原生矿物组分对CO2地质捕获形式影响的数值模拟

李晓媛, 岳高凡, 宋胜华. 2025. 原生矿物组分对CO2地质捕获形式影响的数值模拟. 地质通报, 44(5): 921-934. doi: 10.12097/gbc.2024.11.006
引用本文: 李晓媛, 岳高凡, 宋胜华. 2025. 原生矿物组分对CO2地质捕获形式影响的数值模拟. 地质通报, 44(5): 921-934. doi: 10.12097/gbc.2024.11.006
LI Xiaoyuan, YUE Gaofan, SONG Shenghua. 2025. Numerical simulation study on the influence of primary mineral components on CO2 geological trapping forms. Geological Bulletin of China, 44(5): 921-934. doi: 10.12097/gbc.2024.11.006
Citation: LI Xiaoyuan, YUE Gaofan, SONG Shenghua. 2025. Numerical simulation study on the influence of primary mineral components on CO2 geological trapping forms. Geological Bulletin of China, 44(5): 921-934. doi: 10.12097/gbc.2024.11.006

原生矿物组分对CO2地质捕获形式影响的数值模拟

  • 基金项目: 国家自然科学基金项目《地下水回灌过程中气相堵塞微观机理研究》(批准号:42302285)、中国地质科学院基本科研业务费《深部咸水层CO2封存过程中储层物性对残余水的控制机理研究》(编号:SK202307)和《热液石英脉形成过程及其对断层导热的影响机制》(编号:YK202309)
详细信息
    作者简介: 李晓媛(1988− ),女,硕士,高级工程师,从事地下水环境、气液两相流研究。E−mail:lixiaoyuan1001@163.com
    通讯作者: 岳高凡(1989− ),男,博士,副研究员,从事地下水环境、地热地质研究。E−mail:gaofan3904@163.com
  • 中图分类号: P642;X701;TP181

Numerical simulation study on the influence of primary mineral components on CO2 geological trapping forms

More Information
  • 研究目的

    日益加剧的全球气候变化促使CO2捕集与封存(CCS)技术的实施势在必行。CO2-水岩相互作用机理和过程不仅直接影响CO2储层的安全性和稳定性,还决定了CO2的注入效率和储存量。

    研究方法

    基于中国首个全流程咸水层CCS示范工程,采用TOUGHREACT ECO2N构建内蒙古神华CCS储层长时间序列的水-CO2-热-化学反应耦合模型,研究储集层原生矿物组分对CO2不同捕获机制转化的影响。

    研究结果

    鄂尔多斯盆地深部咸水储层有利于CO2的矿化封存,1000年时的矿化封存量达总注入量的64.02%。储集层中方解石、奥长石、钠长石、绿泥石和高岭石均发生不同程度的溶解,生成蒙脱石、铁白云石和片钠铝石沉淀。铁白云石是主要的固碳矿物,水气两相区的封存量最大,最大可达15 kg/m3。奥长石、钠长石和方解石的含量变化对气体和溶解封存的影响较小,对矿化封存无影响。绿泥石的含量变化对3种封存形式影响较大,当绿泥石初始体积分数从1.9%升高到8.4%时,1000年时矿化封存量从7×108 kg升高至1.6×109 kg,变化量达到9×108 kg。

    结论

    原生矿物组分种类和含量均会影响CO2不同捕获机制的封存量。研究成果可作为优化现有CO2封存工程设计和合理评价未来CO2封存区选址的依据,助力实现中国碳中和目标。

  • 加载中
  • 图 1  径向模型示意图

    Figure 1. 

    图 2  不同时间超临界CO2气体饱和度(Sg)分布图

    Figure 2. 

    图 3  不同时间溶解CO2(CO2(aq))分布图

    Figure 3. 

    图 4  不同时间pH值分布图

    Figure 4. 

    图 5  1000 a时溶解矿物体积分数变化 (负值代表溶解,正值代表沉淀)

    Figure 5. 

    图 6  1000年时沉淀矿物体积分数变化(负值代表溶解,正值代表沉淀)

    Figure 6. 

    图 7  1000 a时矿化封存量(SMCO2)空间分布

    Figure 7. 

    图 8  4种矿物初始组分对气体封存量随时间变化的影响

    Figure 8. 

    图 9  4种矿物初始组分对溶解封存量随时间变化的影响

    Figure 9. 

    图 10  4种矿物初始组分对矿化封存量随时间变化的影响

    Figure 10. 

    图 11  4种矿物初始组分对1000 a时CO2不同形式封存量的影响

    Figure 11. 

    表 1  子储层孔渗特征

    Table 1.  Porosity and permeability of sub reservoir

    地层 子储层编号 厚度/m 孔隙度/% 渗透率/10−15 m2
    刘家沟组11310.02.81
    石千峰组2512.45.74
    369.31.57
    459.61.77
    5410.22.36
    6711.23.52
    7712.96.58
    石盒子组81112.65.99
    9912.04.57
    101212.25.03
    山西组11612.55.7
    12811.34.48
    下载: 导出CSV

    表 2  储层化学组分

    Table 2.  Chemical composition of reservoir

    地层化学组分
    SiO2/%TFe/%(Mg+Ca)/%(Al+Na+K)/%
    刘家沟组60~696~84~615~20
    石千峰组60~725~74.5~8.515~18
    石盒子组59~687~133~417~18
    山西组62.529.252.3520.46
    下载: 导出CSV

    表 3  方程中的参数含义

    Table 3.  The meaning of parameters in the equation

    参数 含义 单位 参数 含义 单位
    M 物质总量 kg/m3 λ 热传导系数 W/(m·K)
    F 质量或能量通量 kg/(m2·s) k 渗透率 m2
    P 压力 bar g 重力加速度 m/s2
    q 源汇项 kg/(m3·s) 下标 含义
    S 饱和度 - g 气相
    X 质量分数 - l 液相
    T 温度 oC s 固相
    ρ 密度 kg/m3 w
    $ \varphi $ 孔隙度 - c CO2
    U 内能 J/kg r 化学反应
    kr 相对渗透率 -
    下载: 导出CSV

    表 4  基础方案地质参数

    Table 4.  Geological parameters of the base-case

    参数 取值
    渗透率/m2 4×10−15
    孔隙度 0.11
    岩石压缩系数/Pa−1 4.5×10−10
    岩石密度/(kg·m−3) 2600
    温度/oC 65
    下载: 导出CSV

    表 5  矿物动力学参数及基础方案原生矿物体积分数

    Table 5.  Mineral kinetic parameters and volume fraction of primary minerals in the base-case

    矿物 初始体积分数/%
    A/(cm2·g−1) 动力学速率定律参数
    中性机制 酸性机制 碱性机制
    k25 Ea k25 Ea n(H+) k25 Ea n(H+)
    初始:
    方解石 7.2
    石英 22.8 9.8 1.023×10−14 87.70
    高岭石 10.0 151.6 6.918×10−14 22.20 4.898×10−12 65.9 0.777 8.913×10−18 17.9 −0.472
    伊利石 14.9 151.6 1.660×10−13 35.00 1.047×10−11 23.6 0.340 3.020×10−17 58.9 −0.400
    奥长石 10.0 9.8 1.445×10−13 69.80 2.138×10−11 65.0 0.457
    钾长石 10.0 9.8 3.890×10−13 38.00 8.710×10−11 51.7 0.500 6.310×10−22 94.1 −0.823
    钠长石 5.0 9.8 2.754×10−13 69.80 6.918×10−11 65.0 0.457 2.512×10−16 71.0 −0.572
    钠蒙脱石 7.7 151.6 1.660×10−13 35.00 1.047×10−11 23.6 0.340 3.020×10−17 58.9 −0.400
    钙蒙脱石 7.7 151.6 1.660×10−13 35.00 1.047×10−11 23.6 0.340 3.020×10−17 58.9 −0.400
    绿泥石 4.7 9.8 3.020×10−13 88.00 7.762×10−12 88.0 0.500
    生成:
    片钠铝石 9.8 1.260×10−9 62.76 6.457×10−4 36.1 0.500
    铁白云石 9.8 1.260×10−9 62.76 6.457×10−4 36.1 0.500
    白云石 9.8 2.951×10−8 52.20 6.457×10−4 36.1 0.500
    菱铁矿 9.8 1.260×10−9 62.76 6.457×10−4 36.1 0.500
    菱镁矿 9.8 4.571×10−10 23.50 4.169×10−7 14.4 1.000
      注:①反应速率常数均为溶解反应。②A是比表面积;k25为标准温度(25℃)下的反应速率常数,单位为mol/(m2·s);Ea为活化能,单位为kJ/mol;n(H+)为指数。③酸性和碱性机制下,反应级数n基于H+确定
    下载: 导出CSV

    表 6  初始地下水化学组分

    Table 6.  Initial chemical composition of groundwater

    水化学组分 浓度/(mol·L−1) 水化学组分 浓度/(mol·L−1)
    K+ 5.9×10−6 SiO2(aq) 9.4×10−4
    Na+ 8.9×10−1 HCO3 4.1×10−5
    Ca2+ 5.3×10−2 SO42− 1.0×10−10
    Mg2+ 1.1×10−11 AlO2 6.1×10−7
    Fe2+ 1.0×10−4 Cl 1.0
    下载: 导出CSV

    表 7  矿物组分对封存量影响转化模拟方案

    Table 7.  Simulation scheme for the transformation of the impact of mineral components on storage capacity

    模拟编号 方案设计
    1. (base-case) 孔隙度 11.1%,渗透率4 mD,温度65oC,压力200 bar,盐度1 mol/L NaCl,初始矿物组分见表6
    2. (Oligoclase-4) 奥长石体积分数变为4%,石英相应增加,其他同base-case
    3. (Oligoclase-7) 奥长石体积分数变为7%,石英相应增加,其他同base-case
    4. (Oligoclase-13) 奥长石体积分数变为13%,石英相应减少,其他同base-case
    5. (Oligoclase-16) 奥长石体积分数变为16%,石英相应减少,其他同base-case
    6. (Oligoclase-20) 奥长石体积分数变为20%,石英相应减少,其他同base-case
    7. (Albite-2) 钠长石体积分数变为2%,石英相应增加,其他同base-case
    8. (Albite-7) 钠长石体积分数变为7%,石英相应减少,其他同base-case
    9. (Calcite-2.6) 方解石体积分数变为2.6%,石英相应增加,其他同base-case
    10. (Calcite-11) 方解石体积分数变为11%,石英相应减少,其他同base-case
    11. (Calcite-16.5) 方解石体积分数变为16.5%,石英相应减少,其他同base-case
    12. (Chlorite-1.9) 绿泥石体积分数变为1.9%,石英相应增加,其他同base-case
    13. (Chlorite-8.4) 绿泥石体积分数变为8.4%,石英相应减少,其他同base-case
    下载: 导出CSV
  • [1]

    Al B H, Awoyomi A, Patchigolla K, et al. 2021. A review of large−scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage[J]. Applied Energy, 287: 116510. doi: 10.1016/j.apenergy.2021.116510

    [2]

    Al−Darweesh J, Aljawad M S, Kamal M S, et al. 2023. Water chemistry role in the stability of CO2 foam for carbon sequestration in water aquifers[J]. Gas Science and Engineering, 118: 205090. doi: 10.1016/j.jgsce.2023.205090

    [3]

    Cai L. 2022. Pathways for electric power industry to achieve carbon emissions peak and carbon neutrality based on LEAP model: A case study of state−owned power generation enterprise in China[J]. Industrial Engineering, 170: 108334.

    [4]

    Chehrazi M. 2022. A review on CO2 capture with chilled ammonia and CO2 utilization in urea plant[J]. Journal of CO2 Utilization, 61: 1−13.

    [5]

    Corey A T. 1954. The interrelation between gas and oil relative permeabilities[J]. Producers Monthly, 19: 38−41.

    [6]

    Duan W, Li C F, Chen X G, et al. 2020. Diagenetic differences caused by gas charging with different compositions in the XF13 block of the Yinggehai Basin, South China Sea[J]. AAPG Bulletin, 104(4): 735−765. doi: 10.1306/06191917331

    [7]

    Gan M G, Lei H W, Zhang M, et al. 2024. Quantitative evaluation method of wellbore leakage risk of CO2 geological storage project based on numerical simulation[J]. Advanced Engineering Sciences, 56(1): 195−205 (in Chinese with English abstract).

    [8]

    Gao X, Yang S, Shen B, et al. 2023. Influence of reservoir spatial heterogeneity on a multicoupling process of CO2 geological storage[J]. Energy Fuels, 37: 14991−15005. doi: 10.1021/acs.energyfuels.3c02784

    [9]

    Gunter W D, Perkins E H, Mccann T J. 1993. Aquifer disposal of CO2−rich gases: reaction design for added capacity[J]. Energy Convers Manag, 34: 941−948. doi: 10.1016/0196-8904(93)90040-H

    [10]

    Gunter W D, Bachu S, Benson S. 2004. The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide[J]. Geological Society, 233: 129−145. doi: 10.1144/GSL.SP.2004.233.01.09

    [11]

    Huang S J, Xie L W, Zhang M, et al. 2004. Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 31(3): 273−281 (in Chinese with English abstract).

    [12]

    Huq F, Haderlein S B, Cirpka O A, et al. 2015. Flow−through experiments on water−rock interactions in a sandstone caused by CO2 injection at pressures and temperatures mimicking reservoir conditions[J]. Applied Geochemistry, 58: 136−146. doi: 10.1016/j.apgeochem.2015.04.006

    [13]

    Kharaka Y K, Thordsen J J, Hovorka S D, et al. 2009. Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Frio−I Brine Pilot test, Texas, USA. Applied Geochemistry, 24(6): 1106−1112.

    [14]

    Krevor S, de Coninck H, Gasda S E, et al. 2023. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future[J]. Nature Reviews Earth & Environment, 4: 102−118.

    [15]

    Lin R, Yu Z, Zhao J, et al. 2022. Experimental evaluation of tight sandstones reservoir flow characteristics under CO2−Brine−Rock multiphase interactions: A case study in the Chang 6 layer, Ordos Basin, China[J]. Fuel, 309: 122167. doi: 10.1016/j.fuel.2021.122167

    [16]

    Marini L. 2006. Geological sequestration of carbon dioxide: thermodynamics, kinetics and reaction path modeling [M]. New York: Elsevier: 1−453.

    [17]

    Ofori A, Engler T. 2011. Effects of CO2 sequestration on the petrophysical properties of an aquifer rock [M]. Canadian Unconventional Resources Conference. Calgary: Society of Petroleum Engineers : 1−8.

    [18]

    O’Neill S. 2020. Global CO2 emissions level off in 2019, with a drop predicted in 2020[J]. Engineering, 6: 958−959. doi: 10.1016/j.eng.2020.07.005

    [19]

    Osama M, Ahmad S A. 2024. CO2 sequestration in subsurface geological formations: A review of trapping mechanisms and monitoring techniques[J]. Earth−Science Reviews, 253: 104793. doi: 10.1016/j.earscirev.2024.104793

    [20]

    Pruess K, Xu T, Apps J, et al. 2003. Numerical modeling of aquifer disposal of CO2[J]. SPE Journal, 8: 49−60. doi: 10.2118/83695-PA

    [21]

    Tutolo B M, Luhmann A J, Kong X Z, et al. 2015. CO2 sequestration in feldspar−rich sandstone: coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties[J]. Geochimica et Cosmochimica Acta, 160: 132−154. doi: 10.1016/j.gca.2015.04.002

    [22]

    Van G. 1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Journal of American Soil Science Society, 44: 892−898. doi: 10.2136/sssaj1980.03615995004400050002x

    [23]

    Wang W, Xie Q, An S, et al. 2023. Pore−scale simulation of multiphase flow and reactive transport processes involved in geologic carbon sequestration[J]. Earth−Science Reviews, 247: 104602. doi: 10.1016/j.earscirev.2023.104602

    [24]

    Wang Y, Guo C, Du C, et al. 2021. Carbon peak and carbon neutrality in China: Goals, implementation path, and prospects[J]. China Geology, 4: 720−746.

    [25]

    Wang K R, Xu T F, Tian H L, et al. 2016. Impacts of mineralogical compositions on different trapping mechanisms during long−term CO2 storage in deep saline aquifers[J]. Acta Geotechnica, 11: 1167−1188. doi: 10.1007/s11440-015-0427-3

    [26]

    Wei B, Zhang X, Liu J, et al. 2020. Adsorptive behaviors of supercritical CO2 in tight porous media and triggered chemical reactions with rock minerals during CO2−EOR and sequestration[J]. Chemical Engineering Journal, 381: 122577. doi: 10.1016/j.cej.2019.122577

    [27]

    Wei Y M, Chen K, Kang J N, et al. 2022. Policy and management of carbon peaking and carbon neutrality: a literature review[J]. Engineering, 14: 52−63. doi: 10.1016/j.eng.2021.12.018

    [28]

    Xie Q H, Wang W D, Su Y L. 2023. Pore−scale study of calcite dissolution during CO2−saturated brine injection for sequestration in carbonate aquifers[J]. Gas Science and Engineering, 114: 204978. doi: 10.1016/j.jgsce.2023.204978

    [29]

    Xu H. 2024. Enhanced CO2 hydrate formation using hydrogen−rich stones, L−Methionine and SDS: Insights from kinetic and morphological studies[J]. Energy, 291: 130280. doi: 10.1016/j.energy.2024.130280

    [30]

    Xu T, Pruess K. 2001. On fluid flow and mineral alteration in fractured caprock of magmatic hydrothermal systems[J]. Journal of geophysical research, 106: 2121−2138. doi: 10.1029/2000JB900356

    [31]

    Xu T, Eric S, Nicolas S, et al. 2004a. Toughreact user’s guide: A Simulation Program for non−isothermal multiphase reactive geochemical transport in variably saturated geologic media[M]. California: Lawrence Berkeley Laboratory: 1−195.

    [32]

    Xu T, Apps J A, Pruess K. 2004b. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochemistry, 19(6): 917−936. doi: 10.1016/j.apgeochem.2003.11.003

    [33]

    Yu M, Liu L, Yang S, et al. 2016. Experimental identification of CO2−oil−brine−rock interactions: Implications for CO2 sequestration after termination of a CO2−EOR project[J]. Applied Geochemistry, 75: 137−151. doi: 10.1016/j.apgeochem.2016.10.018

    [34]

    Zhang X, Wei B, Shang J, et al. 2018. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2−brine−rock interactions in CO2−EOR and geosequestration[J]. Journal of CO2 Utilization, 28: 408−418. doi: 10.1016/j.jcou.2018.11.002

    [35]

    Zhang Y, Zhang Z, Arif M, et al. 2020. Carbonate rock mechanical response to CO2 flooding evaluated by a combined X−ray computed tomography−DEM method[J]. Journal of Natural Gas Science and Engineering, 84: 103675. doi: 10.1016/j.jngse.2020.103675

    [36]

    甘满光, 雷宏武, 张力为, 等. 2024. 基于数值模拟的CO2地质封存项目井筒泄漏风险定量化评价方法[J]. 工程科学与技术, 56(1): 195−205.

    [37]

    黄思静, 谢连文, 张萌, 等. 2004. 中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J]. 成都理工大学学报(自然科学版, 31(3): 273−281.

  • 加载中

(11)

(7)

计量
  • 文章访问数:  34
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2024-11-03
修回日期:  2024-12-23
刊出日期:  2025-05-15

目录