江西宜黄强过铝质S型花岗岩成因及其对华南早古生代陆内造山运动的制约

何世伟, 王凯兴, 刘晓东, 雷勇亮. 江西宜黄强过铝质S型花岗岩成因及其对华南早古生代陆内造山运动的制约[J]. 地质通报, 2022, 41(5): 788-809. doi: 10.12097/j.issn.1671-2552.2022.05.006
引用本文: 何世伟, 王凯兴, 刘晓东, 雷勇亮. 江西宜黄强过铝质S型花岗岩成因及其对华南早古生代陆内造山运动的制约[J]. 地质通报, 2022, 41(5): 788-809. doi: 10.12097/j.issn.1671-2552.2022.05.006
HE Shiwei, WANG Kaixing, LIU Xiaodong, LEI Yongliang. Genesis of the Yihuang strong peraluminous S-type granite in Jiangxi Province and its constraints on Early Paleozoic intracontinental orogeny in South China[J]. Geological Bulletin of China, 2022, 41(5): 788-809. doi: 10.12097/j.issn.1671-2552.2022.05.006
Citation: HE Shiwei, WANG Kaixing, LIU Xiaodong, LEI Yongliang. Genesis of the Yihuang strong peraluminous S-type granite in Jiangxi Province and its constraints on Early Paleozoic intracontinental orogeny in South China[J]. Geological Bulletin of China, 2022, 41(5): 788-809. doi: 10.12097/j.issn.1671-2552.2022.05.006

江西宜黄强过铝质S型花岗岩成因及其对华南早古生代陆内造山运动的制约

  • 基金项目:
    国家自然科学基金项目《青海海德乌拉地区A型中-酸性火山岩成因及其铀成矿作用研究》(批准号:42072095)和中国核工业集团公司项目《西北古生代铀成矿特征研究》(编号:中核地[2008]74)
详细信息
    作者简介: 何世伟(1997-),男,在读硕士生,地质学专业。E-mail: 2234080826@qq.com
    通讯作者: 王凯兴(1985-),男,博士,副教授,矿产普查与勘探专业。E-mail: xy2gmo02@ecut.edu.cn
  • 中图分类号: P534.4;P588.12+1

Genesis of the Yihuang strong peraluminous S-type granite in Jiangxi Province and its constraints on Early Paleozoic intracontinental orogeny in South China

More Information
  • 宜黄花岗岩位于江西省中部宜黄县东南部,属武夷地块,主要岩石类型为二云母二长花岗岩。锆石U-Pb同位素测年表明,宜黄岩体形成于448 Ma。岩石具有高的SiO2、K2O、稀土元素总量(ΣREE=164.29×10 -6~256.66×10 -6)、CaO/Na2O值、A/CNK(1.23~1.45)、Rb/Sr值,以及低的P2O5、TiO2、TFeO/MgO、Al2O3/TiO2、Nb、Sr等值;轻稀土元素相对富集((La/Yb)N=12.02~34.43),具有中等负Eu异常(δEu=0.38~0.77),低εNd (t)值(-8.22~-13.93),高(87Sr/86Sr)i=(0.71283~0.72410)。锆石176Hf/177Hf值为0.28155~0.28250,εHf(t)值为-33.15~10.45。全岩Nd同位素二阶段模式年龄为1.99~2.31 Ga,锆石Hf同位素二阶段模式年龄为1.24~3.48 Ga。上述特征表明,宜黄花岗岩具有与强过铝质S型花岗岩类似的特征。宜黄花岗岩中黑云母富含Fe、Mg、Ti;白云母Ti、Al、Na含量高,Fe含量低。综合锆石饱和温度计、黑云母地质温度计、白云母地质压力计、锆石Ce异常等,宜黄花岗岩可能为华南元古宙地壳长石石英质岩石在高温、中等压力(9.5 kbar)和低氧逸度条件下部分熔融而成。在华南早古生代陆内造山作用的背景下,岩石圈拆沉作用引发上涌的地幔岩浆提供热,使华南元古宙地壳岩石发生部分熔融,形成宜黄花岗岩。

  • 加载中
  • 图 1  华南构造格架图[12](a)和研究区地质简图[15](b)

    Figure 1. 

    图 2  宜黄花岗岩镜下显微结构

    Figure 2. 

    图 3  宜黄花岗岩锆石阴极发光(CL)图像(a)、U-Pb年龄谐和图(b~e)和年龄加权平均值图(f、g)

    Figure 3. 

    图 4  宜黄花岗岩SiO2-K2O图解[55](a)、A/CNK-A/NK图解[56](b)、SiO2-(K2O+Na2O-CaO)图解[57](c)和SiO2-(TFeO/(TFeO+MgO))图解[57](d)

    Figure 4. 

    图 5  宜黄花岗岩球粒陨石标准化稀土元素配分图解(a,标准化值据参考文献[58])和原始地幔标准化微量元素蛛网图(b,标准化值据参考文献[59])

    Figure 5. 

    图 6  宜黄花岗岩(87Sr/86Sr)i-εNd(t)图解(a)和t-εNd(t)图解[63](b)

    Figure 6. 

    图 7  宜黄花岗岩黑云母分类图解[65]

    Figure 7. 

    图 8  宜黄花岗岩白云母化学成分图解[67](a)和原生、次生白云母判别图解[68](b)

    Figure 8. 

    图 9  宜黄花岗岩Al2O3/TiO2-CaO/Na2O图解[80](a)和黑云母Mg2+ -Fe3+-Fe2+图解[79](b)

    Figure 9. 

    图 10  宜黄花岗岩SiO2-Pb(a)、SiO2-P2O5图解(b)(I型和S型花岗岩趋势据参考文献[84])、Rb-Th含量图解[85](c)和104×Ga/Al-(K2O+Na2O)图解[86](d)

    Figure 10. 

    图 11  宜黄花岗Al2O3-(Na2O+K2O)-CaO-(TFeO+MgO)图解[71]

    Figure 11. 

    图 12  宜黄花岗岩黑云母MgO-TFeO/(TFeO+MgO)图解[90](a)和Rb/Sr-Rb/Ba图解[74](b)

    Figure 12. 

    图 13  华南古生代花岗岩锆石年龄频率直方图[31]

    Figure 13. 

    表 1  宜黄花岗岩(17YH-03)LA-ICP-MS锆石U-Th-Pb测试结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb results of the Yihuang granite(17YH-03)

    样品点 含量/10-6 Th/U 同位素比值 年龄/Ma TTi/℃ 氧逸度
    U Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Pb 238Pb/232Pb 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th
    17YH-03-01 756.18 169.08 0.22 0.0563 0.0010 0.6871 0.0124 0.0886 0.0017 0.0400 0.0025 7.0139 0.5025 464 39 531 7 547 10 793 49
    17YH-03-02 111.71 130.88 1.17 0.0670 0.0016 1.0493 0.0316 0.1147 0.0032 0.0366 0.0008 0.8869 0.0321 837 51 729 16 700 18 726 17
    17YH-03-03 204.73 186.88 0.91 0.0670 0.0015 1.0589 0.0285 0.1153 0.0024 0.0392 0.0014 1.2381 0.0464 837 46 733 14 703 14 777 27
    17YH-03-04 1016.23 245.92 0.24 0.0561 0.0007 0.5582 0.0104 0.0726 0.0015 0.0228 0.0008 4.3833 0.1141 456 29 450 7 452 9 457 17 717 -21.01
    17YH-03-05 118.50 111.83 0.94 0.0634 0.0019 1.0240 0.0300 0.1180 0.0027 0.0384 0.0020 1.1685 0.0314 722 62 716 15 719 16 761 38
    17YH-03-06 198.91 75.88 0.38 0.1595 0.0024 9.0771 0.2401 0.4149 0.0100 0.1317 0.0035 2.7373 0.0765 2450 25 2346 24 2237 46 2501 63
    17YH-03-07 134.65 83.16 0.62 0.1626 0.0025 8.6840 0.1921 0.3910 0.0088 0.1358 0.0051 1.7883 0.0692 2483 26 2305 20 2127 41 2573 91
    17YH-03-08 107.43 71.96 0.67 0.1046 0.0026 4.1470 0.1107 0.2876 0.0061 0.0941 0.0025 1.7361 0.0681 1707 46 1664 22 1629 31 1818 47
    17YH-03-09 75.43 42.73 0.57 0.0667 0.0023 1.2925 0.0433 0.1406 0.0032 0.0461 0.0015 2.0511 0.0607 827 73 842 19 848 18 912 29
    17YH-03-10 136.65 55.33 0.40 0.0634 0.0013 1.0343 0.0304 0.1192 0.0028 0.0411 0.0008 5.3034 0.8685 721 44 721 15 726 16 814 16
    17YH-03-11 164.25 92.88 0.57 0.0641 0.0009 1.0325 0.0229 0.1171 0.0022 0.0390 0.0007 2.3623 0.1625 745 30 720 11 714 13 773 13
    17YH-03-12 415.86 216.03 0.52 0.0574 0.0010 0.5633 0.0146 0.0712 0.0013 0.0236 0.0005 2.2082 0.0557 505 39 454 10 444 8 472 10 885 -16.04
    17YH-03-13 194.82 57.91 0.30 0.0580 0.0010 0.5674 0.0126 0.0715 0.0014 0.0228 0.0005 3.9654 0.1839 529 37 456 8 445 8 456 10 782 -26.44
    17YH-03-14 441.22 34.23 0.08 0.0589 0.0007 0.7144 0.0136 0.0882 0.0014 0.0374 0.0020 27.7100 2.5308 562 27 547 8 545 8 743 39
    17YH-03-15 160.47 212.97 1.33 0.0628 0.0016 1.0325 0.0316 0.1193 0.0024 0.0392 0.0013 0.8421 0.0511 700 54 720 16 726 14 778 25
    17YH-03-16 151.11 66.03 0.44 0.0639 0.0020 1.0310 0.0413 0.1174 0.0028 0.0427 0.0019 2.4157 0.1333 738 66 719 21 716 16 845 37
    17YH-03-17 153.67 65.03 0.42 0.0621 0.0020 1.0198 0.0434 0.1194 0.0033 0.0388 0.0014 3.2370 0.3983 679 68 714 22 727 19 769 27
    17YH-03-18 527.33 175.60 0.33 0.0615 0.0008 1.0280 0.0253 0.1204 0.0025 0.0381 0.0011 4.0031 0.2943 658 26 718 13 733 15 756 22
    17YH-03-19 1031.31 243.24 0.24 0.0553 0.0008 0.5487 0.0087 0.0720 0.0011 0.0220 0.0003 4.4331 0.1528 423 31 444 6 448 7 440 6 714 -16.99
    17YH-03-20 967.27 37.99 0.04 0.0564 0.0009 0.5652 0.0103 0.0726 0.0012 0.0205 0.0008 57.5308 9.7256 467 35 455 7 452 7 409 16 752 -20.93
    下载: 导出CSV

    表 2  宜黄花岗岩主量、微量和稀土元素分析结果

    Table 2.  Major, trace elements and REE compositions of the Yihuang granite

    样品号 17YH-02 17YH-03 17YH-05 17YH-06 17YH-07 17YH-08 17YH-10 样品号 17YH-02 17YH-03 17YH-05 17YH-06 17YH-07 17YH-08 17YH-10
    SiO2 68.89 71.14 67.69 73.35 66.76 66.18 70.61 Nb 11.30 12.70 15.30 63.90 16.80 25.30 30.20
    TiO2 0.49 0.33 0.48 0.55 0.64 0.51 0.66 Ta 0.90 1.20 1.40 7.80 1.30 2.30 1.80
    Al2O3 15.87 15.77 15.92 11.68 14.96 16.01 12.42 Zr 205.00 174.00 185.00 314.00 139.00 332.00 197.00
    TFe2O3 3.46 2.44 3.22 5.20 5.69 3.71 5.42 Hf 5.10 4.60 5.30 9.30 3.80 9.80 5.30
    MnO 0.05 0.05 0.05 0.06 0.11 0.08 0.05 Pb 18.00 16.00 35.00 17.00 22.00 26.00 22.00
    MgO 1.35 0.84 1.26 1.59 2.93 1.44 1.75 Th 13.65 13.70 13.65 18.75 14.20 18.50 14.85
    CaO 1.94 1.88 1.62 0.45 1.45 1.49 1.26 U 1.94 3.21 3.78 27.70 3.61 5.72 3.14
    Na2O 2.71 2.19 3.13 2.25 3.13 3.34 2.44 La 42.90 46.00 37.40 42.50 45.30 56.60 47.00
    K2O 3.74 4.22 4.25 3.25 2.92 4.43 3.30 Ce 75.20 84.50 74.30 83.40 81.80 109.50 90.10
    P2O5 0.16 0.26 0.23 0.42 0.12 0.64 0.08 Pr 7.27 8.29 7.53 8.97 8.17 11.45 8.99
    烧失量 0.94 1.27 2.08 0.41 1.67 1.23 0.95 Nd 26.20 29.50 28.10 33.10 29.90 42.30 32.40
    总量 99.60 100.39 99.93 99.21 100.38 99.06 98.94 Sm 4.10 5.42 5.48 6.74 5.50 8.52 6.02
    TFeO 3.11 2.20 2.90 4.68 5.12 3.34 4.88 Eu 0.90 1.03 1.16 0.90 1.35 1.26 0.71
    A/NK 1.86 1.93 1.63 1.62 1.80 1.55 1.64 Gd 3.06 4.91 4.36 5.97 5.18 8.17 5.12
    A/CNK 1.32 1.36 1.25 1.45 1.37 1.23 1.26 Tb 0.37 0.73 0.58 1.02 0.80 1.38 0.71
    Co 9.00 6.00 6.00 7.00 13.00 8.00 12.00 Dy 1.93 3.83 3.09 5.97 4.93 8.34 3.78
    Cr 23.00 8.00 16.00 50.00 66.00 22.00 52.00 Ho 0.35 0.70 0.56 1.09 1.00 1.55 0.67
    V 45.00 28.00 35.00 55.00 79.00 43.00 67.00 Er 0.91 1.71 1.51 2.79 2.91 4.02 1.64
    Ni 10.00 8.00 12.00 13.00 27.00 25.00 23.00 Tm 0.13 0.22 0.21 0.38 0.41 0.52 0.21
    Zn 78.00 60.00 74.00 115.00 69.00 125.00 116.00 Yb 0.84 1.27 1.36 2.32 2.54 2.70 1.26
    Cs 7.68 5.37 14.25 20.50 17.35 14.55 2.42 Lu 0.13 0.18 0.20 0.34 0.39 0.35 0.20
    Sc 7.00 5.00 6.00 11.00 13.00 11.00 9.00 ΣREE 164.29 188.29 165.84 195.49 190.18 256.66 198.81
    Ga 20.50 21.60 20.10 30.30 20.10 25.60 19.70 Sn 3.00 3.00 4.00 9.00 4.00 10.00 3.00
    Ba 763.00 122.50 675.00 424.00 624.00 631.00 174.50 Cu 5.00 5.00 18.00 35.00 43.00 1.00 47.00
    Rb 134.50 113.50 197.50 269.00 167.50 240.00 91.80 (La/Yb)N 34.43 24.42 18.54 12.35 12.02 14.13 25.15
    Sr 240.00 211.00 180.00 24.00 221.00 122.00 172.00 σEu 0.75 0.60 0.71 0.43 0.77 0.46 0.38
    Y 9.60 19.10 15.20 29.60 29.50 46.80 18.10
    注:A/CNK =Al2O3/(CaO+Na2O+K2O)(摩尔数);A/NK = Al2O3/(Na2O+K2O)(摩尔数);主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表 3  宜黄花岗岩Sr-Nd同位素组成

    Table 3.  Sr and Nd isotopic compositions of the Yihuang granite

    样品号 t/Ma 87Sr/86Sr 87Rb/86Sr (87Sr/86Sr)i 143Nd/144Nd 147Sm/144Nd (144Nd/143Nd)i εNd(t) TDM2/Ga
    17YH-01 440 0.728953 1.80 0.71765 0.511865 0.1074 0.511556 -10.07 1.99
    17YH-03 440 0.724157 1.42 0.71527 0.511971 0.1112 0.511650 -8.22 1.84
    17YH-06 440 0.926634 34.11 0.71283 0.511713 0.1232 0.511358 -13.93 2.31
    17YH-07 440 0.737056 2.07 0.72410 0.511771 0.1113 0.511450 -12.13 2.16
    17YH-08 440 0.754705 5.30 0.72146 0.511806 0.1219 0.511455 -12.04 2.15
    下载: 导出CSV

    表 4  宜黄花岗岩锆石Lu-Hf同位素组成

    Table 4.  Zircon Lu-Hf isotopic compositions of the Yihuang granite

    测点 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ 176Hf/177Hf εHf(0) εHf(t) TDM1/Ma TDM2/Ma fLu /Hf
    17YH-03-01 547 0.101909 0.003388 0.282209 0.000029 0.282173725 -19.92757022 -9.12 1570 2071 -0.90
    17YH-03-02 700 0.072115 0.002240 0.282230 0.000022 0.282200042 -19.18479717 -4.79 1491 1917 -0.93
    17YH-03-03 703 0.079802 0.002504 0.282039 0.000023 0.282006102 -25.9147082 -11.58 1777 2341 -0.92
    17YH-03-04 452 0.034057 0.001136 0.282466 0.000028 0.282456529 -10.81633903 -1.22 1115 1504 -0.97
    17YH-03-05 719 0.056938 0.001908 0.282019 0.000023 0.281993294 -26.62629045 -11.68 1777 2360 -0.94
    17YH-03-06 2237 0.033367 0.001084 0.281640 0.000024 0.281593529 -40.03990314 8.45 2263 2278 -0.97
    17YH-03-07 2127 0.097041 0.003043 0.281844 0.000025 0.281720891 -32.81202255 10.45 2088 2068 -0.91
    17YH-03-08 1629 0.037715 0.001000 0.281728 0.000029 0.281697445 -36.90859115 -1.74 2136 2437 -0.97
    17YH-03-09 848 0.052735 0.001685 0.282341 0.000025 0.282314469 -15.22921407 2.56 1309 1570 -0.95
    17YH-03-10 726 0.072647 0.002313 0.282142 0.000025 0.282110000 -22.29477075 -7.40 1620 2099 -0.93
    17YH-03-11 714 0.037129 0.001252 0.282517 0.000023 0.282500605 -9.003460885 6.17 1046 1240 -0.96
    17YH-03-12 444 0.016447 0.000500 0.282378 0.000023 0.282374333 -3.91608652 -4.30 1218 1692 -0.98
    17YH-03-13 445 0.032198 0.000843 0.282395 0.000025 0.282387755 -13.33942868 -3.79 1206 1661 -0.97
    17YH-03-14 545 0.047093 0.001494 0.282042 0.000025 0.282026926 -25.80900161 -14.37 1725 2394 -0.96
    17YH-03-15 726 0.069833 0.002283 0.281975 0.000024 0.281943534 -28.19527687 -13.29 1859 2464 -0.93
    17YH-03-16 716 0.032502 0.001029 0.282435 0.000023 0.282421019 -11.92260108 3.39 1156 1417 -0.97
    17YH-03-17 727 0.090670 0.002446 0.282193 0.000024 0.282159618 -20.47421569 -5.62 1552 1989 -0.93
    17YH-03-18 733 0.055080 0.001736 0.282411 0.000025 0.282387425 -12.75412659 2.58 1211 1481 -0.95
    17YH-03-19 448 0.069807 0.002203 0.282261 0.000023 0.282242884 -18.05721116 -8.86 1443 1980 -0.93
    17YH-03-20 452 0.054746 0.001825 0.281570 0.000023 0.281554421 -42.51203024 -33.15 2406 3475 -0.95
    下载: 导出CSV

    表 5  宜黄花岗岩中黑云母成分

    Table 5.  Compositions of biotite from the Yihuang granite  %

    点号 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O F Cl H2O F=O Cl=O 总计
    17YH-03-7.1 35.87 3.02 18.28 3.72 17.06 0.31 8.67 0.03 0.18 9.77 0.00 0.06 4.01 0.00 0.01 100.98
    17YH-03-7.2 35.99 3.17 18.06 3.83 17.63 0.39 8.45 0.00 0.19 9.72 0.00 0.06 4.03 0.00 0.01 101.51
    17YH-03-7.3 35.89 2.81 17.95 3.75 17.25 0.27 8.58 0.03 0.15 9.56 0.00 0.04 3.98 0.00 0.01 100.25
    17YH-03-7.4 35.01 3.03 17.69 3.77 17.62 0.30 8.55 0.00 0.12 9.57 0.06 0.06 3.95 0.03 0.01 99.71
    17YH-03-7.5 34.58 2.91 17.39 3.50 18.18 0.30 8.37 0.02 0.11 9.77 0.00 0.03 3.89 0.00 0.01 99.06
    17YH-03-7.6 34.51 2.66 17.11 3.43 18.34 0.29 8.31 0.02 0.15 9.66 0.00 0.05 3.87 0.00 0.01 98.40
    17YH-03-7.7 35.18 2.92 17.85 3.94 17.03 0.28 8.63 0.00 0.20 10.01 0.38 0.05 4.00 0.16 0.01 100.49
    17YH-03-7.8 35.40 2.96 17.71 3.70 17.40 0.34 8.50 0.01 0.23 9.53 0.00 0.07 3.96 0.00 0.02 99.79
    17YH-03-7.9 35.02 2.96 17.44 3.68 17.58 0.34 8.06 0.03 0.33 9.52 0.00 0.11 3.93 0.00 0.02 98.99
    17YH-03-7.10 34.89 2.77 17.34 3.60 18.52 0.33 8.08 0.03 0.14 9.71 0.00 0.07 3.91 0.00 0.02 99.39
    17YH-03-7.11 35.09 3.00 17.82 4.04 16.55 0.29 8.85 0.00 0.14 9.31 0.38 0.05 3.99 0.16 0.01 99.51
    17YH-03-7.12 35.41 2.96 17.98 2.03 18.53 0.33 8.37 0.00 0.20 9.80 0.00 0.09 3.95 0.00 0.02 99.67
    17YH-03-7.13 35.32 3.12 17.67 2.03 18.96 0.32 8.37 0.01 0.18 9.88 0.00 0.05 3.94 0.00 0.01 99.83
    17YH-03-7.14 35.70 3.10 18.40 2.10 18.14 0.31 8.62 0.00 0.13 9.29 0.00 0.05 3.97 0.00 0.01 99.80
    17YH-03-7.15 35.41 3.11 17.90 2.05 18.42 0.37 8.32 0.00 0.18 9.66 0.00 0.04 3.93 0.00 0.01 99.40
    17YH-03-7.16 35.51 3.13 18.06 2.24 18.97 0.32 8.42 0.00 0.18 9.54 0.33 0.04 4.01 0.14 0.01 100.77
    17YH-03-7.17 36.32 3.21 18.59 2.17 17.25 0.26 8.23 0.01 0.23 9.04 0.21 0.06 4.01 0.09 0.01 99.57
    17YH-03-7.18 36.39 3.27 18.53 2.27 17.75 0.27 7.47 0.03 0.15 9.31 0.37 0.08 4.03 0.16 0.02 99.93
    17YH-03-7.19 35.91 2.98 18.80 3.92 15.19 0.26 8.64 0.01 0.27 9.55 0.35 0.08 4.04 0.15 0.02 100.01
    17YH-03-7.20 36.01 2.92 18.46 2.07 18.43 0.38 8.29 0.00 0.20 9.84 0.00 0.08 4.00 0.00 0.02 100.68
    17YH-03-7.21 35.67 3.19 18.02 4.19 16.68 0.30 8.58 0.01 0.20 9.56 0.47 0.06 4.05 0.20 0.01 100.98
    17YH-03-7.22 34.93 2.65 18.23 2.05 19.23 0.32 8.59 0.01 0.15 9.13 0.00 0.04 3.92 0.00 0.01 99.26
    点号 Si Ti Al Fe3+ Fe2+ Mn Mg Ca Na K F Cl OH
    17YH-03-7.1 2.69 0.17 1.61 0.21 1.07 0.02 0.97 0.00 0.03 0.93 0.00 0.01 1.00
    17YH-03-7.2 2.69 0.18 1.59 0.22 1.10 0.02 0.94 0.00 0.03 0.93 0.00 0.01 1.00
    17YH-03-7.3 2.71 0.16 1.60 0.21 1.09 0.02 0.97 0.00 0.02 0.92 0.00 0.00 1.00
    17YH-03-7.4 2.67 0.17 1.59 0.22 1.12 0.02 0.97 0.00 0.02 0.93 0.02 0.01 1.00
    17YH-03-7.5 2.67 0.17 1.58 0.20 1.17 0.02 0.96 0.00 0.02 0.96 0.00 0.00 1.00
    17YH-03-7.6 2.68 0.16 1.57 0.20 1.19 0.02 0.96 0.00 0.02 0.96 0.00 0.01 1.00
    17YH-03-7.7 2.66 0.17 1.59 0.22 1.08 0.02 0.97 0.00 0.03 0.97 0.09 0.01 1.01
    17YH-03-7.8 2.69 0.17 1.59 0.21 1.11 0.02 0.96 0.00 0.03 0.92 0.00 0.01 1.00
    17YH-03-7.9 2.69 0.17 1.58 0.21 1.13 0.02 0.92 0.00 0.05 0.93 0.00 0.01 1.01
    17YH-03-7.10 2.68 0.16 1.57 0.21 1.19 0.02 0.93 0.00 0.02 0.95 0.00 0.01 1.00
    17YH-03-7.11 2.66 0.17 1.59 0.23 1.05 0.02 1.00 0.00 0.02 0.90 0.09 0.01 1.01
    17YH-03-7.12 2.70 0.17 1.62 0.12 1.18 0.02 0.95 0.00 0.03 0.95 0.00 0.01 1.01
    17YH-03-7.13 2.70 0.18 1.59 0.12 1.21 0.02 0.95 0.00 0.03 0.96 0.00 0.01 1.00
    17YH-03-7.14 2.70 0.18 1.64 0.12 1.15 0.02 0.97 0.00 0.02 0.90 0.00 0.01 1.00
    17YH-03-7.15 2.71 0.18 1.61 0.12 1.18 0.02 0.95 0.00 0.03 0.94 0.00 0.01 1.00
    17YH-03-7.16 2.68 0.18 1.61 0.13 1.20 0.02 0.95 0.00 0.03 0.92 0.08 0.01 1.01
    17YH-03-7.17 2.73 0.18 1.65 0.12 1.09 0.02 0.92 0.00 0.03 0.87 0.05 0.01 1.01
    17YH-03-7.18 2.74 0.19 1.64 0.13 1.12 0.02 0.84 0.00 0.02 0.89 0.09 0.01 1.01
    17YH-03-7.19 2.69 0.17 1.66 0.22 0.95 0.02 0.96 0.00 0.04 0.91 0.08 0.01 1.01
    17YH-03-7.20 2.71 0.17 1.64 0.12 1.16 0.02 0.93 0.00 0.03 0.95 0.00 0.01 1.00
    17YH-03-7.21 2.67 0.18 1.59 0.24 1.04 0.02 0.96 0.00 0.03 0.91 0.11 0.01 1.01
    17YH-03-7.22 2.68 0.15 1.65 0.12 1.23 0.02 0.98 0.00 0.02 0.89 0.00 0.00 1.00
    点号 以22个氧原子计算Ti Al Al Fe/(Fe+Mg) Mg/(Mg+Fe) T/℃
    17YH-03-7.1 0.34 1.31 0.30 0.52 0.48 676.67
    17YH-03-7.2 0.36 1.31 0.28 0.54 0.46 680.96
    17YH-03-7.3 0.32 1.29 0.30 0.53 0.47 665.50
    17YH-03-7.4 0.35 1.33 0.26 0.54 0.46 677.59
    17YH-03-7.5 0.34 1.33 0.25 0.55 0.45 671.01
    17YH-03-7.6 0.31 1.32 0.25 0.55 0.45 657.43
    17YH-03-7.7 0.33 1.34 0.25 0.53 0.47 672.78
    17YH-03-7.8 0.34 1.31 0.28 0.53 0.47 673.67
    17YH-03-7.9 0.34 1.31 0.27 0.55 0.45 672.96
    17YH-03-7.10 0.32 1.32 0.26 0.56 0.44 660.45
    17YH-03-7.11 0.34 1.34 0.26 0.51 0.49 680.05
    17YH-03-7.12 0.34 1.30 0.32 0.55 0.45 671.14
    17YH-03-7.13 0.36 1.30 0.29 0.56 0.44 678.43
    17YH-03-7.14 0.35 1.30 0.34 0.54 0.46 678.93
    17YH-03-7.15 0.36 1.29 0.32 0.55 0.45 678.88
    17YH-03-7.16 0.36 1.32 0.28 0.56 0.44 677.44
    17YH-03-7.17 0.36 1.27 0.38 0.54 0.46 683.58
    17YH-03-7.18 0.37 1.26 0.38 0.57 0.43 681.91
    17YH-03-7.19 0.34 1.31 0.35 0.50 0.50 679.74
    17YH-03-7.20 0.33 1.29 0.35 0.56 0.44 666.72
    17YH-03-7.21 0.36 1.33 0.26 0.52 0.48 685.29
    17YH-03-7.22 0.31 1.32 0.32 0.56 0.44 653.75
    注:T={[ln(Ti)-a-c(XMg)3/b]}0.333,其中Ti以22个氧原子为基准计算,XMg为Mg/(Mg+Fe),a=-2.3594,b=4.6482×10-9和c=-1.7283
    下载: 导出CSV

    表 6  宜黄花岗岩中白云母成分

    Table 6.  Compositions of muscovites from the Yihuang granite  %

    点号 SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O F Cl P2O5 H2O* 总计 Fe2O3 FeO
    17YH-03-4.1 47.56 1.03 34.42 1.07 0.02 0.63 0.01 0.46 8.94 0.00 0.00 0.00 4.51 98.65 0.20 0.90
    17YH-03-4.2 47.54 0.86 34.66 1.14 0.01 0.70 0.04 0.42 9.38 0.00 0.01 0.04 4.52 99.33 0.21 0.96
    17YH-03-4.3 47.39 0.99 34.16 1.23 0.04 0.70 0.00 0.49 9.06 0.00 0.00 0.00 4.50 98.56 0.23 1.03
    17YH-03-4.4 47.92 1.03 34.54 1.17 0.04 0.79 0.01 0.49 8.78 0.00 0.00 0.04 4.55 99.35 0.21 0.97
    17YH-03-4.5 48.00 0.86 35.01 1.16 0.01 0.75 0.04 0.41 8.90 0.00 0.00 0.00 4.56 99.69 0.21 0.97
    17YH-03-4.6 46.13 0.89 33.65 1.08 0.01 0.73 0.08 0.54 10.08 0.00 0.04 0.05 4.41 97.68 0.20 0.91
    17YH-03-4.7 48.00 1.08 34.54 1.14 0.00 0.63 0.06 0.48 8.65 0.00 0.00 0.02 4.54 99.16 0.21 0.96
    17YH-03-4.8 48.52 1.65 33.46 1.45 0.00 0.87 0.01 0.41 8.94 0.00 0.00 0.03 4.56 99.89 0.26 1.21
    17YH-03-4.9 47.84 0.72 34.81 0.94 0.00 0.58 0.01 0.51 9.50 0.00 0.00 0.04 4.54 99.48 0.17 0.79
    17YH-03-4.10 48.79 0.44 31.94 2.18 0.03 1.60 0.08 0.27 8.86 0.01 0.00 0.00 4.49 98.68 0.40 1.82
    17YH-03-4.11 47.87 1.03 34.55 1.17 0.00 0.73 0.02 0.49 9.35 0.00 0.02 0.01 4.54 99.77 0.21 0.98
    17YH-03-4.12 48.22 0.96 35.17 0.98 0.00 0.61 0.03 0.54 9.20 0.00 0.01 0.03 4.58 100.33 0.18 0.82
    17YH-03-4.13 47.99 0.93 34.73 1.04 0.00 0.61 0.02 0.46 9.41 0.00 0.02 0.01 4.55 99.76 0.19 0.87
    17YH-03-4.14 48.66 0.96 34.48 1.31 0.01 0.80 0.00 0.34 9.20 0.00 0.00 0.00 4.58 100.33 0.24 1.09
    17YH-03-4.15 48.31 0.91 34.62 1.32 0.01 0.78 0.00 0.42 9.36 0.06 0.00 0.02 4.55 100.36 0.24 1.10
    17YH-03-4.16 48.51 1.46 33.56 1.37 0.04 0.99 0.02 0.35 8.81 0.00 0.00 0.02 4.56 99.69 0.25 1.14
    17YH-03-4.17 47.92 1.06 34.21 1.14 0.01 0.69 0.07 0.39 8.85 0.00 0.01 0.01 4.52 98.86 0.21 0.95
    17YH-03-4.18 47.63 1.09 34.62 1.15 0.02 0.66 0.02 0.43 9.09 0.00 0.00 0.01 4.53 99.25 0.21 0.96
    17YH-03-4.19 47.79 1.06 34.14 1.20 0.04 0.70 0.09 0.46 8.90 0.02 0.01 0.00 4.50 98.91 0.22 1.00
    17YH-03-4.20 48.23 1.02 34.66 1.17 0.01 0.70 0.02 0.47 8.81 0.00 0.00 0.00 4.56 99.65 0.21 0.97
    17YH-03-4.21 48.14 1.09 33.95 1.14 0.02 0.72 0.04 0.44 9.05 0.00 0.01 0.00 4.53 99.13 0.21 0.95
    17YH-03-4.22 48.47 0.92 34.65 1.20 0.02 0.80 0.02 0.42 8.81 0.05 0.02 0.00 4.55 99.93 0.22 1.00
    点号 Si AlIV AlVI Ti Fe3+ Fe2+ Mn Mg Ca Na K F Cl OH 以11氧原子数计算Si P/kbar(计算温度为885℃)
    17YH-03-4.1 6.32 1.68 3.71 0.10 0.02 0.10 0.00 0.12 0.00 0.12 1.51 0.00 0.00 4.00 3.16 9.28
    17YH-03-4.2 6.29 1.71 3.70 0.09 0.02 0.11 0.00 0.14 0.01 0.11 1.58 0.00 0.00 4.00 3.15 8.92
    17YH-03-4.3 6.31 1.69 3.68 0.10 0.02 0.11 0.00 0.14 0.00 0.13 1.54 0.00 0.00 4.00 3.16 9.23
    17YH-03-4.4 6.32 1.68 3.68 0.10 0.02 0.11 0.00 0.16 0.00 0.13 1.48 0.00 0.00 4.00 3.16 9.26
    17YH-03-4.5 6.31 1.69 3.73 0.09 0.02 0.11 0.00 0.15 0.01 0.10 1.49 0.00 0.00 4.00 3.15 9.11
    17YH-03-4.6 6.25 1.75 3.63 0.09 0.02 0.10 0.00 0.15 0.01 0.14 1.74 0.00 0.01 3.99 3.13 8.38
    17YH-03-4.7 6.33 1.67 3.70 0.11 0.02 0.11 0.00 0.12 0.01 0.12 1.46 0.00 0.00 4.00 3.17 9.47
    17YH-03-4.8 6.38 1.62 3.56 0.16 0.03 0.13 0.00 0.17 0.00 0.10 1.50 0.00 0.00 4.00 3.19 10.05
    17YH-03-4.9 6.32 1.68 3.73 0.07 0.02 0.09 0.00 0.11 0.00 0.13 1.60 0.00 0.00 4.00 3.16 9.24
    17YH-03-4.10 6.50 1.50 3.52 0.04 0.04 0.20 0.00 0.32 0.01 0.07 1.51 0.00 0.00 3.99 3.25 11.74
    17YH-03-4.11 6.31 1.69 3.67 0.10 0.02 0.11 0.00 0.14 0.00 0.13 1.57 0.00 0.00 4.00 3.15 9.13
    17YH-03-4.12 6.30 1.70 3.72 0.09 0.02 0.09 0.00 0.12 0.00 0.14 1.53 0.00 0.00 4.00 3.15 9.05
    17YH-03-4.13 6.32 1.68 3.71 0.09 0.02 0.10 0.00 0.12 0.00 0.12 1.58 0.00 0.00 4.00 3.16 9.26
    17YH-03-4.14 6.36 1.64 3.67 0.09 0.02 0.12 0.00 0.16 0.00 0.09 1.53 0.00 0.00 4.00 3.18 9.86
    17YH-03-4.15 6.33 1.67 3.67 0.09 0.02 0.12 0.00 0.15 0.00 0.11 1.56 0.02 0.00 3.98 3.16 9.39
    17YH-03-4.16 6.38 1.62 3.58 0.14 0.02 0.13 0.00 0.19 0.00 0.09 1.48 0.00 0.00 4.00 3.19 10.09
    17YH-03-4.17 6.35 1.65 3.69 0.11 0.02 0.11 0.00 0.14 0.01 0.10 1.50 0.00 0.00 4.00 3.17 9.68
    17YH-03-4.18 6.30 1.70 3.69 0.11 0.02 0.11 0.00 0.13 0.00 0.11 1.53 0.00 0.00 4.00 3.15 8.99
    17YH-03-4.19 6.34 1.66 3.67 0.11 0.02 0.11 0.00 0.14 0.01 0.12 1.51 0.01 0.00 3.99 3.17 9.53
    17YH-03-4.20 6.34 1.66 3.70 0.10 0.02 0.11 0.00 0.14 0.00 0.12 1.48 0.00 0.00 4.00 3.17 9.51
    17YH-03-4.21 6.37 1.63 3.66 0.11 0.02 0.10 0.00 0.14 0.01 0.11 1.53 0.00 0.00 4.00 3.18 9.96
    17YH-03-4.22 6.35 1.65 3.70 0.09 0.02 0.11 0.00 0.16 0.00 0.11 1.47 0.02 0.01 3.98 3.17 9.70
    注:P(kbar)=-2.6786Si2+43.975Si+0.01253T(℃)-113.9995,Si(11个氧原子计算)、T(锆石Ti温度885℃)
    下载: 导出CSV
  • [1]

    陈培荣, 华仁民, 章邦桐, 等. 南岭燕山早期后造山花岗岩类: 岩石学制约和地球动力学背景[J]. 中国科学(D辑), 2002, 32(4): 279-289. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200204002.htm

    [2]

    王德滋. 华南花岗岩研究的回顾与展望[J]. 高校地质学报, 2004, 10(3): 305-314. doi: 10.3969/j.issn.1006-7493.2004.03.001

    [3]

    李剑锋, 付建明, 马昌前, 等. 南岭九嶷山地区砂子岭岩体成因与构造属性: 来自锆石U-Pb年代学、岩石地球化学及Sr, Nd, Hf同位素证据[J]. 地球科学, 2020, (2): 374-388. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002003.htm

    [4]

    徐德明, 蔺志永, 骆学全, 等. 钦-杭成矿带主要金属矿床成矿系列[J]. 地学前缘, 2015, 22(2): 7-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201502003.htm

    [5]

    张振杰, 左仁广. 闽西南地区大地构造演化和矿床时空分布规律[J]. 岩石学报, 2015, 31(1): 217-229. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501016.htm

    [6]

    李建威, 赵新福, 邓晓东, 等. 新中国成立以来中国矿床学研究若干重要进展[J]. 中国科学: 地球科学, 2019, 49(11): 1720-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201911003.htm

    [7]

    褚平利, 段政, 廖圣兵, 等. 江西大湖塘中生代花岗岩的成因与构造指示意义: 年代学, 矿物化学, 地球化学与Lu-Hf同位素制约[J]. 地质学报, 2019, 93(7): 1687-1707. doi: 10.3969/j.issn.0001-5717.2019.07.010

    [8]

    周涛发, 范裕, 王世伟, 等. 长江中下游成矿带成矿规律和成矿模式[J]. 岩石学报, 2017, 33(11): 3353-3372. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711002.htm

    [9]

    黄兰椿, 蒋少涌. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究[J]. 岩石学报, 2012, 28(12): 3887-3900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212008.htm

    [10]

    毛景文, 陈懋弘, 袁顺达, 等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 2011, 85(5): 636-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105006.htm

    [11]

    Grabau A W. Stratigraphy of China, Part I, Paleozoic and older[J]. The Geological Survey of Agriculture and Commerce, Peking, 1924, 528: 1-6.

    [12]

    舒良树, 陈祥云, 楼法生. 华南前侏罗纪构造[J]. 地质学报, 2020, 94(2): 333-360. doi: 10.3969/j.issn.0001-5717.2020.02.001

    [13]

    王帅. 华南加里东期花岗岩岩石学特征, 成因类型及其构造动力学背景探讨[J]. 绿色科技, 2016, (22): 136-137. https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201622051.htm

    [14]

    崔圆圆, 赵志丹, 蒋婷, 等. 赣南早古生代晚期花岗岩类年代学、地球化学及岩石成因[J]. 岩石学报, 2013, 29(11): 4011-4024. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311030.htm

    [15]

    张苑, 舒良树, 陈祥云. 华南早古生代花岗岩的地球化学, 年代学及其成因研究——以赣中南为例[J]. 中国科学: 地球科学, 2011, 41(8): 1061-1079. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201108003.htm

    [16]

    孙涛. 新编华南花岗岩分布图及其说明[J]. 地质通报, 2006, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20060355&flag=1

    [17]

    周新民. 对华南花岗岩研究的若干思考[J]. 高校地质学报, 2003(4): 556-565. doi: 10.3969/j.issn.1006-7493.2003.04.009

    [18]

    Lin M, Peng S, Jiang X, et al. Geochemistry, petrogenesis and tectonic setting of Neoproterozoic mafic-ultramafic rocks from the western Jiangnan orogen, South China[J]. Gondwana Research, 2016, 35: 338-356. doi: 10.1016/j.gr.2015.05.015

    [19]

    Zhang Q, Jiang Y H, Wang G C, et al. Origin of Siluriangabbros and I-type granites in central Fujian, SE China: Implications for the evolution of the early Paleozoic orogen of South China[J]. Lithos, 2015, 216/217: 285-297. doi: 10.1016/j.lithos.2015.01.002

    [20]

    彭松柏, 刘松峰, 林木森, 等. 华夏早古生代俯冲作用(Ⅱ): 大爽高镁-镁质安山岩新证据[J]. 地球科学, 2016, 41(6): 931-947. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201606003.htm

    [21]

    许德如, 陈广浩, 夏斌, 等. 湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义[J]. 高校地质学报, 2006, 12(4): 507-521. doi: 10.3969/j.issn.1006-7493.2006.04.012

    [22]

    彭松柏, 金振民, 付建明, 等. 两广云开隆起区基性侵入岩的地球化学特征及其构造意义[J]. 地质通报, 2006, 25(4): 434-441. doi: 10.3969/j.issn.1671-2552.2006.04.002 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20060472&flag=1

    [23]

    彭松柏, 金振民, 刘云华, 等. 云开造山带强过铝深熔花岗岩地球化学, 年代学及构造背景[J]. 地球科学——中国地质大学学报, 2006, 31(1): 110-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601015.htm

    [24]

    Guo L Z, Shi Y S, Lu H F, et al. The Pre-Devonian Tectonic Patterns and Evolution of South China[J]. Journal of Southeast Asian Earth Sciences, 1989, 3(89): 87-93. https://www.sciencedirect.com/science/article/pii/0743954789900123

    [25]

    Wang Y J, Zhang A M, Fan W M, et al. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains[J]. Lithos, 2011, 127(1): 239-260.

    [26]

    Charvet J, Shu L S, Faure M, et al. Structural development of the lower Paleozoic belt of South China: Genesisofan intracontinental orogen[J]. Journal of Asian Earth Sciences, 2010, 39(4): 309-330. doi: 10.1016/j.jseaes.2010.03.006

    [27]

    Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 2010, 122(5/6): 772-793. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/122/5-6/772/125520/Magmatic-and-metamorphic-events-during-the-early

    [28]

    舒良树. 陆内造山带特征及其动力学讨论[J]. 地质学报, 2021, 95(1): 98-106. doi: 10.3969/j.issn.1006-0995.2021.01.020

    [29]

    孙涛, 陈培荣, 周新民, 等. 南岭东段强过铝质花岗岩中白云母研究[J]. 地质论评, 2002, 48(5): 518-525. doi: 10.3321/j.issn:0371-5736.2002.05.010

    [30]

    李三忠, 李玺瑶, 赵淑娟, 等. 全球早古生代造山带(Ⅲ): 华南陆内造山[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1005-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604003.htm

    [31]

    朱清波, 黄文成, 孟庆秀, 等. 华夏地块加里东期构造事件: 两类花岗岩的锆石U-Pb年代学和Lu-Hf同位素制约[J]. 中国地质, 2015, 42(6): 1715-1739. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201506005.htm

    [32]

    关义立, 袁超, 龙晓平, 等. 华南地块东部早古生代的陆内造山作用: 来自I型花岗岩的启示[J]. 大地构造与成矿学, 2013, 37(4): 698-720. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304014.htm

    [33]

    杜远生, 徐亚军. 华南加里东运动初探[J]. 地质科技情报, 2012, 31(05): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205007.htm

    [34]

    张爱梅, 王岳军, 范蔚茗, 等. 闽西南清流地区加里东期花岗岩锆石U-Pb年代学及Hf同位素组成研究[J]. 大地构造与成矿学, 2010, 34(3): 408-418. doi: 10.3969/j.issn.1001-1552.2010.03.013

    [35]

    Xu X B, Zhang Y Q, Shu L S, et al. LA-ICP-MS U-Pb and 40Ar/39Ar geochronology of the sheared metamorphic rocks in the Wuyishan: Constraints on the timing of Early Paleozoic and Early Mesozoic tectonothermal events in SE China[J]. Tectonophysics, 2011, 501: 71-86. doi: 10.1016/j.tecto.2011.01.014

    [36]

    舒良树. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带[J]. 高校地质学报, 2006, 12(4): 418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002

    [37]

    舒良树, 于津海, 贾东, 等. 华南东段早古生代造山带研究[J]. 地质通报, 2008, 27(10): 1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20081001&flag=1

    [38]

    王德滋, 林承毅, 周新民. 江西慈竹英云闪长岩体及其周围区域变质岩石的成因[J]. 南京大学学报(自然科学版), 1978, 1(1): 81-99. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ197801007.htm

    [39]

    Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1/2): 1-26. https://www.cambridge.org/core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh/article/i-and-stype-granites-in-the-lachlan-fold-belt/1ED56E09C9D5A715E5886862A9FCFD90

    [40]

    Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence[J]. Earth-Science Reviews, 2003, 61(1/2): 1-18. https://www.sciencedirect.com/science/article/pii/S0012825202001071

    [41]

    Martínez E M, Villaseca C, Orejana D, et al. Tracing magma sources of three different S-type peraluminous granitoid series by in situ U-Pb geochronology and Hf isotope zircon composition: The Variscan Montes de Toledo batholith(central Spain)[J]. Lithos, 2014, 200: 273-298. https://www.sciencedirect.com/science/article/pii/S0024493714001455#!

    [42]

    Simons B, Shail R K, Andersen J C Ø. The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England[J]. Lithos, 2016, 260: 76-94. doi: 10.1016/j.lithos.2016.05.010

    [43]

    Patiño Douce A E. Experimental generation of hybrid silicic melts by reaction of high‐Al basalt with metamorphic rocks[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B8): 15623-15639. doi: 10.1029/94JB03376

    [44]

    张芳荣, 沈渭洲, 舒良树, 等. 江西省早古生代晚期花岗岩的地球化学特征及其地质意义[J]. 岩石学报, 2010, 26(12): 3456-3468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012003.htm

    [45]

    Feng S J, Zhao K D, Ling H F, et al. Geochronology, elemental and Nd-Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China: Constraints on petrogenesis and post-collisional extension of the Wuyi-Yunkai orogeny[J]. Lithos, 2014, 206/207: 1-18. doi: 10.1016/j.lithos.2014.07.007

    [46]

    Yu P P, Zhang Y Z, Zhou Y Z, et al. Melt evolution of crustal anatexis recorded by the Early Paleozoic Baiyunshan migmatite-granite suite in South China[J]. Lithos, 2019, 332/333: 83-98. doi: 10.1016/j.lithos.2019.02.020

    [47]

    王鸿祯, 莫宣学. 中国地质构造述要[J]. 中国地质, 1996, 000(8): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI199608002.htm

    [48]

    贺健, 李龙明, 林寿发, 等. 政和-大埔断裂带内变基性岩成因及构造属性研究[J]. 地质学报, 2018, 92(5): 946-963. doi: 10.3969/j.issn.0001-5717.2018.05.004

    [49]

    于津海, 魏震洋, 王丽娟, 等. 华夏地块: 一个由古老物质组成的年轻陆块[J]. 高校地质学报, 2006, 12(4): 440-447. doi: 10.3969/j.issn.1006-7493.2006.04.004

    [50]

    于津海, 周新民, 赵蕾, 等. 南岭东段基底麻粒岩相变质岩的形成时代和原岩性质: 锆石的U-Pb-Hf同位素研究[J]. 科学通报, 2005, 50(16): 1758-1767. doi: 10.3321/j.issn:0023-074X.2005.16.015

    [51]

    殷继成, 何廷贵, 夏竹. 中国南方震旦纪大地构造单元划分与地层分区[J]. 安徽地质, 1994, (Z1): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ4Z1.011.htm

    [52]

    Geng J Z, Qiu K F, Gou Z Y, et al. Tectonic regime switchover of Triassic Western Qinling Orogen: Constraints from LA-ICP-MS zircon U-Pb geochronology and Lu-Hf isotope of Dangchuan intrusive complex in Gansu, China[J]. Chemie der Erde-Geochemistry, 2017, 77(4): 673-651.

    [53]

    李壮, 郎兴海, 章奇志, 等. 西藏浦桑果铜多金属矿床中酸性岩石成因及动力学背景——年代学、地球化学及Sr-Nd-Pb-Hf同位素约束[J]. 岩石学报, 2019, 35(3): 737-759. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903008.htm

    [54]

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [55]

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    [56]

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [57]

    Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42: 2033-2048. doi: 10.1093/petrology/42.11.2033

    [58]

    Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[C]//Developments in Geochemistry. Elsevier, 1984, 2: 63-114.

    [59]

    McDonough W F, Sun SS. The composition of the Earth[J]. Chem. Geol., 1995, 120: 223-253. doi: 10.1016/0009-2541(94)00140-4

    [60]

    许王, 刘福来, 刘超辉. 胶-辽-吉造山带北辽河变基性岩的成因、地球化学属性及其构造意义[J]. 岩石学报, 2017, 33(9): 2743-2757. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709006.htm

    [61]

    Rudnick R L, Gao S, Ling W L, et al. Petrology and geochemistry of spinel peridotite xenoliths fromHannuoba and Qixia, North China craton[J]. Lithos, 2004, 77(1/4): 609-637. . https://www.sciencedirect.com/science/article/pii/S0024493704000878

    [62]

    Ling H F, Shen W Z, Wang R C, et al. Geochemical characteristics and genesis of Neoproterozoic granitoids in the Northwestern margin of the Yangtze Block[J]. Phys. Chem. Earth, 2001, 26: 805-819 doi: 10.1016/S1464-1895(01)00129-6

    [63]

    沈渭洲, 张芳荣, 舒良树, 等. 江西宁冈岩体的形成时代, 地球化学特征及其构造意义[J]. 岩石学报, 2008, 24(10): 2244-2254. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810006.htm

    [64]

    吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    [65]

    Foster Margaret D. Interpretation of the composition of trioctahedral micas[J]. U S Geological Survey Professional Paper, 1960, 354B: 11-49. https://pubs.usgs.gov/pp/0354b/report.pdf

    [66]

    余振东, 项新葵, 谭荣, 等. 赣北大湖塘平苗矿段白云母花岗岩锆石U-Pb年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1505-1517. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202005016.htm

    [67]

    Clarke D B. The mineralogy of peraluminous granites: A review[J]. Can Mineral, 1981, 19: 3-17 https://pubs.geoscienceworld.org/canmin/article-abstract/19/1/3/11498/The-mineralogy-of-peraluminous-granites-a-review

    [68]

    Miller C F, Stoddard E F, Bradfish L J, et al. Composition of plutonic muscovite: Genetic implications[J]. Can Mineral, 1981, 19: 25-34 https://pubs.geoscienceworld.org/canmin/article-abstract/19/1/25/11497/Composition-of-plutonic-muscovite-genetic

    [69]

    Sylvester P J. Post-collisional strongly peraluminous granites[J]. lithos, 1998, 45: 29-44. doi: 10.1016/S0024-4937(98)00024-3

    [70]

    Calvin F M, McDowell S M, Mapes R W. Hot and cold Granites? Implication of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003, 31(6): 529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2

    [71]

    King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. J. Petrol., 1997, 38: 371-391. doi: 10.1093/petroj/38.3.371

    [72]

    Watson E B, Harrison T M. Zircon saturation revisited: Temperature and composition effect inavariety of crustal magmas types[J]. Earth Planet. Sci. Lett., 1983, 64: 295-304. doi: 10.1016/0012-821X(83)90211-X

    [73]

    Ferry J M, Watson E B. New thermodynamic models and revised calibrations for theTi-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437. doi: 10.1007/s00410-007-0201-0

    [74]

    Henry D J, Guidotti C V, Thomson J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms[J]. American Mineralogist, 2005, 90(2/3): 316-328. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/90/2-3/316/44369/The-Ti-saturation-surface-for-low-to-medium

    [75]

    豆敬兆, 付顺, 张华锋. 胶东郭家岭岩体固结冷却轨迹与隆升剥蚀[J]. 岩石学报, 2015, 31(8): 2325-2336. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508014.htm

    [76]

    Velde B. Phengite micas: Synthesis, stability, and natural occurrence[J]. Am. J. Sci., 1965, 263: 886-913. doi: 10.2475/ajs.263.10.886

    [77]

    Massonne H J, Schreyer W. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz[J]. Contrib. Mineral Petrol., 1987, 96: 212-224. doi: 10.1007/BF00375235

    [78]

    Burnham C W. Hydrothermal fluid at the magmatic stage[C]//Barnes H L. Geochemistry of Hydrothermal Ore Deposits. New York: Holt, Rinehart and Winston, 1967: 34-74.

    [79]

    Eugster H P, Wones D R. Stability Relations of the Ferruginous biotite, Annite[J]. Journal of Petrology, 1962, 3(1): 2648-2697. https://academic.oup.com/petrology/article/3/1/82/1544710

    [80]

    孙涛, 周新民, 陈培荣, 等. 南岭东段中生代强过铝花岗岩成因及其大地构造意义[J]. 中国科学(D辑), 2003, 33(12): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312009.htm

    [81]

    Li W, Cheng Y, Yang Z. Geo‐fO2: Integrated software for analysis of magmatic oxygen fugacity[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(5): 2542-2555. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019GC008273

    [82]

    马鸿文. 花岗岩成因类型的判别分析[J]. 岩石学报, 1992, 4: 341-350. doi: 10.3321/j.issn:1000-0569.1992.04.005

    [83]

    邱检生, 胡建, 王汝成. 江苏东海片麻状碱性花岗岩的年代学与地球化学: 对扬子板块东北缘新元古构造演化的启示[J]. 矿物岩石地球化学通报, 2008, 27(z1): 173-174. doi: 10.3969/j.issn.1007-2802.2008.z1.093

    [84]

    邱检生, 胡建, 王孝磊, 等. 广东河源白石冈岩体: 一个高分异的I型花岗岩[J]. 地质学报, 2005, 79(4): 503-514. doi: 10.3321/j.issn:0001-5717.2005.04.008

    [85]

    Chappell B W. Aluminium saturation in I and S-type granites and the characterization of fractionated haplogranites. Lithos, 1999, 46: 535-551. doi: 10.1016/S0024-4937(98)00086-3

    [86]

    Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    [87]

    刘嘉玮. 胶东和小秦岭花岗岩磷灰石标型特征及其地质意义[D]. 中国地质大学(北京), 2020.

    [88]

    Taylor S R, Mclenann S M. The Continental Crust: Its Composition and Evolution[M]. Blackwell: Oxford Press, 1985: 1-312

    [89]

    陈佩嘉, 戴朝成, 黄成, 等. 乌拉山地区古元古代S型花岗岩岩石地球化学、锆石U-Pb年代学及其地质意义[J]. 中国地质, 2017, 44(5): 959-973. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705010.htm

    [90]

    周作侠. 侵入岩的镁铁云母化学成分特征及其地质意义[J]. 岩石学报, 1988, 4(3): 63-73. doi: 10.3321/j.issn:1000-0569.1988.03.007

    [91]

    Koester E, Pawley A R, Fernandes L A D, et al. Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in southern Brazil[J]. Journal of Petrology, 2002, 43(8): 1595-1616. doi: 10.1093/petrology/43.8.1595

    [92]

    张家辉, 金巍, 王亚飞, 等. 鞍山地区始—古太古代花岗质地壳的形成及演化——深沟寺杂岩的岩石学、年代学及地球化学证据[J]. 地质学报, 2018, 92(5): 887-907. doi: 10.3969/j.issn.0001-5717.2018.05.001

    [93]

    张芳荣, 舒良树, 王德滋, 等. 江西付坊花岗岩体的年代学、地球化学特征及其成因研究[J]. 高校地质学报, 2010, 16(2): 161-176. doi: 10.3969/j.issn.1006-7493.2010.02.004

    [94]

    Su S, Qin K, Li G, et al. Geochronology and geochemistry of Early Silurian felsic volcanic rocks in the Dabaoshan ore district, South China: Implications for the petrogenesis and geodynamic setting[J]. Geological Journal, 2019, 54(6): 3286-3303. doi: 10.1002/gj.3328

    [95]

    向磊, 舒良树. 华南东段前泥盆纪构造演化: 来自碎屑锆石的证据[J]. 中国科学: 地球科学, 2010, 40(10): 1377-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201010008.htm

    [96]

    Wang L J, Yu J H, Griffin W L, et al. Early crustal evolution in the western Yangtze Block: evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks[J]. Precambrian Research, 2012, 222: 368-385. https://www.sciencedirect.com/science/article/pii/S0301926811001562

    [97]

    Zhao G, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67(1/2): 91-123. https://www.sciencedirect.com/science/article/pii/S0012825204000182

    [98]

    夏金龙, 黄圭成, 丁丽雪, 等. 云开地区早古生代宁潭片麻状花岗质岩体锆石U-Pb定年、岩石成因及构造背景[J]. 地球科学, 2018, 43(7): 2276-2293. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201807006.htm

    [99]

    舒良树, 邓兴梁, 马绪宣. 中天山基底与塔里木克拉通的构造亲缘性[J]. 地球科学, 2019, 44(5): 1584-1601. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905015.htm

    [100]

    王淼, 舒良树. 武夷山新元古代蛇绿混杂岩岩石地球化学特征[J]. 中国地质, 2007, 34(4): 572-583. doi: 10.3969/j.issn.1000-3657.2007.04.004

    [101]

    Yao J L, Cawood P, Shu L S, et al. Jiangnan Orogen, South China: A 970-820Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 2019, 196: 1028-72. https://www.sciencedirect.com/science/article/pii/S0012825218306925

    [102]

    丁兴, 周新民, 孙涛. 华南陆壳基底的幕式生长——来自广东古寨花岗闪长岩中锆石LA-ICPMS定年的信息[J]. 地质论评, 2005, 51(4): 382-392. doi: 10.3321/j.issn:0371-5736.2005.04.004

    [103]

    Thompson A B, Connolly J A D. Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B8): 15565-15579. doi: 10.1029/95JB00191

    [104]

    Davies H J, Blanckenburg F V. Slab break off: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 1995, 129(1/4): 85-102. https://www.sciencedirect.com/science/article/pii/0012821X9400237S

    [105]

    Black R, Liegeois J P. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African testimony[J]. Journal Geological Society London, 1993, 150(1): 89-98. doi: 10.1144/gsjgs.150.1.0088

    [106]

    Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182. doi: 10.1130/G23193A.1

    [107]

    张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 2013, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm

    [108]

    Zhao G C. Jiangnan Orogen in South China: Developing from Divergent Double Subduction[J]. Gondwana Research, 2015, 27(3): 1173-1180. doi: 10.1016/j.gr.2014.09.004

    [109]

    Wang Y J, Zhang A M, Fan W M, et al. Origin ofpaleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: Geochronological and geochemical evidence[J]. Lithos, 2013, 160: 37-54. https://www.sciencedirect.com/science/article/pii/S0024493712004422

    [110]

    Yao W H, Li Z X, Li W X, et al. Post-kinematic lithospheric delamination of theWuyi-Yunkai orogen in South China: evidence from ca. 435 Ma high-Mg basalts[J]. Lithos, 2012, 154: 115-129. doi: 10.1016/j.lithos.2012.06.033

    [111]

    Zegers T E, Van Keken P E. Middle Archean continent formation by crustal delamination[J]. Geology, 2001, 29(12): 1083-1086. doi: 10.1130/0091-7613(2001)029<1083:MACFBC>2.0.CO;2

    [112]

    许德如, 林舸, 梁新权, 等. 海南岛前寒纪岩石圈演化的记录: 基性岩类岩石地球化学证据[J]. 岩石学报, 2001, 17(4): 598-608. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104009.htm

    [113]

    柏道远, 周亮, 王先辉, 等. 湘东南南华系—寒武系砂岩地球化学特征及对华南新元古代—早古生代构造背景的制约[J]. 地质学报, 2007, 81(6): 755-771. doi: 10.3321/j.issn:0001-5717.2007.06.004

    [114]

    Xia Y, Xu X, Zou H, et al. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites[J]. Lithos, 2014, 184: 416-435. https://www.sciencedirect.com/science/article/pii/S0024493713003976

    [115]

    魏春夏. 桂东北加里东期花岗岩岩石成因及其地质背景[D]. 中国地质大学(北京)硕士学位论文, 2016.

  • 加载中

(13)

(6)

计量
  • 文章访问数:  1923
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2020-10-26
修回日期:  2022-04-08
刊出日期:  2022-05-15

目录