Characteristics of zircon U-Pb-Hf isotopes for the Gartasksitao porphyritic rocks and constraints on ridge subduction, Xinjiang
-
摘要:
新疆加尔塔斯克斯套斑岩铜矿床位于西准噶尔斑岩成矿带西段, 目前研究程度很低。对该矿床花岗闪长斑岩体进行LA-ICP-MS锆石U-Pb年龄、岩石地球化学及Hf同位素组成测试分析。结果显示, 该岩体的锆石U-Pb年龄为299.2 ± 5.3 Ma, 形成于晚石炭世末—早二叠世初; 岩石具有富SiO2、Al2O3、Na, 贫K, Mg#值较高, 以及高Sr、低Y和Yb含量的特点, 显示埃达克岩特征; 富集大离子亲石元素Cs、Ba、U和轻稀土元素, 亏损高场强元素Ti、Nb、Ta和重稀土元素, 无明显Eu异常。斑岩具有高的176 Hf/ 177 Hf值, 正高εHf (t)值(+10.1~+15.6, 平均+12.8), 以及年轻的两阶段模式年龄(TDM2=307.4~687.1 Ma), 显示亏损地幔源区属性, 鲜有壳源混染。研究认为, 该斑岩体可能形成于洋脊俯冲, 并伴有明显的Cu、Au矿化, 指示该斑岩铜矿床有良好的找矿潜力。
Abstract:The Gartasksitao porphyry copper deposit is located in the western part of the porphyry metallogenic belt in West Junggar.The LA-ICP-MS zircon U-Pb age, geochemistry, and Hf isotopic compositions of the granodiorite porphyry for this deposit have been analyzed.The results show that the zircon U-Pb age of the granodiorite porphyry is 299.2 ± 5.3 Ma, formed between the Late Carboniferous and the Early Permian.The samples have high SiO2, Al2O3, Na2O, and low K2O, high Mg# and Sr, low Y, Yb, indicating affinity with the adakitic feature.Trace elements are characterized by enrichment of Cs-Ba-U LILEs and LREEs, depletion of in Ti-Nb-Ta and HREEs, and rarely Eu anomaly.The 176Hf/ 177Hf ratios are high, with positive εHf (t) values (+10.1~+15.6, Avg.+12.8) and young TDM2 (307.4 ~ 687.1 Ma), indicating that the granodiorite porphyry was derived from a depleted mantle source.It could be suggested that the porphyry was formed by the oceanic ridge subduction, accompanied by considerable Cu and Au mineralization, which indicates that the Gartasksitao porphyry copper deposit has promising prospecting potential.
-
Key words:
- West Junggar /
- porphyry copper deposit /
- zircon U-Pb dating /
- Hf isotope /
- geochemistry /
- Gartasksitao
-
-
图 1 西准噶尔地区铜金矿带区域地质简图(据参考文献[25]修改)
Figure 1.
图 7 加尔塔斯克斯套斑岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化数据据参考文献[37])
Figure 7.
表 1 加尔塔斯克斯套1号岩体ZK1见矿情况
Table 1. Ore occurrences of ZK1 in Gartasksitao No.1 stock
矿(化) 体 截断深度/m 视厚度/m 样品 平均品位Cu/% 备注 Ⅰ 17.00~22.00 5.00 8-10H 0.34 铜贫矿体 Ⅱ 34.00~35.20 1.20 17H 0.30 铜贫矿体 Ⅰ 40.00~45.00 5.00 21-23H 0.41 铜矿体 Ⅳ 101.23~102.83 1.60 32-34H 0.67 铜矿体 Ⅴ 177.00~181.00 4.00 100-101H Au~0.5 g/t 金矿(化)体 表 2 标准锆石176Lu/177Hf同位素组成及范围
Table 2. Hf isotopic compositions and ranges of 176Lu/177Hf for standard zircons
表 3 加尔塔斯克斯套1号岩体花岗闪长斑岩LA-ICP-MS锆石U-Th-Pb分析结果
Table 3. LA-ICP-MS zircon U-Th-Pb dating of granodiorite porphyry in Gartasksitao No.1 stock
测点 232Th
/10-6238U
/10-6Pb*
/10-6Th/
U同位素比值 年龄/Ma 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ zk1-79-1 154.29 234.80 13.93 0.66 0.0511 0.0044 0.3246 0.0356 0.0460 0.0017 247 183 285 27 290 7 zk1-79-2 350.81 236.25 16.67 1.48 0.0570 0.0029 0.3550 0.0195 0.0452 0.0014 492 107 308 15 285 6 zk1-79-3 74.27 90.50 6.26 0.82 0.0500 0.0031 0.3615 0.0236 0.0525 0.0017 193 138 313 18 330 8 zk1-79-4 105.76 111.39 7.75 0.95 0.0532 0.0028 0.3711 0.0215 0.0506 0.0017 336 121 320 16 318 7 zk1-79-5 138.39 147.80 9.78 0.94 0.0636 0.0031 0.4181 0.0227 0.0477 0.0015 729 103 355 16 300 6 zk1-79-6 89.90 106.70 6.64 0.84 0.0557 0.0059 0.3387 0.0425 0.0441 0.0015 441 231 296 32 278 6 zk1-79-7 306.56 254.36 17.87 1.21 0.0535 0.0024 0.3639 0.0183 0.0493 0.0015 351 102 315 14 310 6 zk1-79-8 315.46 228.40 14.86 1.38 0.0547 0.0025 0.3288 0.0170 0.0436 0.0014 402 99 289 13 275 5 zk1-79-9 48.40 57.64 3.62 0.84 0.0522 0.0059 0.3158 0.0424 0.0439 0.0017 296 233 279 33 277 7 zk1-79-10 352.87 300.69 22.16 1.17 0.0545 0.0024 0.3915 0.0193 0.0521 0.0016 393 94 335 14 327 7 zk1-79-11 77.23 92.39 6.00 0.84 0.0642 0.0041 0.4378 0.0297 0.0495 0.0017 747 137 369 21 312 7 zk1-79-12 39.78 49.48 3.99 0.80 0.0646 0.0103 0.4707 0.0851 0.0528 0.0023 762 346 392 59 332 11 zk1-79-13 135.10 284.69 15.78 0.47 0.0576 0.0024 0.3647 0.0177 0.0459 0.0014 515 93 316 13 289 6 zk1-79-14 73.43 83.44 5.15 0.88 0.0542 0.0037 0.3443 0.0239 0.0461 0.0015 379 157 300 18 291 6 zk1-79-15 286.21 243.07 15.80 1.18 0.0585 0.0031 0.3618 0.0206 0.0449 0.0014 549 117 314 15 283 6 zk1-79-16 98.18 115.90 6.71 0.85 0.0494 0.0032 0.3044 0.0204 0.0447 0.0015 167 148 270 16 282 6 zk1-79-17 501.19 460.66 26.94 1.09 0.0517 0.0022 0.3063 0.0145 0.0430 0.0013 272 98 271 11 271 5 zk1-79-18 115.95 126.51 7.62 0.92 0.0483 0.0030 0.3056 0.0195 0.0459 0.0015 114 140 271 15 289 6 zk1-79-19 73.94 96.27 5.34 0.77 0.0555 0.0033 0.3357 0.0209 0.0439 0.0014 433 137 294 16 277 6 zk1-79-20 367.46 382.01 22.06 0.96 0.0535 0.0025 0.3311 0.0172 0.0449 0.0014 350 109 290 13 283 6 zk1-79-21 114.93 130.00 9.33 0.88 0.0520 0.0062 0.3548 0.0491 0.0495 0.0018 284 251 308 37 312 8 zk1-79-22 412.38 295.30 20.54 1.40 0.0539 0.0025 0.3551 0.0182 0.0478 0.0015 365 99 309 14 301 6 zk1-79-23 136.94 140.66 8.38 0.97 0.0572 0.0039 0.3597 0.0240 0.0456 0.0015 501 141 312 18 287 6 zk1-79-24 139.94 136.90 9.31 1.02 0.0521 0.0034 0.3737 0.0252 0.0520 0.0017 291 142 322 19 327 7 zk1-79-25 362.63 305.22 20.16 1.19 0.0559 0.0026 0.3534 0.0183 0.0459 0.0014 447 98 307 14 289 6 zk1-79-26 181.90 199.39 12.03 0.91 0.0551 0.0028 0.3513 0.0198 0.0463 0.0015 416 109 306 15 292 6 zk1-79-27 259.86 222.29 14.50 1.17 0.0603 0.0031 0.4001 0.0225 0.0482 0.0015 613 102 342 16 303 6 zk1-79-28 639.24 387.11 29.42 1.65 0.0543 0.0024 0.3730 0.0184 0.0499 0.0015 383 91 322 14 314 6 zk1-79-29 157.93 202.59 12.39 0.78 0.0570 0.0030 0.3846 0.0216 0.0490 0.0015 491 104 330 16 308 6 zk1-79-30 267.46 199.28 15.12 1.34 0.0500 0.0028 0.3741 0.0221 0.0543 0.0017 194 113 323 16 341 7 zk1-79-31 85.66 85.22 5.30 1.01 0.0441 0.0041 0.2973 0.0276 0.0489 0.0017 -66 169 264 22 308 7 zk1-79-32 117.56 148.87 9.11 0.79 0.0557 0.0032 0.3913 0.0249 0.0510 0.0017 438 120 335 18 321 7 zk1-79-33 939.48 628.97 47.68 1.49 0.0511 0.0022 0.3653 0.0174 0.0519 0.0015 245 93 316 13 326 6 zk1-79-34 551.04 329.23 24.02 1.67 0.0654 0.0036 0.4278 0.0258 0.0475 0.0015 787 111 362 18 299 6 表 4 加尔塔斯克斯套斑岩主量和微量元素含量
Table 4. Major and trace element concentrations of the Gartasksitao porphyry
样品号 ZK1-15 ZK1-34 ZK1-37 ZK1-56 ZK1-79 ZK1-126 ZK1-143 岩性 花岗斑岩 花岗闪长斑岩 花岗闪长斑岩 花岗闪长斑岩 花岗闪长斑岩 花岗闪长斑岩 花岗闪长斑岩 SiO2 70.8 63.4 62.7 65.1 66.2 66.4 65.6 TiO2 0.5 0.6 0.7 0.7 0.7 0.6 0.7 Al2O3 13.8 15.7 15.5 15.3 15.1 14.6 14.5 Fe2O3 2.9 4.6 4.8 4.6 4.3 3.9 4.7 MgO 1.9 3.3 3.2 2.2 2.7 2.3 2.2 MnO 0.02 0.03 0.02 0.02 0.02 0.02 0.02 CaO 3.7 4.8 5.2 3.8 3.7 3.1 2.9 Na2O 3.9 4.5 4.7 4.2 4.3 4.2 4.3 K2O 0.8 1.4 1.3 2.4 1.8 2.2 2.5 P2O5 0.1 0.2 0.2 0.1 0.1 0.2 0.2 烧失量 1.8 1.8 1.6 1.5 1.6 1.5 1.6 总计 100.2 100.3 99.9 99.9 100.5 99.0 99.2 K2O/Na2O 0.2 0.3 0.3 0.6 0.4 0.5 0.6 Mg# 54.1 56.4 54.5 46.3 53.1 51.5 45.7 A/CNK 1.0 0.9 0.8 0.9 1.0 1.0 1.0 A/NK 1.9 1.8 1.7 1.6 1.7 1.6 1.5 CIA 49.6 47.1 45.4 48.2 48.9 49.4 49.0 K2O+Na2O 4.7 5.9 6.0 6.6 6.1 6.4 6.8 Li 8.1 9.3 8.6 12.7 13.6 12.4 10.7 Be 1.3 0.8 1.2 0.8 1.1 1.3 1.2 Sc 9.6 13.6 11.7 11.2 11.2 10.3 11.2 V 63.5 114.6 128.3 100.4 118.6 107.6 114.4 Cr 46.8 67.3 74.2 31.6 63.4 40.8 46.5 Ni 36.9 47.4 41.6 24.1 29.8 21.0 42.1 Cu 402.3 289.1 284.6 48.9 354.6 312.1 486.9 Zn 27.4 31.7 31.8 31.4 41.8 33.8 71.8 Ga 18.4 18.9 19.6 17.4 19.3 20.3 20.4 Rb 42.6 63.1 44.2 79.2 52.7 82.7 75.6 Sr 440.1 578.3 677.4 453.6 589.6 456.2 512.4 Y 4.8 12.8 14.6 11.0 14.2 13.6 13.0 Zr 110.7 105.8 86.9 129.5 115.3 139.6 82.7 Nb 3.6 4.2 3.3 4.2 4.2 4.5 4.3 Cs 1.8 2.4 2.7 2.3 2.6 3.2 2.8 Ba 187.6 273.4 386.7 634.1 634.1 492.1 502.7 La 6.3 9.6 12.4 12.8 12.3 13.6 7.9 Ce 15.9 22.4 24.8 25.3 27.6 31.7 20.3 Pr 1.6 2.6 3.3 3.2 3.5 3.6 2.5 Nd 7.3 13.9 14.4 12.3 12.8 13.4 11.2 Sm 1.3 2.8 3.0 2.5 2.6 2.8 2.3 Eu 0.5 0.9 0.9 0.7 0.8 0.7 0.6 Gd 1.1 2.7 3.1 2.6 2.6 2.8 2.5 Tb 0.2 0.5 0.5 0.4 0.4 0.5 0.4 Dy 1.4 2.3 2.6 2.2 2.3 2.6 2.2 Ho 0.3 0.4 0.6 0.5 0.4 0.5 0.4 Er 0.8 1.4 1.5 1.4 1.5 1.4 1.5 Tm 0.1 0.2 0.2 0.2 0.2 0.2 0.2 Yb 0.7 1.4 1.5 1.4 1.3 1.4 1.3 Lu 0.1 0.2 0.2 0.2 0.2 0.2 0.2 Hf 3.5 3.3 2.8 3.5 3.2 3.9 2.8 Ta 0.4 0.3 0.4 0.3 0.4 0.3 0.4 Pb 3.6 3.3 2.9 3.4 4.4 4.3 3.6 Th 7.4 4.2 3.8 5.2 5.3 5.4 5.6 U 1.3 1.2 1.5 1.7 1.8 1.6 1.8 Sr/Y 91.7 45.2 46.4 41.2 41.5 33.5 39.4 ∑REE 42.4 74.1 83.6 76.7 82.7 89.0 66.5 LREE 32.9 52.2 58.8 56.8 59.6 65.8 44.8 HREE 9.5 21.9 24.8 19.9 23.1 23.2 21.7 LREE/HREE 3.5 2.4 2.4 2.9 2.6 2.8 2.1 (La/Yb)N 6.5 4.9 5.9 6.6 6.8 7.0 4.4 Eu/Eu* 1.3 1.0 0.9 0.8 0.9 0.8 0.8 注:主量元素含量单位为%, 微量和稀土元素含量单位为10-6 表 5 加尔塔斯克斯套斑岩矿床样品Hf同位素组成
Table 5. Hf isotopic composition of samples from the Gartasksitao porphyry deposit
样品号 岩性 T/Ma 176Lu/177Hf 2σ 176Hf/177Hf 2SE εHf(t) 2σ TDM1
/MaTDM2
/MaZK1-79-1 花岗闪长斑岩 290 0.001001 0.000065 0.283039 0.000025 15.6 1.0 300.9 307 ZK1-79-2 310 0.002142 0.000041 0.282970 0.000023 13.4 0.9 412.5 468 ZK1-79-3 291 0.001039 0.000094 0.282980 0.000023 13.6 0.9 385.4 441 ZK1-79-4 283 0.001672 0.000096 0.282944 0.000021 12.0 0.8 444.8 536 ZK1-79-5 271 0.002706 0.000141 0.282950 0.000026 11.8 1.0 448.5 541 ZK1-79-6 289 0.001529 0.000059 0.282940 0.000026 12.0 1.0 447.8 538 ZK1-79-7 277 0.000919 0.000020 0.282976 0.000027 13.1 1.0 390.7 458 ZK1-79-8 312 0.001093 0.000100 0.282974 0.000024 13.8 1.0 395.0 444 ZK1-79-9 301 0.002720 0.000077 0.282911 0.000027 11.0 1.0 506.7 613 ZK1-79-10 327 0.001138 0.000071 0.282923 0.000023 12.3 0.9 468.4 551 ZK1-79-11 303 0.001678 0.000017 0.282946 0.000027 12.5 1.0 441.5 519 ZK1-79-12 298 0.001771 0.000029 0.282962 0.000021 12.9 0.9 419.7 488 ZK1-79-13 314 0.002717 0.000113 0.282899 0.000023 10.8 0.9 524.4 633 ZK1-79-14 308 0.001203 0.000033 0.282989 0.000026 14.2 1.0 374.5 413 ZK1-79-15 321 0.000740 0.000014 0.283016 0.000024 15.5 1.0 331.5 338 ZK1-79-16 326 0.002321 0.000034 0.282870 0.000021 10.1 0.8 561.2 687 ZK1-79-17 298 0.001937 0.000062 0.282960 0.000026 12.8 1.0 424.9 495 注:εHf(t)=((176Hf/177Hf)S(t)/(176Hf/177Hf)CHUR(t)-1)×10000;TDM1=(1/λ)×(1+((176Hf/177Hf)S-(176Lu/177Hf)DM)/((176Lu/177Hf)S-(176Lu/177Hf)DM)); TDM2=TDM1-((TDM1-t)×(fCC-fS)/ (fCC-fDM)); fS= (176Lu/177Hf)S/(176Lu/177Hf)CHUR -1, fCC= -0.5482, fDM= 0.157; l= 1.867×10-11 a-1; (176Lu/177Hf) DM = 0.038, (176Hf/177Hf)DM = 0.28325;t= 3 Ma -
[1] 肖文交, 舒良树, 高俊, 等. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质, 2008, (1): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200801005.htm
[2] 高俊, 申萍, 徐兴旺, 等. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制[J]. 地质学报, 2019, 93(1): 24-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201901004.htm
[3] Richards J. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8): 1515-1533. doi: 10.2113/gsecongeo.98.8.1515
[4] Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818. doi: 10.2113/gsecongeo.100.5.801
[5] 申萍, 潘鸿迪, Eleonora S. 中亚成矿域斑岩铜矿床基本特征[J]. 岩石学报, 2015, (2): 315-332. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201502003.htm
[6] 芮宗瑶. 中国斑岩铜(钼)矿床[M]. 北京: 地质出版社, 1984.
[7] 秦克章, 郭正林, 唐冬梅, 等. 准噶尔西北缘吐尔库班套阿拉斯加型镁铁-超镁铁岩体的发现及意义[J]. 岩石学报, 2018, 34(7): 1897-1913. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807006.htm
[8] 韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm
[9] 宋会侠, 刘玉琳, 屈文俊. 新疆包古图斑岩铜矿矿床地质特征[J]. 岩石学报, 2007, (8): 1981-1988. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708017.htm
[10] 董连慧, 徐兴旺, 屈迅, 等. 新疆北部斑岩铜矿成矿规律及找矿方向[J]. 矿床地质, 2006, 25(S1): 293-296. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1079.htm
[11] Shen P, Pan H, Hattori K, et al. Large Paleozoic and Mesozoic porphyry deposits in the Central Asian Orogenic Belt: Geodynamic settings, magmatic sources, and genetic models[J]. Gondwana Research, 2018, 58: 161-194. doi: 10.1016/j.gr.2018.01.010
[12] Seltmann R, Porter T M, Pirajno F. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review[J]. Journal of Asian Earth Sciences, 2014, 79(B): 810-841.
[13] 何国琦, 朱永峰, 中国新疆及其邻区地质矿产对比研究[J]. 中国地质, 2006, 33(3): 451-460. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603000.htm
[14] 朱永峰, 王涛, 徐新. 新疆及邻区地质与矿产研究进展[J]. 中亚型造山与成矿国际学术研讨会, 2007. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708000.htm
[15] 尹继光, 陈文, 肖文交, 等. 西准噶尔包古图Ⅰ号岩体的锆石U-Pb年代学和地球化学特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1754-1768. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201606015.htm
[16] 申萍, 沈远超, 刘铁兵, 等. 新疆包古图斑岩型铜钼矿床容矿岩石及蚀变特征[J]. 岩石学报, 2009, (4): 777-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904005.htm
[17] Cao M, Qin K, Li G, et al. Baogutu: An example of reduced porphyry Cu deposit in western Junggar[J]. Ore Geology Reviews, 2014, 56: 159-180. doi: 10.1016/j.oregeorev.2013.08.014
[18] 沈远超, 金成伟. 西准噶尔地区岩浆活动与金矿化作用[M]. 北京: 科学出版社, 1993.
[19] Coleman R G. Continental growth of northwest China[J]. Tectonics, 1989, 8(3): 621-635. doi: 10.1029/TC008i003p00621
[20] 肖序常. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992.
[21] 朱永峰, 徐新. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩[J]. 岩石学报, 2006, 22(12): 2833-2842. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200612001.htm
[22] 陈博, 朱永峰. 新疆达拉布特蛇绿混杂岩中辉长岩岩石学、微量元素地球化学和锆石U-Pb年代学研究[J]. 岩石学报, 2011, 27(6): 1746-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106014.htm
[23] Zheng R G, Zhao L, Yang Y Q. Geochronology, geochemistry and tectonic implications of a new ophiolitic mélange in the northern West Junggar, NW China[J]. Gondwana Research, 2019, 74: 237-250. doi: 10.1016/j.gr.2019.01.008
[24] 朱永峰, 何国琦, 安芳. 中亚成矿域核心地区地质演化与成矿规律[J]. 地质通报, 2007, 26(9): 1167-1177. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200709191&flag=1
[25] Shen P, Shen Y, Pan H, et al. Geochronology and isotope geochemistry of the Baogutu porphyry copper deposit in the West Junggar region, Xinjiang, China[J]. Journal of Asian Earth Sciences, 2012, 49: 99-115. doi: 10.1016/j.jseaes.2011.11.025
[26] 唐功建, 王强, 赵振华, 等. 西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造, 铜金成矿意义[J]. 地球科学, 2009, 34(1): 56-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901008.htm
[27] 董连慧, 徐兴旺, 屈迅, 等. 初论环准噶尔斑岩铜矿带的地质构造背景与形成机制[J]. 岩石学报, 2009, 25(4): 713-737. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904001.htm
[28] 申萍, 董连慧, 冯京, 等. 新疆斑岩型铜矿床分布、时代及成矿特点[J]. 新疆地质, 2010, (4): 358-364. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201004003.htm
[29] 刘玉琳, 郭丽爽, 宋会侠, 等. 新疆西准噶尔包古图斑岩铜矿年代学研究[J]. 中国科学: 地球科学, 2009, (10): 1466-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200910014.htm
[30] 申萍, 周涛发, 袁峰, 等. 环巴尔喀什-西准噶尔成矿省矿床类型、成矿系统和跨境成矿带对接[J]. 岩石学报, 2015, 31(2): 285-303. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201502001.htm
[31] Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1): 34-43.
[32] Gu H O, Sun H, Wang F Y, et al. A new practical isobaric interference correction model for the in situ Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1223-1232. doi: 10.1039/C9JA00024K
[33] Li X H, Long W G, Li Q L, et al. Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age[J]. Geostandards and Geoanalytical Research, 2010, 34(2): 117-134. doi: 10.1111/j.1751-908X.2010.00036.x
[34] Sláma J, Košler J, Condon D J, et al. Plešovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1): 1-35.
[35] Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(36): 4647-4654. doi: 10.1007/s11434-013-5932-x
[36] Scherer E, Munker C, Mezger K. Early Differentiation of the Crust-Mantle System: a Hf Isotope Perspective[J]. AGUFM, 2001, 001: V52B-10.
[37] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[38] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0
[39] Richards J P, Kerrich R. Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis[J]. Economic Geology, 2007, 102(4): 537-576. doi: 10.2113/gsecongeo.102.4.537
[40] Defant M J, Drummond M S. Drummond. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0
[41] Macpherson C G, Dreher S T, Thirlwall M F. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 2006, 243(3/4): 581-593.
[42] 侯增谦, 高永丰, 孟祥金, 等. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制[J]. 岩石学报, 2004, (2): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402005.htm
[43] Kay R W, Kay S M. Delamination and delamination magmatism[J]. Tectonophysics, 1993, 219(1/3): 177-189.
[44] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
[45] Thiéblemont D, Stein G, Lescuyer J L. Epithermal and porphyry deposits: the adakite connection[J]. Comptes Rendus de l'Academie des Sciences Series IIA Earth and Planetary Science, 1997, 325: 103-109.
[46] 李智佩, 白建科, 茹艳娇, 等, 新疆昭苏县北高铝玄武岩时代、岩石学和地球化学特征——西天山早石炭世汇聚板块构造的标志[J]. 地质通报, 2021, 40(6): 864-879. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210604&flag=1
[47] 卢鹏, 童英, 孟秋熠, 等, 东准噶尔北缘乌伦古地区晚二叠世A型花岗质岩墙成因及构造背景[J]. 地质通报, 2021, 40(1): 58-70. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210106&flag=1
[48] Liu S A, Li S, He Y, et al. Geochemical contrasts between early Cretaceous ore-bearing andore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu-Au mineralization[J]. Geochimica et Cosmochimica Acta, 2010, 74(24): 7160-7178. doi: 10.1016/j.gca.2010.09.003
[49] Liu X J, Zhang Z G, Xu J F, et al. The youngest Permian Ocean in Central Asian Orogenic Belt: Evidence from Geochronology and Geochemistry of Bingdaban Ophiolitic Mélange in Central Tianshan, northwestern China[J]. Geological Journal, 2020, 55: 2062-2079. doi: 10.1002/gj.3698
[50] Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2): 1-24.
[51] Castillo P R. 埃达克岩成因回顾[J]. 科学通报, 2006, 51(6): 617-627. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200606000.htm
[52] Tang G J, Wang Q, Wyman D A, et al. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China) [J]. Chemical Geology, 2010, 277(3/4): 281-300.
[53] Wang B, Chen Y, Zhan S, et al. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J]. Earth and Planetary Science Letters, 2007, 263(3/4): 288-308. https://www.sciencedirect.com/science/article/pii/S0012821X07005560
[54] Song D F, Xiao W J, Windley B F, et al. Closure of the Paleo-Asian Ocean in the Middle-Late Triassic (Ladinian-Carnian): Evidence From Provenance Analysis of Retroarc Sediments[J]. Geophysical Research Letters, 2021, 48(14): 094276.
[55] Song D F, Xiao W J, Collins A, et al. Late Carboniferous-early Permian arc magmatism in the south-western Alxa Tectonic Belt (NW China): Constraints on the late Palaeozoic subduction history of the Palaeo-Asian Ocean[J]. Geological Journal, 2019, 54: 1046-1063. doi: 10.1002/gj.3348
[56] Xiong X L. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite[J]. Geology, 2006, 34(11): 945-948. doi: 10.1130/G22711A.1
[57] Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation[J]. Earth and Planetary Science Letters, 1998, 163(1/4) 361-379.
[58] Geng H Y, Sun M, Yuan C, et al. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction?[J]. Chemical Geology, 2009, 266(3/4): 364-389. https://www.sciencedirect.com/science/article/pii/S000925410900309X
[59] 孙卫东, 凌明星, 杨晓勇, 等. 洋脊俯冲与斑岩铜金矿成矿[J]. 中国科学: 地球科学, 2010, 40(2): 127-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201002001.htm
[60] 张连昌, 万博, 焦学军, 等. 西准包古图含铜斑岩的埃达克岩特征及其地质意义[J]. 中国地质, 2006, 33(3): 626-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603019.htm
[61] 陈艺超, 肖文交, 周仁杰, 等. 新疆西准噶尔早二叠世别斯托别岩浆杂岩岩石学、地球化学、年代学研究: 洋脊俯冲的产物?[C]//2019年中国地球科学联合学术年会, 2019.
[62] 刘希军, 许继峰, 侯青叶, 等. 新疆东准噶尔克拉麦里蛇绿岩地球化学: 洋脊俯冲的产物[J]. 岩石学报, 2007, 23(7): 1591-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707003.htm
[63] Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges[J]. Nature, 2001, 409(6819): 500-504. doi: 10.1038/35054039
[64] Sajona F G, Maury R C. Maury, Association of adakites with gold and copper mineralization in the Philippines[J]. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 1998, 326(1): 27-34.
[65] Richards J P. Discussion on "Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism" by Oyarzun et al. (Mineralium Deposita 36: 794-798, 2001) [J]. Mineralium Deposita, 2002, 37(8): 788-790. doi: 10.1007/s00126-002-0284-5
[66] 张旗, 秦克章, 王元龙, 等. 加强埃达克岩研究, 开创中国Cu、Au等找矿工作的新局面[J]. 岩石学报, 2004, 20(2): 195-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402001.htm
[67] Sun W D, Huang R F, Li H, et al. Porphyry deposits and oxidized magmas[J]. Ore Geology Reviews, 2015, 65: 97-131.
[68] Mungall J E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geology, 2002, 30(10): 915-918. doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
[69] 熊小林, 蔡志勇, 牛贺才, 等. 东天山晚古生代埃达克岩成因及铜金成矿意义[J]. 岩石学报, 2005, 21(3): 967-976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503035.htm
[70] Wei S N, Zhu Y F, Jiang J Y, et al. Magmatic oxidation state of the Baogutu porphyry copper deposit in the west Junggar of China: Implication for ore-formation[J]. Ore Geology Reviews, 2019, 106: 351-368. doi: 10.1016/j.oregeorev.2019.02.018
[71] 王强, 赵振华, 资峰, 等. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义[J]. 岩石学报, 2006, 22(1): 11-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601002.htm
-