Geochemical characteristics of hydrocarbons in ore-rich sandstones in the Qianjiadian uranium deposit, southwestern Songliao Basin
-
摘要:
松辽盆地西南部钱家店铀矿床的形成与油气充注和微生物还原作用有关,但该铀矿床中油气的来源及其烃源岩类型、沉积环境、成熟度、潜在的充注多期次性等问题并没有深入研究。对该矿床富矿砂岩中吸附烃和包裹体烃进行离线破碎法抽提,通过色谱-质谱分析探讨烃类的地球化学特征。结果显示,吸附烃和包裹体烃具有相似的组成,均显示淡蓝色的荧光特征;含矿层中至少有2期石油充注混合,早期充注的石油发生了严重的生物降解作用,C15+范围内存在很多未分离的复杂混合物(UCM),含C26~C30 17α, 21β 25-降藿烷系列化合物;晚期充注的石油未发生或发生了轻微的生物降解,生物标志化合物指示其来源于下白垩统九佛堂组烃源岩,该烃源岩形成于半深湖—深湖局部水体分层的还原环境,有机质类型为腐殖-腐泥型,热演化程度已经达到成熟。作为研究油气和微生物参与砂岩型铀矿成矿作用系统性研究的一部分,对完善该研究体系具有重要意义,也可为油铀兼探、煤铀兼探等多矿种综合勘查提供帮助。
Abstract:The formation of the Qianjiadian uranium deposit in the southwest of Songliao Basin is related to hydrocarbon charging and microbial reduction.However, the origin of oil and gas in the uranium deposit and the types of source rocks, sedimentary environment, maturity and potential multi-stage charging have not been thoroughly studied.The geochemical characteristics of hydorcarbons from adsorbed organic matter and inclusions in ore-rich sandstones were analyzed by means of off-line crushing extracting method and gas chromatography-mass spectrometry.The result shows that two types of hydrocarbons have light blue fluorescence emission color, suggesting similar compositions, and at least two stages of petroleum charge the uranium reservoir.The earlier charged petroleum was heavily biodegraded, showing large unresolved complex mixture (UCM)humps and a suite of C26~C30 17α, 21β 25-norhopanes.The later charged petroleum was not or just slightly biodegraded, and biomarkers indicate that it was derived from the Lower Cretaceous Jiufotang Formation which was mature humic-sapropelic source rock deposited in a reduced and stratified semi-deep/deep lacustrine.As part of the systematic work of studying biogenic and petroleum-related uranium mineralization in sandstone-hosted uranium deposit, this result is of great significance to improve the research system, and is also helpful to multi-mineral comprehensive exploration such as oil-uranium co-exploration and coal-uranium co-exploration.
-
-
图 5 钱家店富矿砂岩中烃类与昌图凹陷烃源岩和油砂有机质C27-C28-C29 ααα20R甾烷分布图(昌图凹陷数据据参考文献[32])
Figure 5.
表 1 钱家店铀矿床姚家组富矿砂岩中吸附烃和包裹体烃的生物标志化合物参数
Table 1. Biomarker parameters of hydrocarbons extracted from adsorbed organic matter and inclusions in ore-rich sandstones from the Yaojia Formation in the Qianjiadian uranium deposit
样品 370104-ad 370104-in 370109-ad 370109-in 370110-ad 370110-in 410102-ad 410102-in 490412-ad 490412-in Cmax C18 / C25 C16 / C23 C18 / C25 C16 / C22 C18 / C25 C18 / C23 C16 / C23 C18 / C23 C18 / C24 C16 / C22 C27ααα20R甾烷% 44.95 39.93 40.47 38.76 37.71 40.47 39.35 42.32 39.82 43.1 C28ααα20R甾烷% 21.51 24.03 22.56 23.62 24.28 23.41 23.76 23.24 22.31 22.12 C29ααα20R甾烷% 33.54 36.04 36.96 37.62 38.01 36.12 36.88 34.44 37.87 34.78 规则甾烷/17α藿烷 0.39 0.34 0.37 0.34 0.39 0.36 0.41 0.35 0.38 0.40 C26/C25三环萜烷 2.00 2.55 2.69 2.45 2.71 2.60 2.41 2.83 2.26 2.68 C31R/C30藿烷 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.24 0.22 0.19 C35 22S/C34 22S藿烷 0.56 0.58 0.55 0.58 0.54 0.52 0.55 0.55 0.60 0.48 C29/C30藿烷 0.54 0.46 0.47 0.46 0.46 0.47 0.48 0.50 0.48 0.51 伽马蜡烷/(伽马蜡烷+C30藿烷) 0.16 0.16 0.17 0.17 0.16 0.17 0.16 0.17 0.15 0.16 C30*/C29Ts 0.45 0.36 0.39 0.36 0.33 0.40 0.36 0.43 0.39 0.45 Pr/Ph 0.71 0.82 0.84 0.76 0.71 0.68 0.51 0.66 0.71 0.84 Pr/nC17 0.52 0.60 0.58 0.65 0.50 0.87 0.62 0.53 0.55 0.76 Ph/nC18 0.54 0.51 0.51 0.72 0.49 0.89 0.68 0.55 0.50 0.98 C31αβ藿烷22S/(22S+22R) 0.59 0.59 0.60 0.59 0.59 0.59 0.59 0.58 0.60 0.59 Ts/Tm 1.47 1.01 1.05 0.89 1.10 1.15 1.05 1.15 1.05 1.21 C29ααα甾烷20S/(20S+20R) 0.34 0.37 0.36 0.38 0.34 0.36 0.36 0.35 0.35 0.35 C29甾烷ββ/(ββ+αα) 0.39 0.38 0.38 0.39 0.36 0.39 0.38 0.38 0.38 0.39 C30莫烷/藿烷 0.14 0.14 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.14 CPI 1.32 1.31 1.47 1.14 1.27 1.29 1.59 1.44 1.23 1.48 MPI-1 0.26 0.30 0.23 0.19 0.25 0.28 0.23 0.31 0.33 0.21 Rc / % 0.56 0.58 0.54 0.51 0.55 0.57 0.54 0.59 0.60 0.53 注:ad表示吸附烃;in表示包裹体烃 -
[1] 荣辉, 焦养泉, 吴立群, 等. 松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束[J]. 地球科学, 2016, 41(1) : 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201601013.htm
[2] Cai C, Li H, Qin M, et al. Biogenic and petroleum-related ore-forming processes in Dongsheng uranium deposit, NW China[J]. Ore Geology Reviews, 2007, 32(1/2) : 262-274.
[3] Cai C, Dong H, Li H, et al. Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai deposit, NW China[J]. Chemical Geology, 2007, 236(1/2) : 167-179.
[4] 李宏涛, 蔡春芳, 罗晓容, 等. 鄂尔多斯北部直罗组中烃类包裹体地球化学特征及来源分析[J]. 沉积学报, 2007, 25(3) : 467-473. doi: 10.3969/j.issn.1000-0550.2007.03.020
[5] 李宏涛, 吴世祥, 蔡春芳, 等. 油气相关砂岩型铀矿的形成过程: 以钱家店铀矿床为例[J]. 地球化学, 2008, 37(6) : 523-532. doi: 10.3321/j.issn:0379-1726.2008.06.001
[6] Zhao L, Cai C, Jin R, et al. Mineralogical and geochemical evidence for biogenic and petroleum-related uranium mineralization in the Qianjiadian deposit, NE China[J]. Ore Geology Reviews, 2018, 101: 273-292. doi: 10.1016/j.oregeorev.2018.07.025
[7] 赵龙. 松辽盆地钱家店砂岩型铀矿床中微生物和油气参与铀成矿作用研究[D]. 中国科学院大学博士学位论文, 2018
[8] 赵龙, 董廷旭, 蔡春芳, 等. 砂岩型铀矿的微生物成矿作用研究述评[J]. 地质学报, 2020, 94(12) : 3523-3543. doi: 10.3969/j.issn.0001-5717.2020.12.001
[9] 蔡煜琦, 李胜祥. 钱家店铀矿床含矿地层——姚家组沉积环境分析[J]. 铀矿地质, 2008, 24(2) : 66-72. doi: 10.3969/j.issn.1000-0658.2008.02.001
[10] Li S Q, Chen F K, Siebel W, et al. Late Mesozoic tectonic evolution of the Songliao basin, NE China: Evidence from detrital zircon ages and Sr-Nd isotopes[J]. Gondwana Research, 2012, 22(3/4) : 943-955.
[11] Deng C L, He H Y, Pan Y X, et al. Chronology of the terrestrial Upper Cretaceous in the Songliao Basin, northeast Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 44-54. doi: 10.1016/j.palaeo.2012.07.028
[12] Bonnetti C, Liu X D, Yan Z B, et al. Coupled uranium mineralisation and bacterial sulphate reduction for the genesis of the Baxingtu sandstone-hosted U deposit, SW Songliao Basin, NE China[J]. Ore Geology Reviews, 2017, 82: 108-129. doi: 10.1016/j.oregeorev.2016.11.013
[13] Pei F P, Xu W L, Yang D B, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin[J]. Chinese Science Bulletin, 2007, 52(7) : 942-948. doi: 10.1007/s11434-007-0107-2
[14] Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range(NE China) : timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 2006, 251(1/2) : 179-198.
[15] Wu F Y, Sun D Y, Li H M, et al. The nature of basement beneath the Songliao Basin in NE China: geochemical and isotopic constraints[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(9/10) : 793-803.
[16] Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: Implications for subduction-induced delamination[J]. Chemical Geology, 2010, 276(3/4) : 144-165.
[17] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1) : 1-30. doi: 10.1016/j.jseaes.2010.11.014
[18] Zhou J B, Wilde S A, Zhang X Z, et al. Detrital zircons from phanerozoic rocks of the Songliao Block, NE China: Evidence and tectonic implications[J]. Journal of Asian Earth Sciences, 2012, 47: 21-34. doi: 10.1016/j.jseaes.2011.05.004
[19] Wang P J, Liu W Z, Wang S X, et al. 40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China: constraints on stratigraphy and basin dynamics[J]. International Journal of Earth Sciences, 2002, 91(2) : 331-340. doi: 10.1007/s005310100219
[20] Bonnetti C, Cuney M, Bourlange S, et al. Primary uranium sources for sedimentary-hosted uranium deposits in NE China: insight from basement igneous rocks of the Erlian Basin[J]. Mineralium Deposita, 2017, 52(3) : 297-315. doi: 10.1007/s00126-016-0661-0
[21] 罗毅, 马汉峰, 夏毓亮, 等. 松辽盆地钱家店铀矿床成矿作用特征及成矿模式[J]. 铀矿地质, 2007, 23(4) : 193-200. doi: 10.3969/j.issn.1000-0658.2007.04.001
[22] 郑纪伟. 开鲁盆地钱家店铀矿床成矿地质条件及勘探潜力分析[J]. 铀矿地质, 2010, 26(4) : 193-200. doi: 10.3969/j.issn.1000-0658.2010.04.001
[23] Munz I A. Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications[J]. Lithos, 2001, 55(1) : 195-212.
[24] Karlsen D A, Nedkvitne T, Larter S R, et al. Hydrocarbon composition of authigenic inclusions: Application to elucidation of petroleum reservoir filling history[J]. Geochimica et Cosmochimica Acta, 1993, 57(15) : 3641-3659. doi: 10.1016/0016-7037(93)90146-N
[25] George S C, Krieger F W, Eadington P J, et al. Geochemical comparison of oil-bearing fluid inclusions and produced oil from the Toro sandstone, Papua New Guinea[J]. Organic Geochemistry, 1997, 26(3/4) : 155-173.
[26] George S C, Lisk M, Eadington P J, et al. Geochemistry of a Palaeo-oil Column: Octavius 2, Vulcan Sub-basin[C]//Purcell P G, Purcell R P. Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, WA, The Sedimentary Basins of Western Australia, 1998, 2: 195-210.
[27] George S C, Ahmed M, Liu K, et al. The analysis of oil trapped during secondary migration[J]. Organic Geochemistry, 2004, 35(11) : 1489-1511.
[28] 张振芳, 冯庆来, 方念乔, 等. 滇西南昌宁-孟连带三叠纪牡音河组硅质岩地球化学特征及沉积环境[J]. 地球科学——中国地质大学学报, 2001, 26(5) : 449-455. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200105002.htm
[29] 陈文学, 李永林, 张辉, 等. 焉耆盆地侏罗系包裹体与油气运聚期次的关系[J]. 石油与天然气地质, 2002, 23(3) : 241-243. doi: 10.3321/j.issn:0253-9985.2002.03.008
[30] 李宏涛, 吴世祥, 蔡春芳, 等. 开鲁盆地钱家店凹陷姚家组砂岩中烃类地球化学特征及来源探讨[J]. 石油实验地质, 2008, 30(4) : 375-381. doi: 10.3969/j.issn.1001-6112.2008.04.010
[31] 侯读杰, 冯子辉. 油气地球化学[M]. 北京: 石油工业出版社, 2011.
[32] 梁文华. 昌参2井九佛堂组原油的地球化学特征及油源对比[J]. 新疆石油学院学报, 2003, 15(4) : 22-25. doi: 10.3969/j.issn.1673-2677.2003.04.006
[33] Moldowan J M, Seifert W K, Gallegos E J. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. American Association of Petroleum Geologists Bulletin, 1985, 69: 1255-1268.
[34] Seifert W K, Moldowan J M. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils[J]. Geochimica et Cosmochimica Acta, 1978, 42: 77-95. doi: 10.1016/0016-7037(78)90219-3
[35] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. New York: Springer-Verlag, 1984.
[36] Peters K E, Walters C C, Moldowan J M. The biomarker guide: Volume 2, Biomarkers and isotopes in petroleum systems and earth history[M]. Cambridge: Cambridge University Press, 2005.
[37] Ourisson G, Albrecht P, Rohmer M. The hopanoids. Palaeochemistry and biochemistry of a group of natural products[J]. Pure and Applied Chemistry, 1979, 51: 709-29. doi: 10.1351/pac197951040709
[38] Ourisson G, Albrecht P, Rohmer M. The microbial origin of fossil fuels[J]. Scientific American, 1984, 251: 44-51.
[39] Sinninghe Damsté J S, Kenig F, Koopmans M P, et al. Evidence for gammacerane as an indicator of water-column stratification[J]. Geochimica et Cosmochimica Acta, 1995, 59: 1895-900. doi: 10.1016/0016-7037(95)00073-9
[40] 张立平, 黄第藩, 廖志勤. 伽马蜡烷-水体分层的地球化学标志[J]. 沉积学报, 1999, 17(1) : 136-140. doi: 10.3969/j.issn.1000-0550.1999.01.022
[41] Cai C, Zhang C, Cai L, et al. Origins of palaeozoic oils in the Tarim Basin: evidence from sulfur isotopes and biomarkers[J]. Chemical Geology, 2009, 268(3) : 197-210.
[42] Volkman J K, Alexander R, Kagi R I, et al. A geochemical reconstruction of oil generation in the Barrow Sub-basin of Western Australia[J]. Geochimica et Cosmochimica Acta, 1983, 47: 2091-106. doi: 10.1016/0016-7037(83)90034-0
[43] Philp R P, Gilbert T D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material[J]. Organic Geochemistry, 1986, 10: 73-84. doi: 10.1016/0146-6380(86)90010-0
[44] Brooks J D, Gould K, Smith J W. Isoprenoid hydrocarbons in coal and petroleum[J]. Nature, 1969, 222: 257-259. doi: 10.1038/222257a0
[45] Powell T G, McKirdy D M. Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia[J]. Nature, 1973, 243: 37-39.
[46] Didyk B M, Simoneit B R T, Brassell S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272: 216-222. doi: 10.1038/272216a0
[47] 罗天明, 肖乾华. 辽河外围陆家堡坳陷生油岩有机质丰度及类型研究[J]. 地质找矿论丛, 1998, 13(3) : 67-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK803.007.htm
[48] 张玉明. 茫汉断陷烃源岩特征及生烃潜力分析[J]. 天然气工业, 2006, 26(10) : 30-32. doi: 10.3321/j.issn:1000-0976.2006.10.010
[49] Seifert W K, Moldowan J M. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry[J]. Physics and Chemistry of the Earth, 1980, 12: 229-237. doi: 10.1016/0079-1946(79)90107-1
[50] Mackenzie A S, Patience R L, Maxwell J R, et al. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France - I. Changes in the configuration of acyclic isoprenoid alkanes, steranes, and triterpanes[J]. Geochimica et Cosmochimica Acta, 1980, 44: 1709-1721. doi: 10.1016/0016-7037(80)90222-7
[51] Radke M, Welte D H. The methylphenanthrene index(MPI) : a maturity parameter based on aromatic hydrocarbons[C]// Bjorøy M, Albrecht C, Cornford C, et al. Advances in Organic Geochemistry. Chichester: John Wiley & Sons, 1983: 504-512.
[52] McKenna E J, Kallio R E. The biology of hydrocarbons[J]. Annual Reviews in Microbiology, 1965, 19(1) : 183-208. doi: 10.1146/annurev.mi.19.100165.001151
[53] Milner C W D, Rogers M A, Evans C R. Petroleum transformations in reservoirs[J]. Journal of Geochemical Exploration, 1977, 7(2) : 101-153.
[54] Rueter P, Rabus R, Wilkest H, et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria[J]. Nature, 1994, 372(6505) : 455-458. doi: 10.1038/372455a0
[55] Zengler K, Richnow H H, Rosselló-Mora R, et al. Methane formation from long-chain alkanes by anaerobic microorganisms[J]. Nature, 1999, 401(6750) : 266-269. doi: 10.1038/45777
[56] Wenger L M, Davis C L, Isaksen G H. Multiple controls on petroleum biodegradation and impact on oil quality[J]. SPE Reservoir Evaluation & Engineering, 2002, 5(5) : 375-383.
[57] Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 1991, 17(1) : 47-61. doi: 10.1016/0146-6380(91)90039-M
[58] Noble R, Alexander R, Kagi R I. The occurrence of bisnorhopane, trisnorhopane and 25-norhopanes as free hydrocarbons in some Australian shales[J]. Organic Geochemistry, 1985, 8(2) : 171-176. doi: 10.1016/0146-6380(85)90035-X
[59] Blanc P H, Connan J. Origin and occurrence of 25-norhopanes: a statistical study[J]. Organic Geochemistry, 1992, 18(6) : 813-828. doi: 10.1016/0146-6380(92)90050-8
[60] Chosson P, Connan J, Dessort D, et al. In vitro biodegradation of steranes and terpanes: a clue to understanding geological situations[C]// Moldowan J M, Albrecht P, Philp R P. Biological Markers in Sediments and Petroleum. New Jersey: Prentice Hall, 1992: 320-349.
[61] Seifert W K, Moldowan J M. The effect of biodegradation on steranes and terpanes in crude oils[J]. Geochimica et Cosmochimica Acta, 1979, 43(1) : 111-126. doi: 10.1016/0016-7037(79)90051-6
[62] Rullkötter J, Wendisch D. Microbial alteration of 17α(H) -hopanes in Madagascar asphalts: removal of C-10 methyl group and ring opening[J]. Geochimica et Cosmochimica Acta, 1982, 46(9) : 1545-1553. doi: 10.1016/0016-7037(82)90313-1
[63] Volkman J K, Alexander R, Kagi R I, et al. Demethylated hopanes in crude oils and their applications in petroleum geochemistry[J]. Geochimica et Cosmochimica Acta, 1983, 47(4) : 785-794. doi: 10.1016/0016-7037(83)90112-6
[64] Seifert W K, Moldowan J M, Demaison G J. Source correlation of biodegraded oils[J]. Organic Geochemistry, 1984, 6: 633-643. doi: 10.1016/0146-6380(84)90085-8
[65] Moldowan J M, McCaffrey M A. A novel microbial hydrocarbon degradation pathway revealed by hopane demethylation in a petroleum reservoir[J]. Geochimica et Cosmochimica Acta, 1995, 59(9) : 1891-1894. doi: 10.1016/0016-7037(95)00072-8
-