青藏高原周缘的河流纵剖面特征及其对构造地貌演化的启示

邢宇堃, 刘静, 王伟, 张金玉, 李金阳, 曾宪阳. 2023. 青藏高原周缘的河流纵剖面特征及其对构造地貌演化的启示. 地质通报, 42(1): 107-121. doi: 10.12097/j.issn.1671-2552.2023.01.010
引用本文: 邢宇堃, 刘静, 王伟, 张金玉, 李金阳, 曾宪阳. 2023. 青藏高原周缘的河流纵剖面特征及其对构造地貌演化的启示. 地质通报, 42(1): 107-121. doi: 10.12097/j.issn.1671-2552.2023.01.010
XING Yukun, LIU Jing, WANG Wei, ZHANG Jinyu, LI Jinyang, ZENG Xianyang. 2023. Longitudinal profile analysis of rivers draining edges of the Xizang Plateau and its geomorphology implications. Geological Bulletin of China, 42(1): 107-121. doi: 10.12097/j.issn.1671-2552.2023.01.010
Citation: XING Yukun, LIU Jing, WANG Wei, ZHANG Jinyu, LI Jinyang, ZENG Xianyang. 2023. Longitudinal profile analysis of rivers draining edges of the Xizang Plateau and its geomorphology implications. Geological Bulletin of China, 42(1): 107-121. doi: 10.12097/j.issn.1671-2552.2023.01.010

青藏高原周缘的河流纵剖面特征及其对构造地貌演化的启示

  • 基金项目:
    国家自然科学基金项目《藏东南三江地区新生代构造与地貌协同演化: 基于断裂带运动学和河流演化的构造热年代学研究》(批准号: 42030305)、《青藏高原东缘龙门山南段千年尺度地表侵蚀定量化研究》(批准号: 41902215)、《力丘河地区低起伏地貌面地表过程的定量研究》(批准号: IGCEA2112)
详细信息
    作者简介: 邢宇堃(1997-), 男, 硕士, 从事低温热年代学等方面的研究。E-mail: yukunxing2018@163.com
    通讯作者: 刘静(1969-), 女, 教授, 从事活动构造、古地震、地貌学等方面的研究。E-mail: liu_zeng@tju.edu.cn
  • 中图分类号: P512.31;P54

Longitudinal profile analysis of rivers draining edges of the Xizang Plateau and its geomorphology implications

More Information
  • 河流水系是改造地表地貌的主要外动力,其形态样式记录了造山带和高原的生长和演化。目前对于青藏高原周缘的河流剖面研究主要集中在南缘、东南缘及东缘。相比而言,对于流经高原其他边缘河流的纵剖面特征仍然缺乏分析,不同位置的高原边缘河流发育是否存在相似性或差异性及其内在原因尚未开展相关研究。选取青藏高原北缘西昆仑—阿尔金地区、东北缘祁连山地区、东南缘三江地区和南缘喜马拉雅等典型区域,通过开展河流地貌对比研究,利用河流纵剖面的关键地貌参数定量分析了高原周边地貌边界带的空间特征及相关的构造与气候因素。结果表明,在青藏高原周缘地貌边界带上,河流陡峭度指数最大值与区域地形起伏最大区域一致,河流流经高原边缘时陡峭度有显著升高,而在高原边缘两侧陡峭度均相对较低,且河流向高原内部的溯源侵蚀十分有限,而且河流裂点均出现在区域地形起伏较高的地貌部位。其中青藏高原北缘、东北缘与南缘,地形起伏最大的区域与构造边界所围限的高原边界一致,并大致对应最新构造活动的强隆升区,而青藏高原东南缘的高原边界较模糊,地形起伏度变化最明显的区域出现在雅砻逆冲断裂两侧,与前人提出的古高原边界一致,暗示该区河流裂点的形成可能与雅砻逆冲断裂的早期活动有关。基于研究结果认为,对于青藏高原这样大尺度或经历长时间构造演化过程的地貌单元,基于稳态假设下的河流形态分析高原隆升时间可能存在较大偏差。青藏高原东南缘的高海拔低起伏地貌面可能是在较平缓的内流水系作用下形成的,在随后的河流袭夺等过程中演变为现今的外流河状态。

  • 加载中
  • 图 1  青藏高原DEM影像及地形剖面位置(a, DEM来源为SRTM数据,来源https://srtm.csi.cgiar.org/);跨高原及其周边不同地貌边界带的地形剖面(b)、高原及周缘的主要水系网、河流裂点、降水量与分布(c, 数据来源:http://www.worldclim.org/version2)和青藏高原及周缘主要活动构造(d) (Tapponnier et al., 2001)

    Figure 1. 

    图 2  青藏高原北缘地形起伏与主要河流空间分布

    Figure 2. 

    图 3  青藏高原北缘主要河流纵剖面与Chi-plot

    Figure 3. 

    图 4  青藏高原北缘主要河流投影纵剖面分析

    Figure 4. 

    图 5  青藏高原东北缘地形起伏与主要河流空间分布

    Figure 5. 

    图 6  青藏高原东北缘主要河流纵剖面图

    Figure 6. 

    图 7  青藏高原东北缘主要河流纵剖面投影图

    Figure 7. 

    图 8  青藏高原东南缘地形起伏与主要河流空间分布

    Figure 8. 

    图 9  青藏高原东南缘主要河流纵剖面图

    Figure 9. 

    图 10  青藏高原东南缘主要河流纵剖面投影图

    Figure 10. 

    图 11  青藏高原南缘地形起伏与主要河流空间分布

    Figure 11. 

    图 12  青藏高原南缘主要河流纵剖面投影图

    Figure 12. 

  • [1]

    An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased upflit of the Himalaya-Xizang plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. doi: 10.1038/35075035

    [2]

    Argand E. La tectonicgue de I 'Asie[C]//Pro. 13th Int. Geol. Congr. Brussels, 1924, 7: 171-372.

    [3]

    Brookfield M E. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: rivers draining southwards[J]. Geomorphology, 1998, 22(3): 285-312.

    [4]

    Burbank D W, Anderson R S. Tectonic Geomorphology[J]. Progress in Physical Geography, 1991, 15(2): 193-205. doi: 10.1177/030913339101500206

    [5]

    Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Xizang by lower crustal flow[J]. Geology, 2000, 28(8): 703. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2

    [6]

    Clark M K, Schoenbohm L M, Royden L H, et al. Surface uplift, tectonics, and erosion of eastern Xizang from large-scale drainage patterns[J]. Tectonics, 2004, 23(1): 1-20.

    [7]

    Clark M K, House M, Royden L, et al. Late Cenozoic uplift of southeastern Xizang[J]. Geology, 2005, 33(6): 525-528. doi: 10.1130/G21265.1

    [8]

    Clark M K, Royden L H, Whipple K X, et al. Use of a regional, relict landscape to measure vertical deformation of the eastern Xizang Plateau[J]. Journal of Geophysical Research: Earth Surface, 2006, 111(F3): F03002.

    [9]

    England P, McKenzie D. A thin viscous sheet model for continental deformation[J]. Geophysical Journal of the Royal Astronomical Society, 1982, 70(2): 295-321. doi: 10.1111/j.1365-246X.1982.tb04969.x

    [10]

    England P, Molnar P. Active Deformation of Asia: From Kinematics to Dynamics[J]. Science, 1997, 278(5338): 647-650. doi: 10.1126/science.278.5338.647

    [11]

    Fielding E, Isacks B. How flat is Xizang?[J]. Geology, 1994, 22(2): 163-167. doi: 10.1130/0091-7613(1994)022<0163:HFIT>2.3.CO;2

    [12]

    Flint J J. Stream gradient as a function of order, magnitude, and discharge[J]. Water Resources Research, 1974, 10(5): 969-973. doi: 10.1029/WR010i005p00969

    [13]

    Hallet B, Molnar P. Distorted drainage basins as markers of crustal strain east of theHimalaya[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B7): 13697-13709. doi: 10.1029/2000JB900335

    [14]

    Houseman G, England P. Crustal thickening versus lateral expulsion in the Indian-Asiancontinental collision[J]. Journal of Geophysical Research Solid Earth, 1993, 98: 12233-12249: doi: 10.1029/93JB00443

    [15]

    Howard A D, Kerby G. Channel changes in badlands[J]. Geological Society of America Bulletin, 1983, 94(6): 739-752. doi: 10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2

    [16]

    Kirby E, Whipple K X, Tang W, et al. Distribution of active rock uplift along the easternmargin of the Xizang Plateau: Inferences from bedrock channel longitudinal profiles[J]. Journal of Geophysical Research Solid Earth, 2003, 108(B4): 2217.

    [17]

    Leloup P H, Lacassin R, Kienast J R, et al. New constraints on the structure, thermochronology, and timing ofthe Ailao Shan-Red River Shear Zone, SE Asia[J]. Journal of Geophysical ResearchAtmospheres, 2001, 106(B4): 6683-6732. doi: 10.1029/2000JB900322

    [18]

    Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan-Red River shear zone(Yunnan, China)Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1/4): 3-10.

    [19]

    Lin X, Tian Y, Donelick R A, et al. Mesozoic and Cenozoic tectonics of the northeastern edge of the Xizang plateau: Evidence from modern river detrital apatite fission-track age constraints[J]. Journal of Asian earth sciences, 2019, 170: 84-95. doi: 10.1016/j.jseaes.2018.10.028

    [20]

    Lin X, Jolivet M, et al. The Formation of the North Qilian Shan through Time: Clues from Detrital Zircon Fission-Track Data from Modern River Sediments[J]. Geosciences, 2022, 12(4): 166. doi: 10.3390/geosciences12040166

    [21]

    Liu J, Tang Y, Tran M, et al. The nature of the Ailao Shan-Red River(ASRR)shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs[J]. Journal of Asian Earth Sciences, 2012, 47: 231-251. doi: 10.1016/j.jseaes.2011.10.020

    [22]

    Liu Z J, Tapponnier P, Gaudemer Y, et al. Quantifying landscape differences across the Xizang plateau: implications for topographic reliefevolution[J]. Journal of Geophysical Research, 2008, 113: F04018.

    [23]

    Molnar P, Tapponnier P. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189(4201): 419-426. doi: 10.1126/science.189.4201.419

    [24]

    Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Xizang Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396. doi: 10.1029/93RG02030

    [25]

    Perron J T, Royden L H. An integral approach to bedrock river profile analysis[J]. Earth Surface Processes & Landforms, 2013, 38(6): 570-576.

    [26]

    Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west[J]. Journal of Geophysical Research, 1989, 94(D15): 18409. doi: 10.1029/JD094iD15p18409

    [27]

    Schwanghart W, Scherler D. Short Communication: TopoToolbox 2-MATLAB-based software for topographic analysis and modeling in Earth surface sciences[J]. Earth Surface Dynamics, 2014, 2(1): 1-7. doi: 10.5194/esurf-2-1-2014

    [28]

    Snyder N P, Whipple K X. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California[J]. Geological Society of America Bulletin, 2000, 112(8): 1250-1263. doi: 10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2

    [29]

    Tapponnier P, Peltzer G, Dain A, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    [30]

    Tapponnier P, Xu Z, Roger F. Oblique stepwise rise and growth of the Xizang Plateau[J]. Science, 2001, 294(5547): 1671-1678. doi: 10.1126/science.105978

    [31]

    Whipple K X, Tucker G E. Dynamics of the stream-power river incision model: Implications forheight limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B8): 17661-17674. doi: 10.1029/1999JB900120

    [32]

    Whittaker A C, Boulton S J. Tectonic and climatic controls on knickpoint retreat rates and landscape response times[J]. Journal of Geophysical Research, 2012, 117(F2): F02024-1-F02024-19.

    [33]

    Wobus C, Whipple K X, Kirby E, et al. Tectonics from topography: Procedures, promise, and pitfalls[J]. Tectonics, Climate, and Landscape Evolution, 2006, 398: 55-74.

    [34]

    Yang R, Suhail H A, Gourbet L, et al. Early Pleistocene drainage pattern changes in Eastern Xizang: Constraints from provenance analysis, thermochronometry, and numerical modeling[J]. Earth and Planetary Science Letters, 2019, 531: 115955.

    [35]

    Zhang H, Oskin M E, Jing L Z, et al. Pulsed exhumation of interior eastern Xizang: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth and Planetary Science Letters, 2016, 449: 176-185. doi: 10.1016/j.epsl.2016.05.048

    [36]

    安芷生, 张培震, 王二七, 等. 中新世以来我国季风-干旱环境演化与青藏高原的生长[J]. 第四纪研究, 2006, 26(5): 678-693. doi: 10.3321/j.issn:1001-7410.2006.05.002

    [37]

    李廷栋. 青藏高原隆升的过程和机制[J]. 地球学报, 1995, 16(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm

    [38]

    林旭, 刘静, 彭保发, 等. 青藏高原周围河流基岩和碎屑矿物低温热年代学研究进展[J]. 地震地质, 2017, 39(6): 1091-1110. doi: 10.3969/j.issn.0253-4967.2017.06.001

    [39]

    刘静, 曾令森, 丁林, 等. 青藏高原东南缘构造地貌, 活动构造和下地壳流动假说[J]. 地质科学, 2009, (4): 1227-1255. doi: 10.3321/j.issn:0563-5020.2009.04.014

    [40]

    马钦忠, 李吉均. 青藏高原北缘晚新生代的差异性隆起特征[J]. 地学前缘, 2003, 10(4): 590-598. doi: 10.3321/j.issn:1005-2321.2003.04.025

    [41]

    施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 1999, (1): 10-21. doi: 10.3321/j.issn:0375-5444.1999.01.002

    [42]

    唐渊, 王鹏, 邓红, 等. 青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录[J]. 地质通报, 2022, 41(7): 1121-1143. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20220701&flag=1

    [43]

    王国灿, 张克信, 曹凯, 等. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程[J]. 地球科学(中国地质大学学报), 2010, 35(5): 713-727. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005001.htm

    [44]

    王永, 王军, 肖序常, 等. 西昆仑山前河流阶地的形成及其构造意义[J]. 地质通报, 2009, 28(12): 1779-1785. doi: 10.3969/j.issn.1671-2552.2009.12.011 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20091210&flag=1

    [45]

    吴中海, 龙长兴, 范桃园, 等. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报, 2015, 34(1): 1-31. doi: 10.3969/j.issn.1671-2552.2015.01.002

    [46]

    赵尚民, 周成虎, 程维明, 等. 青藏高原西北缘地形抬升速率与地质年代的关系[J]. 山地学报, 2011, 29(5): 616-626. doi: 10.3969/j.issn.1008-2786.2011.05.015

    [47]

    钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑), 1996, 4: 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604000.htm

  • 加载中

(12)

计量
  • 文章访问数:  2974
  • PDF下载数:  165
  • 施引文献:  0
出版历程
收稿日期:  2022-05-11
修回日期:  2022-07-04
刊出日期:  2023-01-15

目录