Wide field electromagnetic exploration and prospecting of metallogenic structures in Daliuhang gold field, the north of Jiaodong
-
摘要:
大柳行金矿田位于胶东金矿集区三大成矿带之一的栖霞-蓬莱金矿带内,成矿构造研究一直是找矿工作的基础和前提。通过实施8条广域电磁测深剖面,进行一维反演和水平方向导数的求取,推断解释了大柳行金矿田的深部地质结构和断裂空间分布,并以此为基础分析了断裂控矿规律和找矿方向。在视电阻率剖面上,浅部出现大面积的低阻异常区,深部高阻异常较明显,水平方向一阶导数图显示NE—NNE向的带状视电阻率异常出现错断或扭折现象。推断解译表明,研究区浅表部主要为晚白垩世花岗岩,深部主要为早前寒武纪变质基底岩系,区内断裂构造非常发育。推断解译的虎路线断裂倾角较陡,断裂南段和北段延深约在-2000 m标高以上,中段延深至少可达-3000 m标高;NNE走向的4条主要控矿断裂倾角均较陡,并在标高-600 m左右和-1600 m左右均有明显变缓表现,断裂延深均超过-2000 m标高,最深处超过-3000 m;推断了5条NW向成矿后断裂,其中2条是新发现的断裂。综合分析认为,区内控矿断裂为虎路线断裂的次级断裂,而且前者可能是金成矿的导矿断裂;研究区南部4条主要控矿断裂2000~3000 m深度范围、虎路线断裂深部倾角波状变化部位和主要控矿断裂旁侧与其平行、等间距分布的小规模断裂、裂隙是今后找矿的重点方向。
Abstract:Daliuhang gold field is located in Qixia-Penglai gold belt, one of the three major metallogenic belts in Jiaodong gold concentration area.The study of metallogenic structure has always been the basis and premise of prospecting.Through the implementation of 8 wide area electromagnetic sounding profiles, one-dimensional inversion and horizontal derivative calculation, the deep geological structure and fault spatial distribution of Daliuhang gold field are inferred and explained, and the fault ore control law and prospecting direction are analyzed on this basis.On the apparent resistivity profile, there is a large area of low resistivity anomaly in the shallow, and the deep high resistivity anomaly is more obvious.The horizontal first-order derivative diagram shows that the NE-NNE zonal apparent resistivity anomaly is broken or twisted.The inferred interpretation shows that the shallow part of the study area is mainly Late Cretaceous granite, and the deep part is mainly Early Precambrian metamorphic basement rock series.The fault structures in the area are very developed.It is inferred that the slope angle of the tiger line fault interpreted is relatively steep, the extension depth of the South and North segments of the fault is about more than -2000 m, and the extension depth of the middle segment is at least -3000 m; The dip angles of the four main ore controlling faults in NNE trend are steep, and they are obviously slowed down at the elevation of about -600 m and -1600 m.the extension depth of the faults exceeds the elevation of -2000 m, and the deepest is more than -3000 m; Five NW trending post metallogenic faults are inferred, of which two are newly discovered faults.The comprehensive analysis shows that the ore controlling fault in the area is a secondary fault of the tiger line fault, and the former may be the ore guiding fault of gold mineralization; The depth range of 2000 ~ 3000 m of the four main ore controlling faults in the south of the study area, the deep dip wavy change position of the tiger line fault, and the small-scale faults and fissures parallel to and equidistant from the main ore controlling faults are the key directions for ore prospecting in the future.
-
Key words:
- wide field electromagnetic method /
- fault structure /
- the north of Jiaodong /
- Daliuhang /
- gold mine /
- ore control law
-
-
图 13 强家沟金矿雁列矿脉分布图①
Figure 13.
-
[1] 宋明春. 胶东金矿深部找矿主要成果和关键理论技术进展[J]. 地质通报, 2015, 34(9): 1758-1771. doi: 10.3969/j.issn.1671-2552.2015.09.017 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20150917&flag=1
[2] 李士先, 刘长春, 安郁宏, 等. 胶东金矿地质[M]. 北京: 地质出版社, 2007: 1-7, 102-186.
[3] 宋明春, 崔书学, 周明岭, 等. 山东省焦家矿区深部超大型金矿床及其对"焦家式"金矿的启示[J]. 地质学报, 2010, 84(9): 1349-1358. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201009009.htm
[4] 吕古贤. 构造动力成岩成矿和构造物理化学研究[J]. 地质力学学报, 2019, 25(5): 962-980. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905025.htm
[5] 吕古贤, 刘瑞珣, 王方正, 等. 成岩成矿深度的理论基础和构造校正测算的方法[J]. 矿物学报, 2015, 35(S1): 1025. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1742.htm
[6] 陈柏林. 从成矿构造动力学探讨脉状金矿床成矿深度[J]. 地质科学, 2001, 15(3): 380-384. doi: 10.3321/j.issn:0563-5020.2001.03.014
[7] 柳振江, 王建平, 郑德文, 等. 胶东西北部金矿剥蚀程度及找矿潜力和方向——来自磷灰石裂变径迹热年代学的证据[J]. 岩石学报, 2010, 26(12): 3597-3611. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012013.htm
[8] 翟裕生. 成矿构造研究的回顾和展望[J]. 地质论评, 2002, 20(2): 140-146. doi: 10.3321/j.issn:0371-5736.2002.02.003
[9] 翟裕生. 中国区域成矿特征探讨[J]. 地质与勘探, 2002, 18(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200205000.htm
[10] Lebrun E, Miller J, Thébaud N, et al. Structural Controls on an Orogenic Gold System: The World-Class Siguiri Gold District, Siguiri Basin, Guinea, West Africa[J]. Economic Geology, 2017, 112(1): 73-98. doi: 10.2113/econgeo.112.1.73
[11] Ma Y X, Hu J H, Chang Y J, et al. Study on the Coincident-Loop Transient Electromagnetic Method in Seafloor Exploration—Taking Jiaodong Polymetallic Mine as a Model[J]. Journal of Earth Science, 2021, 32(1): 25-41. doi: 10.1007/s12583-020-1087-2
[12] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5): 985-990. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005001.htm
[13] 汤井田, 任政勇, 周聪, 等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015, 58(8): 2681-2705. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201508008.htm
[14] 韩登峰. 我国的航空电法[J]. 物探与化探, 1994, 18(3): 179-185. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH403.003.htm
[15] 范宏瑞, 胡芳芳, 杨进辉, 等. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J]. 岩石学报, 2005, (5): 1317-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505000.htm
[16] 毛景文, 谢桂青, 李晓峰, 等. 大陆动力学演化与成矿研究: 历史与现状——兼论华南地区在地质历史演化期间大陆增生与成矿作用[J]. 矿床地质, 2005, 19(3): 193-205. doi: 10.3969/j.issn.0258-7106.2005.03.001
[17] 卢焕章, Arcambault G, 李院生, 等. 山东玲珑—焦家地区形变类型与金矿的关系[J]. 地质学报, 1999, (2): 174-188, 193-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199902008.htm
[18] Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 2001, 18(1): 1-75. https://www.sciencedirect.com/science/article/pii/S0169136801000166
[19] 周新华, 杨进辉, 张连昌. 胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程[J]. 中国科学(D辑), 2002, (S1): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2002S1001.htm
[20] 吕古贤, 郭涛, 舒斌, 等. 胶东金矿集中区构造体系多层次控矿规律研究[J]. 大地构造与成矿学, 2007, (2): 193-204. doi: 10.3969/j.issn.1001-1552.2007.02.009
[21] 吕古贤, 孙岩, 刘德良, 等. 构造地球化学的回顾与展望[J]. 大地构造与成矿学, 2011, 35(4): 479-494. doi: 10.3969/j.issn.1001-1552.2011.04.002
[22] 吕古贤, 罗毅甜, 杨人毅. 矿田的构造岩相地质分类的初步建议[J]. 矿物学报, 2015, 35(S1): 47. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1035.htm
[23] 张增奇, 张成基, 王世进, 等. 山东省地层侵入岩构造单元划分对比意见[J]. 山东国土资源, 2014, 30(3): 1-23. doi: 10.3969/j.issn.1672-6979.2014.03.001
[24] 马生明, 朱立新, 张亮亮, 等. 关于胶西北金矿成矿地球化学机制的思考[J]. 物探与化探, 2019, 43(5): 925-931. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201905001.htm
[25] 宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2): 215-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002002.htm
[26] 王洪军, 田红军, 贺春艳, 等. 多种物探方法在胶西北金矿集中区深部勘探的效果分析[J]. 物探与化探, 2020, 44(5): 1053-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005010.htm
[27] 王洪军, 熊玉新. 广域电磁法在胶西北金矿集中区深部探测中的应用研究[J]. 物探与化探, 2020, 44(5): 1039-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005008.htm
[28] 毛先成, 王琪, 陈进, 等. 胶西北金矿集区深部成矿构造三维建模与找矿意义[J]. 地球学报, 2020, 41(2): 166-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202002007.htm
① 山东省第六地质矿产勘查院. 山东省蓬莱市齐沟金矿强家沟矿区深部及外围金矿详查. 2015.
-