Analysis of global helium industry chain and China's strategy
-
摘要:
氦气作为关系国家安全和高新技术产业发展的战略性稀有气体资源, 在液体燃料火箭发射、深潜水等多个领域无可替代, 深刻影响着“深空、深海、深地、深蓝”等领域的高质量发展。氦气产业链与创新链的融合发展是提高氦气资源供给安全的重要方式, 对推动氦气供给侧结构性改革、构建氦气多元供应体系具有重要意义。从资源端、供给端、消费端、贸易端、技术端等方面梳理了全球氦气资源产业链与创新链发展态势, 通过对中国氦气资源条件、产能建设、对外依存度、进口国集中度、进口企业集中度、未来供需趋势、产业技术链、管理机制等指标的梳理, 分析了中国氦气产业发展现状和面临的问题挑战, 探讨了相应的氦气产业发展路径。研究认为, 全球氦气资源潜力巨大, 但大多数国家勘探程度较低; 全球氦气产能、供给、需求和贸易格局深刻变化, 供需矛盾长期存在; 氦气成藏理论与勘查开发技术尚不成熟, 提氦装备不断完善; 全球氦气产能发展总体态势良好, 出现“氦热”潮, 开发主体日益多元化, 或将改变全球氦气供需格局。面对全球氦气资源产业链格局和产业发展新趋势, 中国氦气发展挑战与机遇并存。中国必须开展补链强链工作, 着力加强氦气资源调查评价, 开展关键技术装备攻关, 加大市场主体培育力度, 推进多元供应体系建设, 打造自主可控的创新链, 形成稳定、有韧性的产业链, 为高新技术产业发展提供氦气资源保障。
Abstract:As an important strategic rare gas resource related to national security and the development of high-tech industries, helium is irreplaceable in liquid fuel rocket launch, deep diving and other fields, and has a profound impact on the high-quality development of "deep space, deep sea, deep earth, deep blue" and other fields. The integrated development of helium industry and innovation chains plays an important role to improve the security of resource supply. It has a great significance to promote the structural reform of helium supply and build a diversified helium supply system. This paper analyses the development situation of global helium resources industry and innovation chains integrated the resource side, the supply side, the consumption side, the trade side and the technology side. This study proposes the development status and challenges of China's helium industry and the corresponding development path of helium industry based on indicators such as resource conditions, capacity construction, foreign dependence, concentration of importing countries, concentration of importing enterprises, risk of importing countries, substitutability, the recycling rate, future supply and demand trend, industrial technology chain, management mechanisms. The results show that the global helium resource potential is considerable, but most countries remain in low exploration level; The global helium production capacity, supply, demand and trade pattern would be profoundly changing, but the contradiction between supply and demand would persist for a long time; The helium reservoir forming theory and exploration and development technology are underdeveloped, and the helium extraction equipment is continuously improved; The overall trend of global helium production develops well with a "helium heat" tide. The development subjects become diversified, which may change the global helium supply and demand pattern. China's helium development challenges and opportunities coexist considering the global helium resource industry chain pattern and the new trend of industry development. The 2022 is the key year to implement "the 14th Five Year Plan". It is desirable to conduct the work including the integrated chain analysis, the investigation and evaluation of helium resources, technical equipment research, the cultivation of market players, the construction of a diversified supply system. The above work will build an independent and controllable innovation chain, form a stable and resilient industrial chain, and provide helium resources guarantee for the development of high-tech industries.
-
-
图 1 全球氦气藏分布与产能格局示意图(据张宁等,2010;USGS, 2022修改)
Figure 1.
表 1 全球部分计划新建天然气提氦厂
Table 1. Statistics of some new helium extraction factories scheduled around the world
国家 所有者或运营者 工厂或气田 氦年产能/104 m3 计划投产年份 俄罗斯 俄罗斯天然气工业股份公司(Gazprom) 阿穆尔1期(Amour) 2000 2021 俄罗斯 俄罗斯天然气工业股份公司(Gazprom) 阿穆尔2期(Amour) 2000 2022 俄罗斯 俄罗斯天然气工业股份公司(Gazprom) 阿穆尔3期(Amour) 2000 2024 俄罗斯 伊尔库茨克石油公司(INK) 雅拉克塔气田(Yarakta) 750 2021 俄罗斯 伊尔库茨克石油公司(INK) 马尔科夫斯科气田(Markovsk) 450 2025 卡塔尔 卡塔尔能源公司(Qatar Energy)等 拉斯拉凡3期(RasLaffan -3) 1200 2022 坦桑尼亚 氦一号公司(Helium One) 氦一号(Helium One) 2800 2025 阿尔及利亚 阿尔及利亚国家石油公司(Sonatrach)等 阿尔及利亚提氦厂 1000 项目已启动 表 2 国内主要BOG提氦企业
Table 2. Major BOG purification helium companies in China
序号 所在盆地 所在地区 年提氦能力/104 m3 状态 提氦方法 1 鄂尔多斯盆地 杭锦旗 100 投产 低温深冷 2 鄂尔多斯盆地 杭锦旗 40 投产 低温深冷 3 鄂尔多斯盆地 盐池 15 投产 低温深冷 4 鄂尔多斯盆地 榆林 15 投产 膜法 5 鄂尔多斯盆地 庆阳 15 投产 膜法 6 鄂尔多斯盆地 盐池 15 投产 膜法 7 鄂尔多斯盆地 鄂尔多斯 15 投产 膜法 8 鄂尔多斯盆地 鄂尔多斯 10 投产 膜法 9 鄂尔多斯盆地 榆林 30 在建 膜法 10 四川盆地 重庆 15 在建 膜法 11 四川盆地 重庆 20 在建 低温深冷 12 鄂尔多斯盆地 延安 25 在建 低温深冷 13 鄂尔多斯盆地 延安 15 在建 低温深冷 14 鄂尔多斯盆地周缘 乌兰察布 25 在建 低温深冷 15 鄂尔多斯盆地 鄂尔多斯 55 在建 低温深冷 16 鄂尔多斯盆地 鄂尔多斯 20 在建 低温深冷 17 鄂尔多斯盆地周缘 包头 10 在建 低温深冷 合计 440 -
[1] Broadhead R F. Helium in New Mexico; geologic distribution, resource demand, and exploration possibilities[J]. New Mexico Geology, 2005, 27(4): 93-101.
[2] Centers for Medicare & Medicaid Services. Historical[EB/OL]. [2021-12-15]. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NationalHealthAccountsHistorical.
[3] Danabalan D, Gluyas J G, Macpherson C G, et al. The principles of helium exploration[J]. Petroleum Geoscience, 2022, 28(2): 1-13.
[4] Edison Investment Research. Global helium market update: Market shifting to oversupply by mid-2020s[R]. Edison Investment Research, 2021.
[5] Future Market Insights, Inc. Helium Gas Market Outlook(2022-2032)[M]. Newark: Future Market Insights, Inc., 2022.
[6] Gazprom Information Directorate. World's biggest helium hub comes onstream[EB/OL]. [2021-09-03]. https://www.gazprom.com/press/news/2021/september/article536871/.
[7] Halford D T, Karolyt R, Barry P H, et al. High helium reservoirs in the Four Corners area of the Colorado Plateau, USA[J]. Chemical Geology, 2022, 596: 120790. doi: 10.1016/j.chemgeo.2022.120790
[8] Hooker B. Helium in Russia[C]//The Future of Helium as a Natural Resource. Routledge, 2012: 88-100.
[9] Kramer D. Helium is again in short supply[EB/OL]. [2022-04-04]. https://physicstoday.scitation.org/do/10.1063/PT.6.2.20220404a/full/.
[10] Liu Q Y, Wu X Q, Jia H C, et al. Geochemical Characteristics of Helium in Natural Gas From the Daniudi Gas Field, Ordos Basin, Central China[J]. Frontiers in Earth Science, 2022, 10: 823308. doi: 10.3389/feart.2022.823308
[11] Offshore Technology. Qatar Petroleum makes FID on. 7bn North Field East project[EB/OL]. [2021-02-09]. https://www.offshore-technology.com/news/qatar-petroleum-makes-fid-on-28-7bn-north-field-east-project/.
[12] Omid Shokri Kalehsar. A Rising Role: Qatar and its Competition in the Global Helium Market[EB/OL]. [2021-03-09]. https://gulfif.org/a-rising-role-qatar-and-its-competition-in-the-global-helium-market/.
[13] Kornbluth P. Helium start-up activity at unprecedented levels[EB/OL]. [2021-06-10]. https://www.gasworld.com/helium-start-up-activity-at-unprecedented-levels/2021048.article.
[14] Provornaya I V, Filimonova I V, Eder L V, et al. Prospects for the global helium industry development[J]. Energy Reports, 2022, 8: 110-115. doi: 10.1016/j.egyr.2022.01.087
[15] Skyquest. Global Helium Market[R]. Massachusetts: Sky Quest Technology Group, 2022.
[16] Thor Resources Inc. Uses of helium[EB/OL]. [2022-10-03]. https://www.thorres.com/helium-business-2.
[17] USGS. Mineral commodity summaries 2022[Z]. U.S. Geological Survey, 2022.
[18] Yakutseni V P. World helium resources and the perspectives of helium industry development[J]. Neftegazovaya Geologiya, Teoriya I Praktika, 2014, 9(1): 1-22.
[19] Zhang W, Li Y H, Zhao F H, et al. Using noble gases to trace groundwater evolution and assess helium accumulation in Weihe Basin, central China[J]. Geochimica et Cosmochimica Acta, 2019a, 251: 229-246. doi: 10.1016/j.gca.2019.02.024
[20] Zhang W, Li Y H, Zhao F H, et al. Quantifying the helium and hydrocarbon accumulation processes using noble gases in the North Qaidam Basin, China[J]. Chemical Geology, 2019b, 525: 368-379. doi: 10.1016/j.chemgeo.2019.07.020
[21] 车燕, 姜慧超, 穆星, 等. 花沟气田气藏类型及成藏规律[J]. 油气地质与采收率, 2001, 8(5): 32-34. doi: 10.3969/j.issn.1009-9603.2001.05.008
[22] 陈践发, 刘凯旋, 董勍伟, 等. 天然气中氦资源研究现状及我国氦资源前景[J]. 天然气地球科学, 2021, 32(10): 1436-1449. doi: 10.11764/j.issn.1672-1926.2021.08.006
[23] 戴金星. 威远气田成藏期及气源[J]. 石油实验地质, 2003, 25(5): 473-480. doi: 10.3969/j.issn.1001-6112.2003.05.010
[24] 冯子辉, 霍秋立, 王雪. 松辽盆地北部氦气成藏特征研究[J]. 天然气工业, 2001, 21(5): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200105007.htm
[25] 付晓飞, 云金表, 卢双舫, 等. 松辽盆地无机成因气富集规律研究[J]. 天然气工业, 2005, 25(10): 14-17. doi: 10.3321/j.issn:1000-0976.2005.10.005
[26] 顾延景, 张保涛, 李孝军, 等. 济阳坳陷花沟地区氦气成藏控制因素探讨——以花501井为例[J]. 西北地质, 2022, 55(3): 257-266. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202203020.htm
[27] 韩伟, 李玉宏, 卢进才, 等. 陕西渭河盆地富氦天然气异常的影响因素[J]. 地质通报, 2014, 33(11): 1836-1841. doi: 10.3969/j.issn.1671-2552.2014.11.022 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20141120&flag=1
[28] 韩伟, 刘文进, 李玉宏, 等. 柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素[J]. 天然气地球科学, 2020, 31(3): 385-392. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202003009.htm
[29] 韩元红, 罗厚勇, 薛宇泽, 等. 渭河盆地地热水伴生天然气成因及氦气富集机理[J]. 天然气地球科学, 2022, 33(2): 277-287. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202202009.htm
[30] 何发岐, 王付斌, 王杰, 等. 鄂尔多斯盆地东胜气田氦气分布规律及特大型富氦气田的发现[J]. 石油实验地质, 2022, 44(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202201001.htm
[31] 贾凌霄, 马冰, 王欢, 等. 全球氦气勘探开发进展与利用现状[J]. 中国地质, 2022, 49(5): 1427-1437. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202205005.htm
[32] 李均方, 何琳琳, 柴露华. 天然气提氦技术现状及建议[J]. 石油与天然气化工, 2018, 47(4): 41-44. doi: 10.3969/j.issn.1007-3426.2018.04.008
[33] 李玉宏, 王行运, 韩伟. 渭河盆地氦气资源远景调查进展与成果[J]. 中国地质调查, 2015, 2(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201506001.htm
[34] 李玉宏, 张文, 王利, 等. 亨利定律与壳源氦气弱源成藏——以渭河盆地为例[J]. 天然气地球科学, 2017a, 28(4): 495-501. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704001.htm
[35] 李玉宏, 张文, 王利, 等. 壳源氦气成藏问题及成藏模式[J]. 西安科技大学学报, 2017b, 37(4): 565-572. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201704017.htm
[36] 李玉宏, 周俊林, 张文, 等. 渭河盆地氦气成藏条件及资源前景[M]. 北京: 地质出版社, 2018.
[37] 李玉宏, 李济远, 周俊林, 等. 国内外氦气资源勘探开发现状及其对中国的启示[J]. 西北地质, 2022, 55(3): 233-240. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202203018.htm
[38] 卢进才, 魏仙样, 李玉宏, 等. 汾渭盆地富氦天然气成因及成藏条件初探[J]. 西北地质, 2005, 38(3): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200503014.htm
[39] 秦胜飞, 李济远. 世界氦气供需现状及发展趋势[J]. 石油知识, 2021, (5): 44-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZS202105020.htm
[40] 秦胜飞, 李济远, 王佳美, 等. 中国含油气盆地富氦天然气藏氦气富集模式[J]. 天然气工业, 2022, 42(7): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202207013.htm
[41] 陶明信, 徐永昌, 韩文功, 等. 中国东部幔源流体的活动特征与成藏效应[J]. 大地构造与成矿学, 2001, 25(3): 265-270. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200103006.htm
[42] 陶小晚, 李建忠, 赵力彬, 等. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]. 地球科学, 2019, 44(3): 1024-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903029.htm
[43] 王佩业, 宋涛, 真允庆, 等. 四川威远气田: 幔壳混源成因的典型范例[J]. 地质找矿论丛, 2011, 26(1): 63-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201101014.htm
[44] 徐永昌, 沈平, 陶明信, 等. 东部油气区天然气中幔源挥发份的地球化学——Ⅰ. 氦资源的新类型: 沉积壳层幔源氦的工业储集[J]. 中国科学(D辑), 1996, 26(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199601000.htm
[45] 杨振宁, 李永红, 刘文进, 等. 柴达木盆地北缘全吉山地区氦气形成地质条件及资源远景分析[J]. 中国煤炭地质, 2018, 30(6): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201806013.htm
[46] 余琪祥, 江其勤. 油气勘探开发应兼顾氦气藏研究利用[N]. 中国石化报, [2014-04-28](版次: 5版)
[47] 余琪祥, 史政, 王登高, 等. 塔里木盆地西北部氦气富集特征与成藏条件分析[J]. 西北地质, 2013, 46(4): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201304026.htm
[48] 余琪祥. 油气开发应兼顾氦气资源的利用[N]. 中国能源报, [2017-3-6](版次: 14版).
[49] 张宁, 胡忠军, 李青. 全球氦供求形势及其回收利用[J]. 低温与特气, 2010, 28(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DWTQ201006002.htm
[50] 张晓宝, 周飞, 曹占元, 等. 柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景[J]. 天然气地球科学, 2020, 31(11): 1585-1592. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202011007.htm
[51] 张雪, 刘建朝, 李荣西, 等. 中国富氦天然气资源研究现状与进展[J]. 地质通报, 2018, 37(2/3): 476-486. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2018020325&flag=1
[52] 张云鹏, 李玉宏, 卢进才, 等. 柴达木盆地北缘富氦天然气的发现——兼议成藏地质条件[J]. 地质通报, 2016, 35(2/3): 364-371. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20160319&flag=1
[53] 张哲, 王春燕, 王秋晨, 等. 中国氦气市场发展前景展望[J]. 油气与新能源, 2022a, 34(1): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH202201008.htm
[54] 张哲, 王春燕, 王秋晨, 等. 浅谈中国氦气供应链技术壁垒与发展方向[J]. 油气与新能源, 2022b, 34(2): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH202202003.htm
[55] 张子枢. 地球深源气研究概述[J]. 天然气地球科学, 1992, (3): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199203002.htm
[56] 赵少宇. 与油气伴生的宝藏: 氦气[J]. 石油知识, 2014, (6): 18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZS201406010.htm
[57] 中国科学院理化技术研究所. 理化所BOG提氦装备产业化取得突破性进展[EB/OL]. [2020-07-23]. http://www.ipc.cas.cn/xwzx/kyjz/202007/t20200723_5643653.html.
-