Application of pXRF in-situ analysis in the exploration of Yuka rutile deposit, North Qaidam
-
摘要:
便携式X射线荧光分析(pXRF)具有快速、高效、绿色、便捷等优点, 在矿产勘查中的应用越来越广泛。样品的不平度效应和不均匀效应等问题, 使得pXRF现场原位分析结果与实验室分析结果存在一定偏差。将该技术运用于柴北缘鱼卡金红石矿床勘查找矿, 对pXRF原位分析的稳定性进行试验, 并与实验室XRF法测试结果进行对比分析。结果表明, pXRF原位分析单点重复测量结果稳定, 分析测试最优时间为25~30 s; pXRF和实验室XRF法对样品Ti含量具有显著相关性, 存在线性关系。野外快速分析, 评价榴辉岩的Ti含量, 结果表明, 当pXRF原位分析榴辉岩中Ti含量在0~0.52%时, 对应非矿化榴辉岩; Ti含量在0.52%~0.86%时, 对应金红石贫矿体; Ti含量大于0.86%时, 对应的榴辉岩为金红石工业矿体。在槽探编录和钻探施工过程中, 使用pXRF分析可在野外快速判断榴辉岩的含矿性, 辅助找矿工作中圈定矿体, 大大减少样品采集的工作量, 节约成本和时间, 提高对榴辉岩型金红石矿床的勘查效率。
-
关键词:
- 便携式X射线荧光光谱仪(pXRF) /
- 原位分析 /
- 榴辉岩 /
- 金红石矿床 /
- 柴北缘
Abstract:Portable X-ray fluorescence analysis (pXRF) has the advantages of being fast, efficient, green, and convenient, making it increasingly widely used in mineral exploration. However, due to issues such as unevenness and non-uniformity in the samples, there is a certain deviation between the in-situ analysis results of pXRF and the laboratory analysis results. In this paper, the stability of pXRF in-situ analysis is tested and compared with the results of the laboratory XRF method, and this technology is applied to the exploration and prospecting of Yuqa rutile deposits in North Qaidam. The stability test shows that the single point repeated measurement result of pXRF in-situ analysis arestable, and the optimal time of analysis and testing is 25~30 seconds.There is a significant correlation between pXRF and laboratory XRF method for Ti content in the sample, with a linear relationship. The results of field rapid evaluation of Ti content in eclogite show that when the Ti content of ineclogite is in the range of 0~0.52% by in situ pXRF analysis, it corresponds to non-mineralized eclogite. When the Ti content is in the range of 0.52%~0.86%, it corresponds to low-Ti ore body.When the Ti content is greater than 0.86%, the corresponding eclogiteisa rutile industrial ore body.In the process of trenching logging and drilling construction, the use of pXRF analysis can be quickly determine the ore bearing property of eclogite in the field, which can help to delineate the ore bodies in the prospecting work, greatly reduce the workload of sample collection, save cost and time, and improve the exploration efficiency of eclogite-type rutile deposits.
-
-
表 1 pXRF分析Ti元素重复性测量结果
Table 1. The repeatability measurement results of Ti element analyzed by pXRF
% 序号 TC164HX1 TC170HX10 TC161HX7 序号 TC164HX1 TC170HX10 TC161HX7 1 2.49 2.02 1.72 11 2.48 2.01 1.75 2 2.52 2.05 1.73 12 2.42 2.03 1.73 3 2.49 2.01 1.73 13 2.47 2.00 1.71 4 2.50 2.01 1.73 14 2.49 2.01 1.72 5 2.56 2.05 1.71 15 2.50 2.01 1.72 6 2.46 2.04 1.73 16 2.50 2.01 1.73 7 2.57 2.04 1.73 17 2.40 2.04 1.72 8 2.58 2.04 1.74 18 2.40 2.00 1.74 9 2.59 2.03 1.72 19 2.45 2.01 1.73 10 2.48 2.05 1.75 20 2.47 2.00 1.73 表 2 不同测试时间pXRF分析Ti元素测量结果
Table 2. The measurement results of Ti element analyzed by pXRF at different test time
% 序号 TC164HX1 TC170HX10 TC161HX7 序号 TC164HX1 TC170HX10 TC161HX7 1 2.27 2.05 1.60 16 2.49 2.05 1.73 2 2.45 1.99 1.89 17 2.48 2.06 1.72 3 2.46 2.01 1.80 18 2.48 2.05 1.73 4 2.53 1.98 1.85 19 2.47 2.05 1.72 5 2.40 1.99 1.77 20 2.48 2.06 1.73 6 2.41 2.00 1.77 21 2.48 2.06 1.73 7 2.42 2.00 1.78 22 2.49 2.06 1.73 8 2.43 2.00 1.76 23 2.49 2.06 1.72 9 2.45 1.99 1.71 24 2.49 2.06 1.73 10 2.46 2.00 1.73 25 2.49 2.06 1.73 11 2.47 2.01 1.78 26 3.01 2.06 1.73 12 2.47 2.02 1.74 27 3.01 2.05 1.73 13 2.49 2.03 1.75 28 3.00 2.05 1.73 14 2.47 2.04 1.75 29 3.00 2.05 1.73 15 2.49 2.06 1.73 30 3.00 2.05 1.73 -
[1] Adlington L W, Freestone I C. Using handheld pXRF to study medieval stained glass: A methodology using trace elements[J]. MRS Advances, 2017, 2: 1785-1800. doi: 10.1557/adv.2017.233
[2] Balaram V. Field-portable analytical instruments in mineral exploration: past, present and future[J]. Journal of Applied Geochemistry, 2017, 19: 382-399.
[3] Bendicho C, Lavilla I, Pena-Pereira F, et al. Green chemistry in analytical atomic pectrometry: a review[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1831-1857.
[4] Bruno L. A review of pXRF (field portable X-ray fluorescence)applications for applied geochemistry[J]. Journal of Geochemical Exploration, 2018, 188: 350-363. doi: 10.1016/j.gexplo.2018.02.006
[5] Bull A, Brown M T, Turner A. Novel use of field-portable-XRF for the direct analysis of trace elements in marine macroalgae[J]. Environmental Pollution, 2017, 220: 228-233. doi: 10.1016/j.envpol.2016.09.049
[6] Chen X, Xu R K, Zheng Y Y, et al. Petrology and geochemistry of high niobium eclogite in the North Qaidam orogen, Western China: implications for an eclogite facies metamorphosed island arc slice[J]. Journal of Asian Earth Sciences, 2018, 164: 380-397. doi: 10.1016/j.jseaes.2018.07.003
[7] Chen X, Schertl H P, Cambeses A, et al. Frommagmatic generation to UHP metamorphic overprint and subsequent exhumation: a rapid cycle of plate movement recorded by the supra-subduction zone ophiolite from the North Qaidam orogen [J]. Lithos, 2019, 350: 105238.
[8] Gazley M F, Tutt C M, Fisher L A, et al. Objective geological logging using portable XRF geochemical multi-element data at Plutonic Gold Mine, Marymia Inlier, Western Australia[J]. Journal of Geochemical Exploration, 2014, 143: 74-83. doi: 10.1016/j.gexplo.2014.03.019
[9] Hall Gwendy E M, Bonham-Carter Graeme F, Buchar Angelina. Evaluation of portable X-ray fluorescence (pXRF)in exploration andmining: Phase 1, control reference materials [J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14: 99-123. doi: 10.1144/geochem2013-241
[10] Hall G E M, McClenaghan M B, Pagé L. Application of portable XRF to the direct analysis of till samples from various deposit types in Canada[J]. Geochemistry: Exploration, Environment, Analysis, 2016, 16(1): 62-84. doi: 10.1144/geochem2015-371
[11] Kalnicky D J, Singhvi R. Field portable XRF analysis of environmental samples[J]. Journal of Hazardous Materials, 2001, 83(1/2): 93-122.
[12] Lin C G, Cheng Z Z, Chen X, et al. Application of multi-component gas geochemical survey for deep mineralexploration in covered areas[J]. Journal of Geochemical Exploration, 2021, 220: 106656. doi: 10.1016/j.gexplo.2020.106656
[13] Nathan C, Robert J S, Rachel S, et al. Comparison of XRF and pXRF for analysis of archaeological obsidian from southern Perú[J]. Journal of Archaeological Science, 2007, 34(12): 2012-2024. doi: 10.1016/j.jas.2007.01.015
[14] Pringle J K, Jeffery A J, Ruffell A, et al. The use of portable XRF as a forensic geoscience non-destructive trace evidence tool for environmental and criminal investigations[J]. Forensic Science International, 2021, 332: 111175.
[15] Rhodes J R, Rautala P. Application of a microprocessor-based portable XRFanalyzer in minerals analysis[J]. The International Journal of Applied Radiation and Isotopes, 1983, 34(1): 333-343. doi: 10.1016/0020-708X(83)90134-5
[16] Ross P S, Bourke A, Fresia B. Improving lithological discriminationin exploration drill-cores using portable X-ray fluorescence measurements: (2)applications to the Zn-Cu Matagami mining camp, Canada[J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14: 187-196. doi: 10.1144/geochem2012-164
[17] Rouillon M, Taylor M P. Can field portable X -ray fluorescence (pXRF)produce high quality data for application in environmental contamination research?[J]. Environmental Pollution, 2016, 214: 255-264. doi: 10.1016/j.envpol.2016.03.055
[18] Ryan J G, Shervais J W, Li Y, et al. Application of a handheld X-rayfluorescence spectrometer for real-time high-density quantitativeanalysis of drilled igneous rocks and sediments during IODPExpedition 352[J]. Chemical Geology, 2017, 451: 55-66. doi: 10.1016/j.chemgeo.2017.01.007
[19] Somarin A K, Steinhage I. Use of field-portable XRF in exploration of PGE-enriched zones in the Pilanesberg PGE deposit, Bushveld Complex, South Africa[J]. Geochemistry: Exploration, Environment, Analysis, 2021, 21: 1-7.
[20] Steiner A E, Conrey R M, Wolff J A. pXRF calibrations for volcanic rocks and the application of in-field-analysis to the geosciences[J]. Chemical Geology, 2017, 453: 35-54. doi: 10.1016/j.chemgeo.2017.01.023
[21] Yuan Z X, Cheng Q M, Xia Q L, et al. Spatial patterns of geochemical elements measured on rock surfaces by portable X-ray fluorescence: application to hand speci-mens and rock outcrops[J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14(3): 265-276. doi: 10.1144/geochem2012-173
[22] Zhang W, Lentz D R, Charnley B E. Petrogeochemical assessment of rock units and identification of alteration/mineralization indicators using portable X-ray fluorescence measurements: Applications to the Fire Tower Zone(W-Mo-Bi)and the North Zone (Sn-Zn-In), Mount Pleasant deposit, New Brunswick, Canada[J]. Journal of Geochemical Exploration, 2017, 177: 61-72. doi: 10.1016/j.gexplo.2017.02.005
[23] Zou H, Pei Q M, Li X Y, et al. Application of field-portable geophysical and geochemical methods fortracing the Mesozoic-Cenozoic vein-type fluorite deposits in shallowoverburden areas: A case from the Wuliji'Oboo deposit, Inner Mongolia, NE China [J]. Ore Geology Reviews, 2022, 142: 104685. doi: 10.1016/j.oregeorev.2021.104685
[24] 陈鑫, 许荣科, 郑有业, 等. 青海柴北缘UHP变质带铁石观西榴辉岩峰期温度的确定及其地质意义[J]. 地质通报, 2015, 34(12): 2292-2301. doi: 10.3969/j.issn.1671-2552.2015.12.015 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20151215&flag=1
[25] 陈鑫, 郑有业, 许荣科, 等. 柴北缘鱼卡榴辉岩型金红石矿床金红石矿物学、元素地球化学及成因[J]. 岩石学报, 2018, 34(6): 1685-1703. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806009.htm
[26] 黄威, 胡邦琦, 徐磊, 等. 基于便携式X射线荧光光谱法的深海沉积物现场成分快速检测及适用性评估[J]. 地质通报, 2021, 40(2/3): 423-4333. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2021020323&flag=1
[27] 林成贵, 许荣科, 郑有业, 等. 柴北缘鱼卡榴辉岩型金红石矿地质特征及其原岩性质探讨[J]. 西北地质, 2017, 50(2): 142-155. doi: 10.3969/j.issn.1009-6248.2017.02.016
[28] 林成贵, 郑有业, 程志中, 等. 柴北缘鱼卡榴辉岩型金红石矿床成矿物理条件[J]. 地质通报, 2019, 38(5): 866-883. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190516&flag=1
[29] 林成贵, 程志中, 姚晓峰, 等. 基于PMGRA气体地球化学测量在辽东浅覆盖区找矿的可行性[J]. 地球科学, 2020, 45(11): 4038-4053. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011012.htm
[30] 马静艳, 唐力君, 劳昌玲, 等. 野外现场地质实验分析技术及应用[J]. 分析仪器, 2018, 12(1): 12-19. doi: 10.3969/j.issn.1001-232x.2018.01.003
[31] 聂黎行, 张烨, 朱俐, 等. 便携式X射线荧光光谱快速无损分析牛黄清心丸(局方)中汞、砷含量及均匀度[J]. 光谱学与光谱分析, 2017, 37(10): 3225-3228. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201710052.htm
[32] 邵雪维, 彭永明, 王功文, 等. 短波红外光谱、X射线荧光光谱、黄铁矿热电性分析在胶东新城金矿田深部找矿中的应用[J]. 地学前缘, 2021, 28(3): 236-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103025.htm
[33] 孙伟涛, 郑有业, 牛学瑶, 等. 手持式X射线荧光光谱分析仪在斑岩铜矿快速勘查中的应用[J]. 岩矿测试, 2021, 40(2): 206-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202102005.htm
[34] 唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 158-165. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202003018.htm
[35] 王永开, 徐永利, 郑有业, 等. 柴达木盆地北缘鱼卡—铁石观一带金红石矿床的发现及其地质意义[J]. 地质通报, 2014, 33(6): 900-911. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20140613&flag=1
[36] 尹明. 我国地质分析测试技术发展现状及趋势[J]. 岩矿测试, 2009, 28(1): 37-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200901011.htm
[37] 袁兆宪, 周树斌, 常浩, 等. 基于pXRF原位分析的内蒙古兴和曹四夭钼矿床深部岩石地球化学特征[J]. 矿物岩石地球化学通报, 2020, 39(5): 973-982. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202005010.htm
[38] 张广玉, 赵世煌, 邓晃, 等. 手持式X射线荧光光谱多点测试技术在地质岩心和岩石标本预研究中的应用[J]. 岩矿测试, 2017, 36(5): 501-509. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201705009.htm
-