and permeability of sub reservoir
地层 子储层编号 厚度/m 孔隙度/% 渗透率/10−15 m2 刘家沟组 1 13 10.0 2.81 石千峰组 2 5 12.4 5.74 3 6 9.3 1.57 4 5 9.6 1.77 5 4 10.2 2.36 6 7 11.2 3.52 7 7 12.9 6.58 石盒子组 8 11 12.6 5.99 9 9 12.0 4.57 10 12 12.2 5.03 山西组 11 6 12.5 5.7 12 8 11.3 4.48 表 2 储层化学组分
Table 2. Chemical composition of reservoir
地层 化学组分 SiO2/% TFe/% (Mg+Ca)/% (Al+Na+K)/% 刘家沟组 60~69 6~8 4~6 15~20 石千峰组 60~72 5~7 4.5~8.5 15~18 石盒子组 59~68 7~13 3~4 17~18 山西组 62.52 9.25 2.35 20.46 表 3 方程中的参数含义
Table 3. The meaning of parameters in the equation
参数 含义 单位 参数 含义 单位 M 物质总量 kg/m3 λ 热传导系数 W/(m·K) F 质量或能量通量 kg/(m2·s) k 渗透率 m2 P 压力 bar g 重力加速度 m/s2 q 源汇项 kg/(m3·s) 下标 含义 S 饱和度 - g 气相 X 质量分数 - l 液相 T 温度 oC s 固相 ρ 密度 kg/m3 w 水 $ \varphi $ 孔隙度 - c CO2 U 内能 J/kg r 化学反应 kr 相对渗透率 - 表 4 基础方案地质参数
Table 4. Geological parameters of the base-case
参数 取值 渗透率/m2 4×10−15 孔隙度 0.11 岩石压缩系数/Pa−1 4.5×10−10 岩石密度/(kg·m−3) 2600 温度/oC 65 表 5 矿物动力学参数及基础方案原生矿物体积分数
Table 5. Mineral kinetic parameters and volume fraction of primary minerals in the base-case
矿物 初始体积分数/% A/(cm2·g−1) 动力学速率定律参数 中性机制 酸性机制 碱性机制 k25 Ea k25 Ea n(H+) k25 Ea n(H+) 初始: 方解石 7.2 石英 22.8 9.8 1.023×10−14 87.70 高岭石 10.0 151.6 6.918×10−14 22.20 4.898×10−12 65.9 0.777 8.913×10−18 17.9 −0.472 伊利石 14.9 151.6 1.660×10−13 35.00 1.047×10−11 23.6 0.340 3.020×10−17 58.9 −0.400 奥长石 10.0 9.8 1.445×10−13 69.80 2.138×10−11 65.0 0.457 钾长石 10.0 9.8 3.890×10−13 38.00 8.710×10−11 51.7 0.500 6.310×10−22 94.1 −0.823 钠长石 5.0 9.8 2.754×10−13 69.80 6.918×10−11 65.0 0.457 2.512×10−16 71.0 −0.572 钠蒙脱石 7.7 151.6 1.660×10−13 35.00 1.047×10−11 23.6 0.340 3.020×10−17 58.9 −0.400 钙蒙脱石 7.7 151.6 1.660×10−13 35.00 1.047×10−11 23.6 0.340 3.020×10−17 58.9 −0.400 绿泥石 4.7 9.8 3.020×10−13 88.00 7.762×10−12 88.0 0.500 生成: 片钠铝石 9.8 1.260×10−9 62.76 6.457×10−4 36.1 0.500 铁白云石 9.8 1.260×10−9 62.76 6.457×10−4 36.1 0.500 白云石 9.8 2.951×10−8 52.20 6.457×10−4 36.1 0.500 菱铁矿 9.8 1.260×10−9 62.76 6.457×10−4 36.1 0.500 菱镁矿 9.8 4.571×10−10 23.50 4.169×10−7 14.4 1.000 注:①反应速率常数均为溶解反应。②A是比表面积;k25为标准温度(25℃)下的反应速率常数,单位为mol/(m2·s);Ea为活化能,单位为kJ/mol;n(H+)为指数。③酸性和碱性机制下,反应级数n基于H+确定 表 6 初始地下水化学组分
Table 6. Initial chemical composition of groundwater
水化学组分 浓度/(mol·L−1) 水化学组分 浓度/(mol·L−1) K+ 5.9×10−6 SiO2(aq) 9.4×10−4 Na+ 8.9×10−1 HCO3− 4.1×10−5 Ca2+ 5.3×10−2 SO42− 1.0×10−10 Mg2+ 1.1×10−11 AlO2− 6.1×10−7 Fe2+ 1.0×10−4 Cl− 1.0 表 7 矿物组分对封存量影响转化模拟方案
Table 7. Simulation scheme for the transformation of the impact of mineral components on storage capacity
模拟编号 方案设计 1. (base-case) 孔隙度 11.1%,渗透率4 mD,温度65oC,压力200 bar,盐度1 mol/L NaCl,初始矿物组分见表6 2. (Oligoclase-4) 奥长石体积分数变为4%,石英相应增加,其他同base-case 3. (Oligoclase-7) 奥长石体积分数变为7%,石英相应增加,其他同base-case 4. (Oligoclase-13) 奥长石体积分数变为13%,石英相应减少,其他同base-case 5. (Oligoclase-16) 奥长石体积分数变为16%,石英相应减少,其他同base-case 6. (Oligoclase-20) 奥长石体积分数变为20%,石英相应减少,其他同base-case 7. (Albite-2) 钠长石体积分数变为2%,石英相应增加,其他同base-case 8. (Albite-7) 钠长石体积分数变为7%,石英相应减少,其他同base-case 9. (Calcite-2.6) 方解石体积分数变为2.6%,石英相应增加,其他同base-case 10. (Calcite-11) 方解石体积分数变为11%,石英相应减少,其他同base-case 11. (Calcite-16.5) 方解石体积分数变为16.5%,石英相应减少,其他同base-case 12. (Chlorite-1.9) 绿泥石体积分数变为1.9%,石英相应增加,其他同base-case 13. (Chlorite-8.4) 绿泥石体积分数变为8.4%,石英相应减少,其他同base-case -
[1] Al B H, Awoyomi A, Patchigolla K, et al. 2021. A review of large−scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage[J]. Applied Energy, 287: 116510. doi: 10.1016/j.apenergy.2021.116510
[2] Al−Darweesh J, Aljawad M S, Kamal M S, et al. 2023. Water chemistry role in the stability of CO2 foam for carbon sequestration in water aquifers[J]. Gas Science and Engineering, 118: 205090. doi: 10.1016/j.jgsce.2023.205090
[3] Cai L. 2022. Pathways for electric power industry to achieve carbon emissions peak and carbon neutrality based on LEAP model: A case study of state−owned power generation enterprise in China[J]. Industrial Engineering, 170: 108334.
[4] Chehrazi M. 2022. A review on CO2 capture with chilled ammonia and CO2 utilization in urea plant[J]. Journal of CO2 Utilization, 61: 1−13.
[5] Corey A T. 1954. The interrelation between gas and oil relative permeabilities[J]. Producers Monthly, 19: 38−41.
[6] Duan W, Li C F, Chen X G, et al. 2020. Diagenetic differences caused by gas charging with different compositions in the XF13 block of the Yinggehai Basin, South China Sea[J]. AAPG Bulletin, 104(4): 735−765. doi: 10.1306/06191917331
[7] Gan M G, Lei H W, Zhang M, et al. 2024. Quantitative evaluation method of wellbore leakage risk of CO2 geological storage project based on numerical simulation[J]. Advanced Engineering Sciences, 56(1): 195−205 (in Chinese with English abstract).
[8] Gao X, Yang S, Shen B, et al. 2023. Influence of reservoir spatial heterogeneity on a multicoupling process of CO2 geological storage[J]. Energy Fuels, 37: 14991−15005. doi: 10.1021/acs.energyfuels.3c02784
[9] Gunter W D, Perkins E H, Mccann T J. 1993. Aquifer disposal of CO2−rich gases: reaction design for added capacity[J]. Energy Convers Manag, 34: 941−948. doi: 10.1016/0196-8904(93)90040-H
[10] Gunter W D, Bachu S, Benson S. 2004. The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide[J]. Geological Society, 233: 129−145. doi: 10.1144/GSL.SP.2004.233.01.09
[11] Huang S J, Xie L W, Zhang M, et al. 2004. Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 31(3): 273−281 (in Chinese with English abstract).
[12] Huq F, Haderlein S B, Cirpka O A, et al. 2015. Flow−through experiments on water−rock interactions in a sandstone caused by CO2 injection at pressures and temperatures mimicking reservoir conditions[J]. Applied Geochemistry, 58: 136−146. doi: 10.1016/j.apgeochem.2015.04.006
[13] Kharaka Y K, Thordsen J J, Hovorka S D, et al. 2009. Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Frio−I Brine Pilot test, Texas, USA. Applied Geochemistry, 24(6): 1106−1112.
[14] Krevor S, de Coninck H, Gasda S E, et al. 2023. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future[J]. Nature Reviews Earth & Environment, 4: 102−118.
[15] Lin R, Yu Z, Zhao J, et al. 2022. Experimental evaluation of tight sandstones reservoir flow characteristics under CO2−Brine−Rock multiphase interactions: A case study in the Chang 6 layer, Ordos Basin, China[J]. Fuel, 309: 122167. doi: 10.1016/j.fuel.2021.122167
[16] Marini L. 2006. Geological sequestration of carbon dioxide: thermodynamics, kinetics and reaction path modeling [M]. New York: Elsevier: 1−453.
[17] Ofori A, Engler T. 2011. Effects of CO2 sequestration on the petrophysical properties of an aquifer rock [M]. Canadian Unconventional Resources Conference. Calgary: Society of Petroleum Engineers : 1−8.
[18] O’Neill S. 2020. Global CO2 emissions level off in 2019, with a drop predicted in 2020[J]. Engineering, 6: 958−959. doi: 10.1016/j.eng.2020.07.005
[19] Osama M, Ahmad S A. 2024. CO2 sequestration in subsurface geological formations: A review of trapping mechanisms and monitoring techniques[J]. Earth−Science Reviews, 253: 104793. doi: 10.1016/j.earscirev.2024.104793
[20] Pruess K, Xu T, Apps J, et al. 2003. Numerical modeling of aquifer disposal of CO2[J]. SPE Journal, 8: 49−60. doi: 10.2118/83695-PA
[21] Tutolo B M, Luhmann A J, Kong X Z, et al. 2015. CO2 sequestration in feldspar−rich sandstone: coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties[J]. Geochimica et Cosmochimica Acta, 160: 132−154. doi: 10.1016/j.gca.2015.04.002
[22] Van G. 1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Journal of American Soil Science Society, 44: 892−898. doi: 10.2136/sssaj1980.03615995004400050002x
[23] Wang W, Xie Q, An S, et al. 2023. Pore−scale simulation of multiphase flow and reactive transport processes involved in geologic carbon sequestration[J]. Earth−Science Reviews, 247: 104602. doi: 10.1016/j.earscirev.2023.104602
[24] Wang Y, Guo C, Du C, et al. 2021. Carbon peak and carbon neutrality in China: Goals, implementation path, and prospects[J]. China Geology, 4: 720−746.
[25] Wang K R, Xu T F, Tian H L, et al. 2016. Impacts of mineralogical compositions on different trapping mechanisms during long−term CO2 storage in deep saline aquifers[J]. Acta Geotechnica, 11: 1167−1188. doi: 10.1007/s11440-015-0427-3
[26] Wei B, Zhang X, Liu J, et al. 2020. Adsorptive behaviors of supercritical CO2 in tight porous media and triggered chemical reactions with rock minerals during CO2−EOR and sequestration[J]. Chemical Engineering Journal, 381: 122577. doi: 10.1016/j.cej.2019.122577
[27] Wei Y M, Chen K, Kang J N, et al. 2022. Policy and management of carbon peaking and carbon neutrality: a literature review[J]. Engineering, 14: 52−63. doi: 10.1016/j.eng.2021.12.018
[28] Xie Q H, Wang W D, Su Y L. 2023. Pore−scale study of calcite dissolution during CO2−saturated brine injection for sequestration in carbonate aquifers[J]. Gas Science and Engineering, 114: 204978. doi: 10.1016/j.jgsce.2023.204978
[29] Xu H. 2024. Enhanced CO2 hydrate formation using hydrogen−rich stones, L−Methionine and SDS: Insights from kinetic and morphological studies[J]. Energy, 291: 130280. doi: 10.1016/j.energy.2024.130280
[30] Xu T, Pruess K. 2001. On fluid flow and mineral alteration in fractured caprock of magmatic hydrothermal systems[J]. Journal of geophysical research, 106: 2121−2138. doi: 10.1029/2000JB900356
[31] Xu T, Eric S, Nicolas S, et al. 2004a. Toughreact user’s guide: A Simulation Program for non−isothermal multiphase reactive geochemical transport in variably saturated geologic media[M]. California: Lawrence Berkeley Laboratory: 1−195.
[32] Xu T, Apps J A, Pruess K. 2004b. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochemistry, 19(6): 917−936. doi: 10.1016/j.apgeochem.2003.11.003
[33] Yu M, Liu L, Yang S, et al. 2016. Experimental identification of CO2−oil−brine−rock interactions: Implications for CO2 sequestration after termination of a CO2−EOR project[J]. Applied Geochemistry, 75: 137−151. doi: 10.1016/j.apgeochem.2016.10.018
[34] Zhang X, Wei B, Shang J, et al. 2018. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2−brine−rock interactions in CO2−EOR and geosequestration[J]. Journal of CO2 Utilization, 28: 408−418. doi: 10.1016/j.jcou.2018.11.002
[35] Zhang Y, Zhang Z, Arif M, et al. 2020. Carbonate rock mechanical response to CO2 flooding evaluated by a combined X−ray computed tomography−DEM method[J]. Journal of Natural Gas Science and Engineering, 84: 103675. doi: 10.1016/j.jngse.2020.103675
[36] 甘满光, 雷宏武, 张力为, 等. 2024. 基于数值模拟的CO2地质封存项目井筒泄漏风险定量化评价方法[J]. 工程科学与技术, 56(1): 195−205.
[37] 黄思静, 谢连文, 张萌, 等. 2004. 中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J]. 成都理工大学学报(自然科学版, 31(3): 273−281.
-