柴达木盆地北缘中段侏罗系页岩有机质孔隙演化特征

张云鹏, 李玉宏, 郭望, 韩伟, 魏建设, 李永红. 2023. 柴达木盆地北缘中段侏罗系页岩有机质孔隙演化特征. 地质通报, 42(10): 1640-1651. doi: 10.12097/j.issn.1671-2552.2023.10.002
引用本文: 张云鹏, 李玉宏, 郭望, 韩伟, 魏建设, 李永红. 2023. 柴达木盆地北缘中段侏罗系页岩有机质孔隙演化特征. 地质通报, 42(10): 1640-1651. doi: 10.12097/j.issn.1671-2552.2023.10.002
ZHANG Yunpeng, LI Yuhong, GUO Wang, HAN Wei, WEI Jianshe, LI Yonghong. 2023. Pore evolution characteristics of organic matter pore for Jurassic shale in the middle part of northern margin of Qaidam Basin. Geological Bulletin of China, 42(10): 1640-1651. doi: 10.12097/j.issn.1671-2552.2023.10.002
Citation: ZHANG Yunpeng, LI Yuhong, GUO Wang, HAN Wei, WEI Jianshe, LI Yonghong. 2023. Pore evolution characteristics of organic matter pore for Jurassic shale in the middle part of northern margin of Qaidam Basin. Geological Bulletin of China, 42(10): 1640-1651. doi: 10.12097/j.issn.1671-2552.2023.10.002

柴达木盆地北缘中段侏罗系页岩有机质孔隙演化特征

  • 基金项目:
    国家科技重大专项项目《西北地区中生界陆相典型页岩气赋存方式与富集规律研究》(编号:2016ZX05034001-006)、中国地质调查局项目《西北含油气盆地油气战略性矿产调查评价》(编号:DD20230314)和国家重点研发计划项目《复杂地质介质中氦气运聚及富氦气藏封盖机制研究》(编号:2021YFA0719003)
详细信息
    作者简介: 张云鹏(1981-), 男, 博士, 教授级高级工程师, 从事页岩油气等非常规能源研究。E-mail: zypcgs@163.com
    通讯作者: 李玉宏(1968-), 男, 博士, 教授级高级工程师, 从事油气地质研究。E-mail: L1763@tom.com
  • 中图分类号: P534.52;P618.130.1

Pore evolution characteristics of organic matter pore for Jurassic shale in the middle part of northern margin of Qaidam Basin

More Information
  • 柴北缘侏罗系页岩的有机碳含量高、厚度大、分布广,但有机质成熟度总体处于未成熟—低成熟阶段,制约了研究区页岩气的表征与评价。通过开放体系下的加热实验,系统刻画了不同温度下的页岩有机质孔隙发育特征及演化过程。分析认为,热模拟温度200~400℃是有机质孔隙发育的优势温度区间,孔隙数量多,从微孔到宏孔都非常发育,孔隙间可形成网状连通。之后随着温度进一步升高,孔隙会出现"塌陷"现象,对页岩气的赋存起到抑制作用。与此同时,有机质的孔隙发育也具有不均一性,不同有机质显微组分孔隙发育能力存在差异,以镜质组、壳质组等为主的有机质显微组分孔隙发育较迟缓,有机质转化不彻底,而以沥青质体、藻类体、无定形体等为主的有机质显微组分孔隙发育时间早、强度大、孔隙之间的连通性好,是页岩气储集空间的主要贡献者。另外,结合能谱分析,认为元素的重量百分比及Ca、Mg等碱土元素的含量也是影响有机质孔隙发育的主要因素。

  • 加载中
  • 图 1  柴北缘大地构造位置及页岩厚度图

    Figure 1. 

    图 2  柴北缘侏罗系页岩主要评价参数特征(数据据Zhang et al.,2020)

    Figure 2. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 3  不同温度下Ⅱ型有机质孔径分布特征

    Figure 3. 

    图 4  有机质孔隙发育非均一性特征

    Figure 4. 

    图 图版Ⅱ   

    Figure 图版Ⅱ. 

    图 5  不同干酪根显微组分生烃演化模式(据赵长毅等,1997霍秋立等,2001修改)

    Figure 5. 

    图 6  有机质谱图特征及元素含量

    Figure 6. 

    表 1  不同孔隙有机质中元素种类及含量

    Table 1.  Statistics of element types and content in organic matter of different pores

    元素 多孔有机质 少孔有机质 基本无孔有机质
    S1(20℃) S2(20℃) S3(100℃) S4(200℃) S5(300℃) S6(400℃) S7(400℃)
    C 14.98 13.68 19.08 21.16 20.92 21.74 24.85
    O 3.40 2.83 3.99 4.71 7.65 10.33 4.52
    Al 0.64 0.34 0.48 0.19 1.89 2.91 0.66
    Si 0.95 1.12 0.93 0.33 2.95 3.72 0.84
    S 0.17 0.13 0.33 0.17 0.06 / 0.32
    Fe 0.43 0.32 / 0.12 0.34 0.36 0.14
    K 0.10 0.18 0.07 / 0.32 0.37 0.07
    Ti 0.21 0.24 / / / / /
    Ca / / / 0.11 / / 0.36
    Mg / / / / 0.11 0.11 /
    总量 20.88 18.84 24.88 26.79 34.24 39.54 31.76
    注:表中数据为重量百分比,单位为%;S1~S7为样品编号
    下载: 导出CSV
  • [1]

    Chen J, Xiao X M. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181. doi: 10.1016/j.fuel.2014.03.058

    [2]

    Chen S Y, Zhong J H. Study on sedimentary-tectonic evolution in the north Qaidam Basin, Qinghai Province[J]. Geotectonica et Metallogenia(English Edition), 2000, 24(1): 31-38.

    [3]

    Gao J, Zhang J K, He S, et al. Overpressure generation and evolution in Lower Paleozoic gas shales of the Jiaoshiba region, China: implications for shale gas accumulation[J]. Marine and Petroleum Geology, 2019, 102: 844-859. doi: 10.1016/j.marpetgeo.2019.01.032

    [4]

    Gu Y T, Li X X, Yang S G, et al. Microstructure evolution of organic matter and clay minerals in shales with increasing thermal maturity[J]. Acta Geologica Sinica(English Edition), 2020, 94(2): 280-289. doi: 10.1111/1755-6724.14285

    [5]

    Guo H J, Jia W L, Peng P A, et al. Evolution of organic matter and nanometer-scale pores in an artificially matured shale undergoing two distinct types of pyrolysis: a study of the yanchang shale with type Ⅱ kerogen[J]. Organic Geochemistry, 2017, 105: 56-66. doi: 10.1016/j.orggeochem.2017.01.004

    [6]

    Guo S B, Mao W J. Division of diagenesis and pore evolution of a Permian Shanxi shale in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106351. doi: 10.1016/j.petrol.2019.106351

    [7]

    Guo T X, Ren S M, Luo X R, et al. Accumulation conditions and prospective areas of shale gas in the Middle Jurassic Dameigou Formation, northern Qaidam Basin, Northwest China[J]. Geological Journal, 2018, 53(6): 2944-2954. doi: 10.1002/gj.3134

    [8]

    Han H, Guo C, Zhong N N, et al. Pore structure evolution of lacustrine shales containing type Ⅰ organic matter from the Upper Cretaceous Qingshankou Formation, Songliao Basin, China: a study of artificial samples from hydrous pyrolysis experiments[J]. Marine and Petroleum Geology, 2019, 104: 375-388. doi: 10.1016/j.marpetgeo.2019.04.001

    [9]

    Jiang F J, Chen J, Xu Z Y, et al. Organic Matter Pore Characterization in Lacustrine Shales with Variable Maturity Using Nanometer-Scale Resolution X-ray Computed Tomography[J]. Energy & Fuels, 2017, 31(3): 2669-2680.

    [10]

    Ko L T, Loucks R G, Zhang T W, et al. Pore and pore network evolution of Upper Cretaceous Boquillas(Eagle Ford-equivalent)mudrocks: results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722. doi: 10.1306/04151615092

    [11]

    Ko L T, Ruppel S C, Loucks R G, et al. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology, 2018, 190(1): 3-28.

    [12]

    Lewan M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723. doi: 10.1016/S0016-7037(97)00176-2

    [13]

    Reed R M. Organic-matter-hosted pores inmudrocks: heterogeneity of morphology and microscale spatial distribution[J]. Geological Society of America Abstracts with Programs, 2012, 44(7): 551.

    [14]

    Seewald J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333. doi: 10.1038/nature02132

    [15]

    Tissot B P, Welte D H. Biological Productivity of Modern Aquatic Environments//Petroleum Formation and Occurrence[M]. New York: Springer Berlin Heidelberg, 1984.

    [16]

    Wang Y, Liu L F, Hu Q H, et al. Nanoscale pore network evolution of Xiamaling marine shale during organic matter maturation by hydrous pyrolysis[J]. Energy & Fuels, 2020, 34(2): 1548-1563.

    [17]

    Wang Y, Wang L H, Wang J Q, et al. Characterization of organic matter pores in typical marine and terrestrial shales, China[J]. Journal of Natural Gas ence and Engineering, 2017, 49: 56-65.

    [18]

    Wang F T, Guo S B. Influential factors and model of shale pore evolution: a case study of a continental shale from the Ordos Basin[J]. Marine and Petroleum Geology, 2019, 102: 271-282. doi: 10.1016/j.marpetgeo.2018.12.045

    [19]

    Wei L, Mastalerz M, Schimmelmann A, et al. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales[J]. International Journal of Coal Geology, 2014, 132: 38-50. doi: 10.1016/j.coal.2014.08.003

    [20]

    Wei S L, He S, Pan Z J, et al. Characteristics and evolution of pyrobitumen-hosted pores of the overmature Lower Cambrian Shuijingtuo Shale in the south of Huangling anticline, Yichang area, China: Evidence from FE-SEM petrography[J]. Marine and Petroleum Geology, 2020, 116: 104303. doi: 10.1016/j.marpetgeo.2020.104303

    [21]

    Wu Z R, He S, Han Y J, et al. Effect of organic matter type and maturity on organic matter pore formation of transitional facies shales: A case study on Upper Permian Longtan and Dalong shales in middle Yangtze region, China[J]. Journal of Earth Science, 2020, 31(2): 368-384. doi: 10.1007/s12583-019-1237-6

    [22]

    Yin A, Dang Y Q, Wang L C, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions(Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin[J]. Geological Society of America Bulletin, 2008, 120(7): 813-846.

    [23]

    Zhai Z Q, Wang X Q, Jin X, et al. Adsorption and diffusion of shale gas reservoirs in modeled clay minerals at different geological depths[J]. Energy & Fuels, 2014, 28(12): 7467-7473.

    [24]

    Zhang H, Zhu Y M, Wang Y, et al. Comparison of organic matter occurrence and organic nanopore structure within marine and terrestrial shale[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 356-363. doi: 10.1016/j.jngse.2016.04.040

    [25]

    Zhang Y P, Li Y H, Guo W, et al. Differential evolution and the influencing factors of low-maturity terrestrial shale with different types of kerogen: A case study of a Jurassic shale from the northern margin of Qaidam Basin, China[J]. International Journal of Coal Geology, 2020, 230, 103591. doi: 10.1016/j.coal.2020.103591

    [26]

    Zou C N, Yang Z, Pan S Q, et al. Shale gas formation and occurrence in China: An overview of the current status and future potential[J]. Acta Geologica Sinica(English Edition), 2016, 90(4): 1249-1283. doi: 10.1111/1755-6724.12769

    [27]

    郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm

    [28]

    郭旭升. 南方海相页岩气"二元富集"规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm

    [29]

    黄汲清, 任纪舜, 姜春发, 等. 中国大地构造基本轮廓[J]. 地质学报, 1977, 2: 117-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197702002.htm

    [30]

    霍秋立, 付丽, 徐伯承. 松辽盆地显微组分热模拟生烃研究[J]. 大庆石油地质与开发, 2001, 20(6): 17-19. doi: 10.3969/j.issn.1000-3754.2001.06.006

    [31]

    吉利明, 吴远东, 贺聪, 等. 富有机质泥页岩高压生烃模拟与孔隙演化特征[J]. 石油学报, 2016, 37(2): 172-181. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602003.htm

    [32]

    姜呈馥, 程玉群, 范柏江, 等. 陆相页岩气的地质研究进展及亟待解决的问题: 以延长探区上三叠统延长组长7段页岩为例[J]. 天然气工业, 2014, 34(2): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201402004.htm

    [33]

    焦淑静, 张慧, 薛东川, 等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htm

    [34]

    焦淑静, 张慧, 薛东川. 三塘湖盆地芦草沟组页岩有机显微组分扫描电镜研究[J]. 电子显微学报, 2019, 38(3): 257-263. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201903011.htm

    [35]

    金之钧, 张明利, 汤良杰, 等. 柴达木中新生代盆地演化及其控油气作用[J]. 石油与天然气地质, 2004, 25(6): 603-608. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200406000.htm

    [36]

    李浩涵, 任收麦, 郭天旭, 等. 柴达木盆地鱼卡凹陷侏罗系泥页岩地球化学特征及储集条件——以柴页1井为例[J]. 地质通报, 2016, 35(2/3): 250-259. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20160307&flag=1

    [37]

    林腊梅, 张金川, 唐玄, 等. 中国陆相页岩气的形成条件[J]. 天然气工业, 2013, 33(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201301008.htm

    [38]

    马存飞, 董春梅, 栾国强, 等, 苏北盆地古近系泥页岩有机质孔发育特征及影响因素[J]. 中国石油大学学报(自然科学版), 2017, 41(3): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201703001.htm

    [39]

    马勇, 钟宁宁, 程礼军, 等. 渝东南两套富有机质页岩的孔隙结构特征: 来自FIB-SEM的新启示[J]. 石油实验地质, 2015, 37(1): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201501019.htm

    [40]

    任纪舜, 牛宝贵, 刘志刚. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, 1999, 6(3): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199903010.htm

    [41]

    任收麦, 包书景, 张毅, 等. 柴达木盆地北缘侏罗系页岩气地质条件[J]. 地质通报, 2016, 35(2/3): 204-210. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20160302&flag=1

    [42]

    邵龙义, 李猛, 李永红, 等. 柴达木盆地北缘侏罗系页岩气地质特征及控制因素[J]. 地学前缘, 2014, 21(4): 311-322. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404038.htm

    [43]

    王香增, 张金川, 曹金舟, 等. 陆相页岩气资源评价初探: 以延长直罗-下寺湾区中生界长7段为例[J]. 地学前缘, 2012, 19(2): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202029.htm

    [44]

    吴光大, 葛肖虹, 刘永江, 等. 柴达木盆地中、新生代构造演化及其对油气的控制[J]. 世界地质, 2006, 25(4): 411-417. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200604014.htm

    [45]

    吴汉宁, 刘池阳, 张小会, 等. 用古地磁资料探讨柴达木地块构造演化[J]. 中国科学(D辑), 1997, 27(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199701001.htm

    [46]

    吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502006.htm

    [47]

    薛莲花, 杨巍, 仲佳爱, 等. 富有机质页岩生烃阶段孔隙演化——来自鄂尔多斯延长组地质条件约束下的热模拟实验证据[J]. 地质学报, 2015, 89(5): 970-978. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201505011.htm

    [48]

    杨峰, 宁正福, 胡昌蓬, 等. 页岩储层微观孔隙结构特征[J]. 石油学报, 2013, 34(2): 301-311. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201302013.htm

    [49]

    翟刚毅, 包书景, 庞飞, 等. 贵州遵义地区安场向斜"四层楼"页岩油气成藏模式研究[J]. 中国地质, 2017, 44(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201701002.htm

    [50]

    张慧, 赵俊峰, 吴静, 等. 新疆芦草沟组烃源岩显微组分及其孔隙发育特征[J]. 西北大学学报(自然科学版), 2018, 48(3): 431-440. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201803016.htm

    [51]

    张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm

    [52]

    张卫东, 郭敏, 姜在兴. 页岩气评价指标与方法[J]. 天然气地球科学, 2011, 22(6): 1093-1099. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201106024.htm

    [53]

    张云鹏, 李玉宏, 郭望, 等. 柴达木盆地北缘侏罗系陆相低熟页岩孔隙发育特征及主控因素[J]. 地质学报, 2021, 95(2): 565-577. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102019.htm

    [54]

    赵长毅, 程克明. 吐哈盆地煤及显微及组分生烃模式[J]. 科学通报, 1997, 42(19): 2102-2105. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199719020.htm

    [55]

    郑伦举, 何生, 秦建中, 等. 近临界特性的地层水及其对烃源岩生排烃过程的影响[J]. 地球科学(中国地质大学学报), 2011, 36(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101010.htm

    [56]

    朱彤, 王烽, 俞凌杰, 等. 四川盆地页岩气富集控制因素及类型[J]. 石油与天然气地质, 2016, 37(3): 399-407. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603014.htm

    [57]

    邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1098
  • PDF下载数:  118
  • 施引文献:  0
出版历程
收稿日期:  2021-03-26
修回日期:  2021-06-04
刊出日期:  2023-10-15

目录