Age and geochemistry of volcanic rocks of Baishan Formation in Yagan tectonic zone, Northern Alxa and their constraints on regional tectonic evolution
-
摘要:
阿拉善北部雅干地区古生代火山岩发育,研究其形成时代和地质特征,对探讨中亚造山带中段南缘北山弧盆系的演化具有重要的意义。对雅干地区原划奥陶系火山岩进行了同位素年代学与地球化学研究,获得流纹岩LA-ICP-MS锆石U-Pb年龄为298.4±1.5Ma,时代为早二叠世初期,结合岩石组合特征和区域对比,将其重新厘定为上石炭统—下二叠统白山组。该套火山岩富SiO2、高K2O、低TiO2,属于钙碱性系列; 相对富集Rb、Pb、K等大离子亲石元素,明显亏损Ta、Nb、P、Ti等高场强元素; 呈现为轻稀土元素相对富集、重稀土元素相对亏损的的右倾特征,具有较明显的负Eu异常,显示出陆缘弧火山岩的地球化学特征。上述证据表明,雅干地区白山组火山岩形成于古亚洲洋向明水-旱山地块北缘俯冲的陆缘弧构造环境。
Abstract:Paleozoic volcanic rocks are developed in Yagan area,northern Alxa,which is of great significance to study their formation age and geological characteristics for the evolution of the North Mountain arc basin system in the southern margin of the Middle Central Asian orogenic belt. In this paper,the isotope chronology and geochemical characterization of the proto-Ordovician volcanic rocks of the Yagan region are studied. The results show that the LA-ICP-MS zircon U-Pb age of the rhyolite is 298.4±1.5 Ma,which belongs to the early Early Permian. It is redetermined to the Upper Carbonifeous-Lower Permian Baishan Formation based on the characteristics of the lithological assemblage. This set of volcanic rocks belong to the calc-alkaline series,which have higher content of SiO2,higher content of K2O and lower content of TiO2. They are relatively enriched in large ion lithophile elements such as Rb,Pb,K,and are obviously depleted high field strength elements such as Ta,Nb,P and Ti. The sample apparent right-leaning distribution patterns of the REE with depletion in LREE and enrichment in HREE and negative Eu anomaly,and they have the geochemistry characteristics of continental arc. The new evidence shows that Baishan Formation in Yagan area formed in the subduction of Paleo-Asian Ocean towards the northern margin of Mingshui-Hanshan block,and it was resulted from magmatism of the active continental margin.
-
-
图 1 洪果尔吉乌拉山地区大地构造位置(a,据潘桂棠等, 2016;陈智斌等, 2020修改)和地质简图(b)
Figure 1.
图 6 白山组火山岩TAS图解(a, 底图据Le Bas et al., 2004)和SiO2-K2O图解(b, 底图据Peccerillo, 1976)
Figure 6.
表 1 白山组流纹岩LA-ICP-MS锆石U-Th-Pb同位素测试数据
Table 1. LA-ICP-MS zircon U-Th-Pb isotopic analysis data of rhyolite from Baishan Formation
测点 含量/10-6 同位素比值 年龄/Ma 谐和度/% Pb Th U 206Pb/
238U1σ 207Pb/
235U1σ 207Pb/
206Pb1σ 206Pb/
238U1σ 207Pb/
235U1σ 207Pb/
206Pb1σ 1 20 271 391 0.0475 0.0005 0.3482 0.0064 0.0531 0.0009 299.4 3.4 303 6 334 37 101 2 16 139 329 0.0477 0.0005 0.3531 0.0068 0.0537 0.0009 300.2 3.4 307 6 359 40 102 3 15 134 322 0.0466 0.0005 0.3507 0.0090 0.0546 0.0012 293.8 3.4 305 8 394 50 104 4 14 168 274 0.0467 0.0006 0.3447 0.0089 0.0535 0.0012 294.4 3.9 301 8 350 52 102 5 12 113 245 0.0475 0.0006 0.3487 0.0090 0.0532 0.0012 299.4 3.8 304 8 337 49 101 6 10 128 191 0.0475 0.0006 0.3548 0.0101 0.0541 0.0014 299.4 3.6 308 9 377 59 103 7 9 100 185 0.0472 0.0005 0.3538 0.0089 0.0543 0.0013 297.6 3.4 308 8 384 53 103 8 11 108 226 0.0482 0.0006 0.3517 0.0092 0.0529 0.0013 303.4 3.6 306 8 326 56 101 9 4 34 84 0.0480 0.0007 0.3493 0.0211 0.0528 0.0031 302.0 4.3 304 18 321 133 101 10 10 81 208 0.0474 0.0006 0.3541 0.0091 0.0542 0.0013 298.4 3.6 308 8 380 54 103 11 21 282 395 0.0471 0.0005 0.3469 0.0064 0.0534 0.0009 296.8 3.4 302 6 346 37 102 12 26 214 547 0.0466 0.0005 0.3385 0.0060 0.0527 0.0008 293.7 3.2 296 5 315 36 101 13 8 76 156 0.0476 0.0005 0.3421 0.0110 0.0521 0.0016 299.8 3.5 299 10 290 70 100 14 17 154 318 0.0477 0.0006 0.3512 0.0076 0.0534 0.0010 300.2 3.7 306 7 347 43 102 15 14 129 272 0.0472 0.0006 0.3477 0.0076 0.0535 0.0010 297.1 3.6 303 7 349 44 102 16 11 109 215 0.0479 0.0006 0.3435 0.0110 0.0520 0.0015 301.8 3.6 300 10 284 65 99 17 15 187 283 0.0474 0.0005 0.3455 0.0082 0.0528 0.0011 298.8 3.4 301 7 321 48 101 18 12 113 248 0.0472 0.0005 0.3445 0.0082 0.0530 0.0012 297.1 3.4 301 7 328 51 101 19 17 207 325 0.0472 0.0005 0.3519 0.0070 0.0541 0.0010 297.3 3.4 306 6 374 40 103 20 13 107 255 0.0477 0.0006 0.3450 0.0089 0.0525 0.0012 300.2 3.9 301 8 307 53 100 21 11 74 224 0.0475 0.0006 0.3447 0.0101 0.0526 0.0015 299.3 3.6 301 9 312 64 100 表 2 白山组火山岩主量、微量和稀土元素含量
Table 2. Contents of major, trace element and REE of volcanic rocks from Baishan Formation
编号 GS118 GS120 GS124 GS135-1 GS136-2 GS142 编号 GS118 GS120 GS124 GS135-1 GS136-2 GS142 SiO2 73.67 67.74 70.68 71.56 79.89 76.24 Pb 3 6.99 7.67 11.14 6.28 7.1 TiO2 0.37 0.31 0.4 0.3 0.29 0.1 Th 10.65 11.18 8.28 16.51 8.76 17.64 Al2O3 13 14.35 12.57 13.75 10.32 12.66 U 3.75 3.43 2.51 5.29 2.63 4.79 Fe2O3 2.88 4.42 2.7 2.3 1.15 1.29 La 37.9 18.82 18.67 24.14 23.98 47.04 MnO 0.09 0.11 0.07 0.07 0.05 0.02 Ce 96.34 42.34 42.16 52.04 54.74 93.72 MgO 0.32 0.65 0.92 1.23 0.28 0.12 Pr 12.02 5.08 5.19 5.96 7.19 12.16 CaO 1.04 2.23 3.05 2.27 0.61 0.33 Nd 50.5 21.06 22.54 23.24 31.14 49.54 Na2O 4.72 2.44 4.39 5.47 3.36 4.05 Sm 10.46 4.74 5.25 4.43 7.19 9.8 K2O 2.66 4.74 2.44 1.36 3.38 4.43 Eu 1.74 0.91 1.25 0.84 1.35 0.74 P2O5 0.07 0.07 0.08 0.09 0.05 0.02 Gd 10.43 5.28 5.86 4.72 8.04 10.21 烧失量 1.02 2.78 2.58 1.47 0.51 0.61 Tb 1.33 0.73 0.85 0.68 1.16 1.47 Na2O/K2O 1.77 0.51 1.8 4.02 0.99 0.91 Dy 8.93 5.11 5.89 4.12 8.34 8.64 σ 1.77 2.04 1.66 1.62 1.23 2.16 Ho 1.87 1.07 1.22 0.82 1.75 1.67 AR 3.22 1.83 2.55 2.49 4.19 4.31 Er 6.08 3.35 3.79 2.63 5.51 5.42 A/NK 1.221 1.569 1.274 1.313 1.123 1.105 Tm 0.94 0.49 0.55 0.39 0.81 0.77 A/CNK 1.037 1.087 0.816 0.942 1.002 1.05 Yb 6.82 3.52 3.87 2.68 5.55 5.29 Rb 57.9 139.06 56.22 28.32 91.46 88.72 Lu 0.99 0.5 0.56 0.41 0.77 0.79 Sr 146.68 145.64 160.32 356 83.68 69.36 Y 48.88 28.18 32.22 22.06 48.64 43.98 Zr 484.2 175.9 203.6 156.68 233.4 301 ΣREE 246.38 113 117.66 127.1 157.52 247.26 Nb 11.47 5.46 6.02 6.05 6.74 8.82 LREE 208.97 92.95 95.07 110.65 125.6 213 Cd 0.77 0.33 0.37 0.27 0.35 0.52 HREE 37.41 20.05 22.58 16.45 31.92 34.26 Cs 1.21 2.23 0.81 1.44 2.65 3.7 LREE/
HREE5.59 4.64 4.21 6.73 3.93 6.22 Ba 670.8 727.8 594 371.6 699.2 618.4 Hf 12.74 5.24 5.88 4.96 6.6 9.73 LaN/YbN 3.98 3.84 3.46 6.47 3.1 6.38 Ta 0.79 0.45 0.46 0.55 0.48 0.66 δEu 0.5 0.55 0.69 0.56 0.54 0.22 W 1.11 1.47 1.13 0.57 0.54 0.57 δCe 1.1 1.04 1.03 1.03 1.01 0.94 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] Kröner A, Hegner E, Lehmann B, et al. Palaeozoic Arc Magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP Zircon Ages and Whole-Rock Nd Isotopic Systematics. Journal of Asian Earth Sciences[J]. 2008, 32(2/3/4): 118-130.
[2] Le Bas M J, Le Maitre R W, Streckeisen A, et al. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram[J]. Journal of Petrology, 1986, 27(3): 745-750. doi: 10.1093/petrology/27.3.745
[3] Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley: Berkeley Geochronology Center Special Publication, 2003, 4: 1-71.
[4] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956
[5] Pearce J. Trace element characteristics of lavas from destructive plate boundaries[C]//Andesites and Related Rocks. John Willey & Sons, 1982: 525-548.
[6] Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745
[7] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[8] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic belt[J]. Geol. Soc. Lond., 2007, 164: 31-47. doi: 10.1144/0016-76492006-022
[9] Wyllie P J. Plate tectonics and magma genesis[J]. Geologische Rundschau, 1981, 70(1): 128-153. doi: 10.1007/BF01764318
[10] Xiao W J, Mao Q G, Windley B F, et al. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage[J]. American Journal of Science, 2011, 310(10): 1553-1594.
[11] Xiao W J, Windley B F, Allen M B, et al. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage[J]. Gondwana Research, 2013, 23(4): 1316-1341. doi: 10.1016/j.gr.2012.01.012
[12] Zheng R G, Wu T R, Zhang W, et al. Late Paleozoic Subduction System in the Northern Margin of the Alxa Block, Altaids: Geochronological and Geochemical Evidences from Ophiolites[J]. Gondwana Research, 2014, 25(2): 842-858. doi: 10.1016/j.gr.2013.05.011
[13] 陈智斌, 于洋, 薄海军. 内蒙古额济纳地区奥陶纪火山岩地球化学特征及其地质意义[J]. 地球科学, 2020, 45(2): 503-518. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002012.htm
[14] 崔骁, 王根厚, 王振义, 等. 塔里木板块东北缘霍布哈尔白山组流纹岩地球化学特征及构造意义[J]. 成都理工大学学报(自然科学版), 2019, 46(3): 268-279. doi: 10.3969/j.issn.1671-9727.2019.03.02
[15] 党犇, 赵虹, 林广春, 等. 阿拉善北部地区石炭纪火山岩岩石成因及构造意义[J]. 地球科学, 2013, 38(5): 963-974. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305007.htm
[16] 龚全胜, 刘明强, 梁明宏, 等. 北山造山带大地构造相及构造演化[J]. 西北地质, 2003, 36(1): 11-17. doi: 10.3969/j.issn.1009-6248.2003.01.002
[17] 贾元琴, 赵志雄, 许海, 等. 北山风雷山地区白山组流纹岩LA-ICP-MS锆石U-Pb年龄及构造环境[J]. 中国地质, 2016, 43: 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201601006.htm
[18] 李敏, 辛后田, 田健, 等. 北山造山带公婆泉岩浆弧的组成, 时代及其大地构造意义[J]. 地球科学, 2020, (7): 2393-2412. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202007014.htm
[19] 李文国. 内蒙古自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1996.
[20] 卢进才, 牛亚卓, 魏仙样, 等. 北山红石山地区晚古生代火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 岩石学报, 2013, 29(8): 2685-2694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308006.htm
[21] 牛亚卓, 魏建设, 史冀忠, 等. 甘肃北山地区北部上石炭统火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 地质通报, 2013, 32(11): 1720-1727. doi: 10.3969/j.issn.1671-2552.2013.11.004 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20131104&flag=1
[22] 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606006.htm
[23] 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm
[24] 任云伟, 任邦方, 牛文超, 等. 内蒙古哈珠地区石炭纪白山组火山岩: 北山北部晚古生代活动陆缘岩浆作用的产物[J]. 地球科学, 2019, 44(1): 312-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201901024.htm
[25] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
[26] 辛后田, 牛文超, 田健, 等. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 2020, 39(9): 1297-1316. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200901&flag=1
[27] 闫涛, 辛后田, 卫彦升, 等. 对内蒙古北山造山带洋-陆转换认识的新思考——来自大红山南泥盆纪弧花岗岩的证据[J]. 地质通报, 2020, 39(9): 1341-1366. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200904&flag=1
[28] 赵志雄, 贾元琴, 许海, 等. 北山交叉沟石英闪长岩锆石LA-ICP-MS U-Pb年龄及构造意义[J]. 地质学报, 2015, 89(7): 1210-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201507005.htm
[29] 赵志雄, 熊煜, 贾元琴, 等. 北山独龙包地区晚石炭世陆缘弧岩浆作用——花岗闪长岩锆石U-Pb年龄及地球化学证据[J]. 地质论评, 2018, 64(3): 597-609. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201803007.htm
[30] 左国朝, 何国琦. 北山板块构造及成矿规律[M]. 北京: 北京大学出版社, 1990.
[31] 左国朝, 李绍雄. 塔里木盆地东北缘早古生代构造格局及演化[J]. 中国地质, 2011, 38(4): 945-960. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201104013.htm
[32] 左国朝, 刘义科, 刘春燕. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质, 2003, (1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200301000.htm
-