Zircon U-Pb ages and geochemical characteristics of basalts in Zhongcang area, central Tibet: constraints on the evolution of Shiquan River-Namu Co back-arc basin
-
摘要:
狮泉河-纳木错混杂带的构造属性和演化时限一直存在较大的争议,其研究对认识青藏高原早期形成与演化具有重要的意义。对西藏中仓蛇绿混杂岩中发育的玄武岩端元进行了系统的岩石学、地质年代学和地球化学研究,以揭示其形成时代、岩石成因及构造意义。中仓玄武岩LA-ICP-MS锆石U-Pb同位素年龄为115.7±2.0 Ma,与区域上辉长岩的形成时代一致。玄武岩整体具有相对平坦的球粒陨石标准化稀土元素配分曲线,与洋中脊玄武岩相似,且显示Th的富集和Nb、Ta的亏损。研究认为,中仓玄武岩起源于受俯冲沉积物改造的尖晶石橄榄岩地幔部分熔融,形成于弧后扩张脊环境。结合区域上同时期辉长岩的研究结果,认为狮泉河-纳木错混杂带是中生代弧后洋盆消亡的残迹,是班公湖-怒江洋南向俯冲,引发弧后拉张的产物。
Abstract:Tectonic attribute and evolution history of Shiquan River-Namu Co mélange zone have been controversial for a long time.This paper deals with the petrology, geochronology, and geochemistry of the basalts from the Zhongcang ophiolite mélange, in order to reveal its formation age, petrogenesis and tectonic significance.LA-ICP-MS zircon U-Pb age of Zhongcang basalt is 115.7±2.0 Ma, which is consistent with the formation age of gabbro in the region.The Zhongcang basalts have a relatively flat REE distribution curve, similar to the mid-ocean ridge basalt(MORB).Furthermore, these samples show Th enrichment and Nb, Ta depletion.It is proposed that the Zhongcang basalts were derived by partial melting of the spinel peridotite mantle, which was modified by subduction sediments, in the back-arc basin spreading center.Combined with the study of the regional gabbros, our research favors that the Shiquan River-Namu Co mélange zone represents the remnant of a Mesozoic back-arc basin, which was produced by the back-arc rifting in response to the southward oceanic subduction of Bangong-Nujiang Tethyan Ocean.
-
-
图 1 拉萨地块构造划分图(a)和研究区地质简图(b)[6]
Figure 1.
图 6 中仓玄武岩Th-U/Th图解(a)和Th-Ba/Th图解(b)[24]
Figure 6.
表 1 中仓玄武岩LA-ICP-MS锆石U-Th-Pb同位素分析结果
Table 1. LA-ICP-MS zircon U-Th-Pb dating for Zhongcang basalts
点号 元素含量/10-6 Th/U 同位素比值 年龄/Ma Th U Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 01 129 228 4.65 0.56 0.04830 0.0049 0.1209 0.0120 0.01815 0.0004 114 184 116 11 116 2 02 181 307 6.45 0.59 0.04836 0.0048 0.1246 0.0120 0.01868 0.0004 117 181 119 11 119 2 03 158 275 5.59 0.58 0.04833 0.0044 0.1204 0.0110 0.01807 0.0004 115 163 115 10 115 2 04 119 183 3.86 0.65 0.04835 0.0055 0.1232 0.0140 0.01847 0.0005 116 194 118 12 118 3 05 114 192 3.77 0.59 0.04826 0.0063 0.1156 0.0150 0.01737 0.0004 112 236 111 13 111 3 06 161 226 4.87 0.71 0.04848 0.0055 0.1224 0.0140 0.01830 0.0004 123 211 117 12 117 3 07 148 202 4.12 0.73 0.04835 0.0063 0.1157 0.0150 0.01735 0.0004 116 240 111 14 111 2 08 87 165 3.50 0.53 0.04824 0.0076 0.1260 0.0200 0.01894 0.0005 111 265 121 18 121 3 09 52 108 2.27 0.48 0.04858 0.0130 0.1251 0.0330 0.01866 0.0006 128 416 120 30 119 4 10 83 129 2.52 0.65 0.04835 0.0100 0.1137 0.0240 0.01705 0.0005 116 340 109 22 109 3 11 88 156 3.01 0.56 0.04824 0.0091 0.1165 0.0220 0.01752 0.0005 111 303 112 20 112 3 12 340 459 10.2 0.74 0.04838 0.0038 0.1259 0.0097 0.01886 0.0004 118 135 120 9 120 2 13 84 175 3.68 0.48 0.04850 0.0091 0.1252 0.0230 0.01871 0.0006 124 301 120 21 119 4 14 82 151 2.97 0.54 0.04834 0.0091 0.1163 0.0220 0.01745 0.0005 116 297 112 20 112 3 15 184 273 5.72 0.67 0.04830 0.0067 0.1210 0.0170 0.01817 0.0005 114 241 116 15 116 3 16 231 255 5.92 0.91 0.04820 0.0073 0.1236 0.0190 0.01860 0.0004 109 263 118 17 119 3 注:数据由中国地质大学(北京)地学实验中心测定 表 2 中仓玄武岩主量与微量元素分析结果
Table 2. Major and trace element compositions for Zhongcang basalts
样品号 T26H1 T26H2 T26H3 T26H4 T26H6 T7H4 T7H5 T7H6 T7H7 样品号 T26H1 T26H2 T26H3 T26H4 T26H6 T7H4 T7H5 T7H6 T7H7 SiO2 48.6 50.4 48.2 50.2 50.3 51.8 51.8 50.0 50.7 Nb 6.44 5.58 6.19 6.40 5.88 6.70 6.65 6.29 5.80 TiO2 1.78 1.86 1.94 1.90 1.86 1.93 2.06 1.96 1.79 Cs 7.02 9.29 13.81 16.9 10.9 4.55 3.58 17.4 5.95 Al2O3 15.5 15.2 16.0 15.1 15.2 15.1 14.7 15.4 15.1 Ba 45.7 47.0 53.2 58.5 45.1 28.1 37.3 71.7 44.8 Fe2O3 11.5 10.8 11.2 10.9 10.8 9.9 11.7 11.0 11.0 La 9.89 8.56 10.2 9.71 9.20 10.3 10.8 8.52 8.28 MnO 0.18 0.21 0.22 0.22 0.21 0.16 0.18 0.16 0.18 Ce 28.8 23.1 27.2 26.3 24.8 26.1 27.8 23.4 21.9 MgO 7.22 6.53 6.71 6.51 6.59 5.00 4.93 5.78 5.82 Pr 4.44 3.47 4.05 3.95 3.72 3.76 4.04 3.51 3.19 CaO 9.21 9.61 9.69 9.41 9.36 6.72 6.10 8.67 8.74 Nd 21.4 16.6 19.1 18.9 17.8 17.4 18.9 16.8 15.2 Na2O 4.39 3.89 4.35 4.14 4.01 5.46 4.93 4.17 4.03 Sm 6.62 5.06 5.68 5.76 5.35 5.19 5.46 5.02 4.54 K2O 0.50 0.37 0.34 0.35 0.37 0.21 0.31 0.40 0.27 Eu 2.01 1.67 1.95 1.91 1.79 1.51 1.69 1.71 1.55 P2O5 0.24 0.24 0.25 0.25 0.25 0.22 0.24 0.23 0.20 Gd 8.85 6.61 7.33 7.50 6.99 6.48 6.72 6.28 5.67 烧失量 1.58 1.49 1.74 1.67 1.69 3.04 2.52 1.76 1.82 Tb 1.55 1.13 1.26 1.28 1.19 1.10 1.13 1.07 0.96 总计 100.73 100.60 100.74 100.60 100.60 99.49 99.46 99.57 99.56 Dy 10.4 7.46 8.27 8.51 7.89 7.08 7.30 7.01 6.20 Li 19.4 16.0 19.7 17.6 16.6 7.7 12.5 11.1 4.4 Ho 2.31 1.61 1.77 1.83 1.71 1.50 1.54 1.47 1.31 Sc 46.9 41.3 45.0 45.0 43.9 38.2 36.1 40.9 39.4 Er 6.69 4.57 5.04 5.21 4.80 4.37 4.47 4.26 3.80 V 289 256 279 283 273 266 274 281 258 Tm 0.96 0.64 0.70 0.72 0.67 0.62 0.64 0.61 0.54 Cr 224 55.0 53.0 53.7 56.7 36.1 21.0 68.1 82.4 Yb 6.27 4.13 4.56 4.75 4.39 4.00 4.14 3.90 3.43 Co 47.6 44.7 45.7 47.0 45.6 37.6 31.7 33.5 33.5 Lu 0.92 0.59 0.66 0.68 0.63 0.60 0.62 0.58 0.52 Ni 76.8 40.3 41.0 42.0 40.8 28.8 19.3 47.0 32.7 Hf 5.22 3.69 4.03 4.21 3.87 4.03 4.17 3.66 3.43 Cu 13.5 114 105 126 112 271 45.5 26.7 50.1 Ta 0.58 0.35 0.38 0.56 0.42 0.45 0.43 0.39 0.42 Zn 91.9 84.8 206 239 100.3 98.7 60.5 52.8 74.3 Pb 1.01 0.97 0.91 1.07 0.94 0.95 1.15 1.16 1.18 Ga 24.2 21.0 22.9 22.9 21.8 16.9 17.5 19.7 18.1 Th 0.44 0.79 0.95 0.99 0.91 2.59 2.62 0.80 1.89 Rb 15.9 10.2 10.2 10.8 11.0 6.57 8.61 12.8 8.21 U 0.26 0.30 0.35 0.36 0.33 0.55 0.55 0.20 0.41 Sr 214 256 325 312 274 185 202 253 208 Eu/ Eu* 0.80 0.89 0.92 0.89 0.89 0.80 0.85 0.93 0.93 Y 54.0 37.6 41.5 42.1 39.3 41.1 42.3 40.0 35.3 Zr 217 160 175 180 165 173 176 164 144 (La/ Yb)N 1.13 1.49 1.60 1.47 1.50 1.84 1.87 1.57 1.73 注:由中国地质大学(北京)地学实验中心测定;主量元素含量单位为%,微量及稀土元素含量单位为10-6 表 3 中仓玄武岩锆石Lu-Hf同位素分析结果
Table 3. Zircon Lu-Hf isotopic compositions for Zhongcang basalts
测点 t/Ma 176Hf/177Hf 1δ 176Yb/ 177Hf 1δ 176Lu/177Hf" 1δ εHf(0) 1σ εHf(t) 1σ tDM1/Ma tDM2/Ma fLu/Hf 01 116 0.282723 0.000038 0.065919 0.000329 0.001417 0.000017 -1.73 1.44 0.71 1.45 758 1001 -0.96 02 119 0.282871 0.000036 0.055166 0.000345 0.001293 0.000008 3.51 1.36 5.96 1.37 544 708 -0.96 03 115 0.282779 0.000046 0.075255 0.000704 0.001463 0.000010 0.26 1.69 2.69 1.69 678 891 -0.96 04 118 0.282747 0.000046 0.056877 0.000363 0.001055 0.000004 -0.90 1.70 1.56 1.70 717 954 -0.97 05 111 0.282693 0.000040 0.064649 0.000563 0.001294 0.000024 -2.79 1.51 -0.34 1.51 798 1060 -0.96 06 117 0.282736 0.000041 0.054546 0.000297 0.001115 0.000006 -1.28 1.54 1.18 1.54 734 975 -0.97 07 111 0.282722 0.000113 0.069112 0.000684 0.001402 0.000021 -1.77 4.03 0.67 4.03 759 1003 -0.96 08 121 0.282716 0.000064 0.070293 0.000535 0.001242 0.000009 -2.00 2.33 0.45 2.33 765 1015 -0.96 09 119 0.282820 0.000045 0.070841 0.000938 0.001282 0.000015 1.69 1.68 4.14 1.69 617 810 -0.96 10 109 0.282782 0.000034 0.049756 0.000189 0.000904 0.000005 0.36 1.30 2.83 1.30 664 883 -0.97 11 112 0.282743 0.000039 0.063740 0.000514 0.001165 0.000011 -1.03 1.46 1.42 1.47 725 961 -0.96 12 120 0.282758 0.000062 0.100194 0.000470 0.002179 0.000019 -0.50 2.24 1.88 2.25 723 936 -0.93 13 119 0.283023 0.000055 0.090174 0.000801 0.001922 0.000014 8.89 2.01 11.29 2.02 332 410 -0.94 14 112 0.282743 0.000071 0.073608 0.000282 0.001536 0.000016 -1.02 2.56 1.41 2.56 731 962 -0.95 15 116 0.282809 0.000042 0.059731 0.000327 0.001052 0.000004 1.30 1.55 3.77 1.56 629 831 -0.97 16 119 0.283063 0.000167 0.137430 0.003880 0.002542 0.000088 10.29 5.93 12.64 5.94 279 334 -0.92 注:由武汉上谱分析科技有限责任公司测定;εHf(0)=((176Hf/177Hf)s/(176Hf/177Hf)CHUR, 0-1)×10000; fLu/Hf=(176Lu/177Hf)s/(176Lu/177Hf)CHUR-1; εHf(t)=((176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)/((176Hf/177Hf)CHUR, 0-(176Lu/177Hf)chur×(eλt-1))-1)×10000; tDM1=1/λ×(1+(176Hf/177Hf)s-(176Hf/177Hf)DM/((176Lu/177Hf)s-(176Lu/177Hf)DM)); tDM2=tDM1(Hf)-(tDM1(Hf)-t)((fcc-fs)/(fcc-fDM)), (176Hf/177Hf)s和(176Lu/177Hf)s是样品的测量值; (176Lu/177Hf)CHUR=0.0332和(176Hf/177Hf)CHUR, 0=0.282772;(176Lu/177Hf)DM=0.0384和(176Hf/177Hf)DM=0.28325; fcc=-0.548(大陆地壳平均值),fDM=0.16, t为锆石年龄, λ=1.865×10-11 a-1用于计算 -
[1] Coleman R G. Ophiolite[M]. New York: Springer Verlag, 1977.
[2] Coleman R G. The ophiolite concept evolves[J]. Elements, 2014, 10(2): 82-84. doi: 10.2113/gselements.10.2.82
[3] 唐跃, 翟庆国, 胡培远, 等. 班公湖-怒江缝合带西段拉果错蛇绿岩中斜长岩成因及其对中特提斯洋演化的制约[J]. 地质通报, 2021, 40(8): 1265-1278. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210805&flag=1
[4] Girardeau J, Marcoux J, Allègre C J, et al. Tectonic environment and Geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature, 1984, 307(5946): 27-31. doi: 10.1038/307027a0
[5] Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of Western Tibet[J]. Tectonics, 2003, 22(4): 1029.
[6] Xu M, Li C, Xu W, et al. Petrology, geochemistry and geochronology of gabbros from the Zhongcang ophiolitic mélange, central Tibet: Implications for an intra-oceanic subduction zone within the Neo-Tethys Ocean[J]. Journal of Earth Science, 2014, 25(2): 224-240. doi: 10.1007/s12583-014-0419-5
[7] 徐梦婧, 兰锐, 王沛, 等. 西藏中仓蛇绿混杂岩中辉长岩锆石U-Pb定年及其地质意义[J]. 天津城建大学学报, 2019, 25(2): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TJCS201902008.htm
[8] Zeng Y C, Xu J F, Chen J L, et al. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-YunzhugNamu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau[J]. Lithos, 2018, 300/301: 250-260. doi: 10.1016/j.lithos.2017.11.025
[9] 曾孝文, 王明, 范建军, 等. 青藏高原中部阿索蛇绿岩岩石学与同位素年龄[J]. 地质通报, 2018, 37(8): 1492-1502. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180813&flag=1
[10] 王保弟, 刘函, 王立全, 等. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化[J]. 地球科学, 2020, 45(8): 2764-2784. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202008002.htm
[11] Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 2011, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005
[12] Ludwig K R. Isoplot/Ex, version 3, a geochronological toolkit for microsoft excel[M]. Berkeley: Berkeley Geochronological Center Special Public, 2003.
[13] 于红. 陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D]. 中国地质大学(北京)硕士学位论文, 2011.
[14] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin 2010, 55: 1535-1546. doi: 10.1007/s11434-010-3052-4
[15] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 8: 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[16] Winchester J A, Floyd P A. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1976, 28(3): 459-469. doi: 10.1016/0012-821X(76)90207-7
[17] Irvine T N, Baragar W R. A Guide to the Chemical Classification of the Common Igneous Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. doi: 10.1139/e71-055
[18] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society London Special Publications, 1989, 42: 313-345.
[19] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
[20] Elburg M A, van Bergen M, Hoogewerff J, et al. Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia[J]. Geochimica et Cosmochimica Acta, 2002, 66: 2771-2789. doi: 10.1016/S0016-7037(02)00868-2
[21] Guo Z F, Hertogen J, Liu J Q, et al. Potassic magmatism in western Sichun and Yunnan Provinces, SE Tibet, China: petrological and geochemical constraints on petrogenesis[J]. Journal of Petrology, 2005, 46: 33-78. doi: 10.1093/petrology/egh061
[22] Hawkesworth C, Turner S, Peate D, et al. Elemental U and Th variations in island arc rocks: implications for U-series isotopes[J]. Chemical Geology, 1997, 139: 207-221. doi: 10.1016/S0009-2541(97)00036-3
[23] Guo Z F, Wilson M, Liu J Q. Post-collisional adakites in south Tibet: products of partial melting of subduction-modified lower crust[J]. Lithos, 2007: 96: 205-224. doi: 10.1016/j.lithos.2006.09.011
[24] Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100(1/4): 14-48.
[25] Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 1978, 19(3): 463-513. doi: 10.1093/petrology/19.3.463
[26] Wilkinson J F G, Le Maitre R W. Upper mantle amphiboles and micas and TiO2, K2O, and P2O5 abundances and 100Mg/(Mg + Fe2+)ratios of common basalts and andesites: Implications for modal mantle metasomatism and undepleted mantle compositions[J]. Journal of Petrology, 1987, 28(1): 37-73. doi: 10.1093/petrology/28.1.37
[27] Ellam R M. Lithospheric thickness as a control on basalt geochemistry[J]. Geology, 1992, 20(2): 153-156. doi: 10.1130/0091-7613(1992)020<0153:LTAACO>2.3.CO;2
[28] Xu Y G, Ma J L, Frey F A, et al. Role of lithosphere asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton[J]. Chemical Geology, 2005, 224(4): 247-271. doi: 10.1016/j.chemgeo.2005.08.004
[29] Aldanma Z E, Pearce J A, Thirlwall M F, et al. Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102(1/2): 67-95.
[30] Fretzdorff S, Livermore R A, Devey C W, et al. Petrogenesis of the back-arc east scotia ridge, south Atlantic ocean[J]. Journal of Petrology, 2002, 43(8): 1435-1467. doi: 10.1093/petrology/43.8.1435
[31] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56(3/4): 207-218.
[32] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth & Planetary Sciences, 1995, 23: 251-285.
[33] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300.
[34] Hollings P, Kerrich R. Geochemical systematics of tholeiites from the 2.86 Ga Pickle Crow Assemblage, northwestern Ontario: arc basalts with positive and negative Nb-Hf anomalies[J]. Precambrian Research, 2004, 134: 1-20.
[35] Cabanis B, Lecolle M. The La/10-Y/15-Nb/8 Diagram: A Tool for Discrimination Volcanic Series and Evidencing Continental Crust Magmatic Mixtures and/or Contamination[J]. Compte Rendus de l'Academie des Sciences, Seris Ⅱ, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre, 1989, 309(20): 2023-2029(in French).
[36] 王永胜, 曲永贵, 吕鹏, 等. 西藏永珠蛇绿岩带地质特征[J]. 吉林地质, 2003, 22(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200302001.htm
[37] 朱志勇. 西藏永珠-纳木错蛇绿岩地球化学特征及其构造环境[D]. 吉林大学硕士学位论文, 2014.
[38] 曾孝文, 王明, 李航, 等. 西藏中部狮泉河-纳木错蛇绿岩带的构造属性——来自阿索混杂岩带岛弧玄武岩的地球化学制约[J]. 地质通报, 2021, 40(8): 1291-1301. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210807&flag=1
[39] 唐峰林, 黄建村, 罗小川, 等. 藏北阿索构造混杂岩的发现及其地质意义[J]. 东华理工学院学报, 2004, 27(3): 245-250. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200403008.htm
[40] 张璋, 周诗, 耿全如, 等. 狮泉河蛇绿混杂岩带早侏罗世辉长岩锆石年代学及地质意义[J]. 科学技术与工程, 2020, 20(19): 7579-7588. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202019002.htm
[41] 康晓波, 冯士彬, 刘世朝, 等. 西藏日土县狮泉河蛇绿混杂岩锆石U-Pb年龄及构造意义[J]. 四川有色金属, 2019, 4: 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS201904006.htm
[42] Ma Y L, Zhong Y, Furnes H, et al. Origin and tectonic implications of boninite dikes in the Shiquanhe ophiolite, western Bangong Suture, Tibet[J]. Journal of Asian Earth Sciences, 2021, 205: 104594.
[43] Liu W L, Huang Q T, Gu M, et al. Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet[J]. Gondwana Research, 2018, 60: 1-14.
[44] Li H, Wang M, Zeng X W, et al. Generation of Jurassic high-Mg diorite and plagiogranite intrusions of the Asa area, Tibet: Products of intra-oceanic subduction of the Meso-Tethys Ocean[J]. Lithos, 2020, 362/363: 105481.
[45] 李志军, 李晨伟, 高一鸣, 等. 西藏狮泉河蛇绿岩中侏罗世晚期(ca. 163Ma)OIB型辉绿岩及高镁闪长岩年代学及地球化学特征: 早期洋壳俯冲产物?[J]. 岩石学报, 2019, 35(3): 816-832. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903012.htm
[46] Stern R J, Bloomer S H. Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs[J]. Geological Society of America Bulletin, 1992, 104: 1621-1636.
[47] Stern R J, Reagan M, Ishizuka O, et al. To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites[J]. Lithosphere, 2013, 4(6): 469-483.
[48] Ishizuka O, Tani K, Reagan M K. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue[J]. Elements, 2014, 10: 115-120.
[49] Wu H, Fan J J, Jiang Z Q, et al. Late Jurassic-Early Cretaceous magmatic activity in the Central Lhasa Terrane: Petrogenesis and implications for the initial subduction of the Slainajap oceanic lithosphere[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 573: 110438.
[50] 赵守仁, 岳鋆璋, 吴喆. 西藏麻米地区晚侏罗世—早白垩世侵入岩锆石U-Pb年龄、地球化学特征及其对班-怒特提斯洋俯冲过程的制约[J]. 地质通报, 2022, 41(8): 1342-1357. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20220803&flag=1
[51] Wu H, Sun S, Liu H, et al. An Early Cretaceous slab window beneath central Tibet, SW China: Evidence from OIB‐like alkaline gabbros in the Duolong area[J]. Terra Nova, 2019, 31(1): 67-75.
[52] Wu H, Chen J, Wang Q, et al. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in Central Tibet[J]. American Journal of Science, 2019, 319(2): 105-121.
-