Magmatic-hydrothermal metallogenic system in Zhenlongshan, Guangxi: Evidence from ore-forming fluids and materials
-
摘要:
镇龙山岩浆热液成矿系统位于广西"山字形构造"前弧一个较大的短轴背斜构成的穹窿中,矿床(点)主要赋存于寒武系和泥盆系碎屑岩中。为探讨各矿床(点)之间的成因联系,在野外调查的基础上,对典型矿床进行了流体包裹体测温、激光拉曼及氢-氧-硫同位素研究。研究结果表明,包裹体主要为水溶液、气液两相包裹体,且含CO2和CH4包裹体较多,偶见含NaCl子晶的包裹体。高温矿床均一温度为320~339℃,盐度为8%~9% NaCl eqv;中温矿床均一温度为280~299℃,盐度为7%~8% NaCl eqv;低温矿床均一温度为160~179℃,盐度为5%~6% NaCl eqv。石英中流体包裹体δDV-SMOW集中在-55‰~-80.1‰之间,δ18OV-PDB集中在-9.1‰~-18.8‰之间,氢-氧同位素图解主要落在岩浆水的范围内,并有向大气降水偏移的趋势,表明上述矿床流体的主要来源可能是岩浆水,后期有大气降水的混入。单矿物的硫同位素峰值集中在-2‰~2‰之间,其中毒砂以正值为主,辉锑矿以负值为主,总体具有相对均一的硫源,说明硫化物中的硫均来自岩浆。上述研究表明,镇龙山地区矿床(点)分布具有明显的岩浆-热液成矿系统的分带特点,岩体及其边缘发育斑岩型高温热液矿床,外围逐渐过渡到中温和中低温热液矿床,建立了镇龙山地区岩浆热液成矿系统的水平和垂直矿化分带模型。
Abstract:The Zhenlongshan magmatic hydrothermal metallogenic system is located in the dome formed by a large short axis anticline in the front arc of the "mountain shaped structure" in Guangxi.The deposits (occurrence) mainly occur in the Cambrian and Devonian clastic rocks.Fluid inclusion thermometry, laser Raman, and H-O-S isotope studies were conducted on typical ore deposits.The system elucidated the source of ore-forming fluids, characteristics and evolution of ore-forming fluids, and sources of ore-forming materials for gold, silver, copper, lead, and zinc deposits around the porphyry, and preliminarily explored the genetic connections of various ore deposits (occurrence) around the porphyry.The results show that the inclusions are mainly gas-liquid inclusions, and contain more CO2 and CH4 inclusions, and occasionally contain NaCl daughter crystals.The homogenization temperature of high temperature deposit is 320~339℃, and the salinity is 8%~9% NaCl eqv; the homogenization temperature of medium temperature deposit is 280~299℃, and the salinity is 7%~8% NaCl eqv; the homogenization temperature of low temperature deposit is 160~179℃, and the salinity is 5%~6% NaCl eqv.That is, with the decrease of homogenization temperature, salinity also decreases.The δDV-SMOW and δ18OV-PDB of quartz concentrate in -55‰~-80.1‰ and -9.1‰~-18.8‰.The H-O isotopic diagram is mainly in the range of magmatic water and tends to shift to meteoric water, which indicates that the main source of fluid in the above deposit may be magmatic water, and there is the mixing of meteoric water in the later stage.The sulfur isotope peak values are concentrated in the range of -2‰~2‰, in which arsenopyrite is mainly positive and stibnite is mainly negative.Generally, there is a relatively uniform sulfur source, indicating that the sulfur in sulfide comes from magma.The above research shows that the distribution of ore deposits (occurrence) in Zhenlongshan area has obvious zoning characteristics of magmatic hydrothermal metallogenic system.Porphyry high temperature hydrothermal deposits are developed in the pluton and its edge, and the periphery gradually transits to medium and low temperature hydrothermal deposits.The horizontal and vertical mineralization zoning model for the magmatic hydrothermal metallogenic system in Zhenlongshan area are established.
-
-
图 1 广西镇龙山地区地质简图及矿床(点)分布(据广西壮族自治区二七三地质队,2019修改)
Figure 1.
图 2 知府山矿点地质平面图(据广西壮族自治区二七三地质队,2019修改)
Figure 2.
图 3 知府山矿区0线勘探线剖面图(据广西壮族自治区二七三地质队,2019修改)
Figure 3.
图 4 洗马塘金矿地质平面图(据广西壮族自治区二七三地质队,2019修改)
Figure 4.
图 5 洗马塘金矿剖面(据广西壮族自治区二七三地质队,2019修改)
Figure 5.
图 6 长帽岭-壮帽山铜矿地质平面图(据广西壮族自治区二七三地质队,2019修改)
Figure 6.
图 7 壮帽山铜矿勘探线剖面图(据广西壮族自治区二七三地质队,2019修改)
Figure 7.
图 8 那歪金银矿地质平面图(据广西壮族自治区二七三地质队,2019修改)
Figure 8.
图 9 那歪金银矿矿体剖面图(据广西壮族自治区二七三地质队,2019修改)
Figure 9.
图 10 大帽山矿点地质平面图(据广西壮族自治区二七三地质队,2019修改)
Figure 10.
图 11 大帽山银铅锌矿剖面图(据广西壮族自治区二七三地质队,2019修改)
Figure 11.
图 12 大吾铜矿地质平面图(据广西壮族自治区二七三地质队,2019修改)
Figure 12.
图 13 大吾铜矿矿体剖面图(据广西壮族自治区二七三地质队,2019修改)
Figure 13.
图 20 镇龙山地区各矿床硫化物硫同位素组成分布图(据Hoefs,1997)
Figure 20.
表 1 镇龙山地区各矿床包裹体显微测温结果
Table 1. Microthermometry results of inclusions in Zhenlongshan area
矿床 包裹体类型 Tm, ice/℃ Th/℃ TM/℃ 盐度/% NaCl eqv 大帽山(n=88) Ⅰ -6.4~-2.6 138~263 4.34~9.73 大吾(n=57) Ⅰ -7.7~-2.7 88~160 4.49~11.34 那歪(n=35) Ⅰ -12.1~-2.0 89~277 3.39~16.05 三灶山(n=23) Ⅰ -4.2~-2.0 78~182 3.39~6.74 知府山
(n=121)Ⅰ -8.7~-3.1 159~371 5.11~12.51 Ⅱ -2.3~-1.8 316~372 3.06~3.87 洗马塘(n=69) Ⅰ -13.6~-0.7 144~263 1.23~17.43 Ⅱ -4.6~-3.7 380~419 6.01~7.31 壮帽山(n=36) Ⅰ -4.4~-3.5 225~357 5.71~7.02 Ⅱ -2.9~-2.6 243~322 4.34~4.8 Ⅲ 270~383 130~180 4.18~30.7 注:Tm, ice—冰点温度;Th—均一温度;TM—子晶熔化温度 表 2 镇龙山地区各矿床氢-氧同位素测试结果
Table 2. H-O isotope test results in Zhenlongshan area
序号 样品原号 矿物 检测结果 δDV-SMOW/‰ δOV-PDB/‰ δOV-SMOW/‰ Th/℃ δOH2O/‰ 1 DZTK-1 石英 -76.1 -14.4 16 220 5.5 2 DW-2 石英 -59.6 -13.8 16.7 140 0.3 3 DW-5 石英 -61.4 -13.5 17 140 0.6 4 LG-13 石英 -75.6 -12.6 17.9 140 1.5 5 LG-16 石英 -65.9 -11.7 18.9 140 2.5 6 OY-4 石英 -70.6 -9.9 20.7 160 6.1 7 OY-5 石英 -69 -9.1 21.5 160 6.9 8 OY-6 石英 -64.4 -12.2 18.3 160 3.7 9 ZFS-22 石英 -55 -13.1 17.4 340 11.8 10 ZFS-24 石英 -56 -14.4 16 340 10.4 11 ZFS-25 石英 -58.7 -13.6 16.9 340 11.3 12 XMT-2 石英 -70.4 -16.4 14 200 2.3 13 XMT-6 石英 -62.2 -13.8 16.7 200 5.0 14 XMT-7 石英 -67.3 -11.1 19.4 200 7.7 15 XMT-10 石英 -68.6 -14.7 15.7 200 4.0 16 XMT-11 石英 -66.2 -14.9 15.6 200 3.9 17 XMT-12 石英 -64.8 -14.1 16.3 200 4.6 18 ZMS-2 石英 -74.5 -16.6 13.8 360 8.8 19 ZMS-4 石英 -80.1 -18.8 11.6 360 6.6 20 ZMS-5 石英 -75.4 -13.7 16.8 360 11.8 21 ZMS-6 石英 -73.2 -12.7 17.8 360 12.8 表 3 镇龙山地区各矿床硫同位素测试结果
Table 3. S isotope test results in Zhenlongshan area
序号 样品原号 岩性/矿物 δ34SV-CDT/‰ 序号 样品原号 岩性/矿物 δ34SV-CDT/‰ 1 DZTK-1 黄铜矿 -1.4 19 ZFS-25 闪锌矿 4.7 2 DZTK-4 黄铜矿 -1.5 20 ZFS-25 方铅矿 3.4 3 DZTK-7 黄铜矿 -0.7 21 XMT-2 毒砂 0.8 4 DW-1 方铅矿 -6 22 XMT-6 黄铁矿 1.1 5 DW-5 黄铜矿 4.8 23 XMT-7 黄铁矿 1.2 6 LG-1 黄铁矿 1.4 24 XMT-9 黄铁矿 0.1 7 LG-1 辉锑矿 -0.6 25 XMT-9 毒砂 0.7 8 LG-11 黄铁矿 2.3 26 XMT-10 黄铁矿 0.8 9 LG-13 黄铁矿 2.4 27 XMT-11 黄铁矿 1.9 10 LG-16 黄铁矿 2.7 28 XMT-11 毒砂 0.7 11 OY-4 辉锑矿 -0.6 29 XMT-12 黄铁矿 2 12 OY-5 辉锑矿 -0.3 30 XMT-12 毒砂 0.6 13 OY-6 辉锑矿 -0.5 31 ZMS-2 毒砂 1.4 14 ZFS-17 辉锑矿 -0.7 32 ZMS-3 黄铁矿 0 15 ZFS-22 闪锌矿 5.2 33 ZMS-3 毒砂 1.5 16 ZFS-22 方铅矿 1.6 34 ZMS-4 黄铁矿 0.7 17 ZFS-24 闪锌矿 4.1 35 ZMS-4 毒砂 1.5 18 ZFS-24 方铅矿 2.6 36 ZMS-5 毒砂 0.2 -
[1] Bodnar R J. A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids[J]. Econmic Geology, 1983, 78: 535-542. doi: 10.2113/gsecongeo.78.3.535
[2] Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 683-684. doi: 10.1016/0016-7037(93)90378-A
[3] Clayton R, O'Neil J, Mayeda T. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 1972, 77(17): 3057-3067. doi: 10.1029/JB077i017p03057
[4] Fan H, Groves D, Mikucki E, et al. Contrasting fluid types at the Nevoria gold deposit in the Southern Cross greenstone belt, Western Australia: Implication for the origin of auriferous fluids depositing ores within an Archean banded iron formation[J]. Economic Geology, 2000, 95(7): 1527-1536.
[5] Hoefs J. Stable Isotope Geochemistry(Forth Edition)[M]. Berlin: Springer-Verlag, 1997: 201.
[6] Mao J, Zhang J, Pirajno F, et al. Porphyry Cu-Au-Mo-epithermal Ag-Pb-Zn-distal hydrothermal Au deposits in the Dexing area, Jiangxi province, East China-a linked ore system[J]. Ore Geology Reviews, 2011, 43(1): 203-216. doi: 10.1016/j.oregeorev.2011.08.005
[7] Mao J, Cheng Y, Chen M, et al. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48: 267-294. doi: 10.1007/s00126-012-0446-z
[8] O'Neil J, Clayton R, Mayeda T. Oxygen isotope fractionation in divalent metal carbonates[J]. The Journal of Chemical Physics, 1969, 51: 5547-5558. doi: 10.1063/1.1671982
[9] Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67(5): 551-578. doi: 10.2113/gsecongeo.67.5.551
[10] Ohmoto H. Isotopes of sulfur and carbon[J]. Geochemistry of Hydrothermal Ore Deposits, 1979, 45(5): 509-567.
[11] Pirajno F. Hydrothermal Processes and Mineral System[M]. Berlin: Springer, 2009: 1-1250.
[12] Robert O. Hiroshi Ohmoto; Sulfur and Carbon Isotopes and Ore Genesis: A Review[J]. Economic Geology, 1974, 69(6): 826-842. doi: 10.2113/gsecongeo.69.6.826
[13] Sakai H. Isotopic properties of sulfur compounds in hydrothermal processes[J]. Geochemical Journal, 1968, 2(1): 29-49. doi: 10.2343/geochemj.2.29
[14] Sillitoe R H, Bonham H F. Sediment-hosted gold deposits: Distal products of magmatic-hydrothermal systems[J]. Geology, 1990, 18(12): 157-161.
[15] Sillitoe R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3
[16] Sinclair W D. Porphyry deposits. Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods[C]//Canada: Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007, 5: 223-243.
[17] Xie G, Mao J, Richards J, et al. Distal Au deposits associated with Cu-Au skarn mineralization in the Fengshan area, eastern China[J]. Economic Geology, 2019, 114: 127-142 doi: 10.5382/econgeo.2019.4623
[18] Zhai D, Williams-Jones A, Liu J, et al. Mineralogical, fluid inclusion and multiple isotope (H-O-S-Pb) constraints on the genesis of the Sandaowanzi epithermal Au-Ag-Te deposit, NE China[J]. Economic Geology, 2018, 113: 1359-1382. doi: 10.5382/econgeo.2018.4595
[19] Zhai D, Liu J, Cook N, et al. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China[J]. Mineralium Deposita, 2019a, 54: 47-66. doi: 10.1007/s00126-018-0804-6
[20] Zhai D, Williams-Jones J, Liu J, et al. Evaluating the use of the molybdenite Re-Os chronometer in dating gold mineralization: Evidence from the Haigou deposit, NE China[J]. Economic Geology, 2019b, 114: 897-915. doi: 10.5382/econgeo.2019.4667
[21] Zhao P, Yuan S, MaoJ, et al. Constraints on the timing and genetic link of the large-scale accumulation of proximal W-Sn-Mo-Bi and distal Pb-Zn-Ag mineralization of the world-class Dongpo orefield, Nanling range, South China[J]. Ore Geology Reviews, 2017, 95: 140-1160.
[22] Zhao P, Yuan S, Mao J, et al. Constraints on the timing and genetic link of the large-scale accumulation of proximal W-Sn-Mo-Bi and distal Pb-Zn-Ag mineralization of the world-class Dongpo orefield, Nanling Range, South China[J]. Ore Geology Reviews, 2018, 95: 1140-1160. doi: 10.1016/j.oregeorev.2017.12.005
[23] 毕诗健, 杨振, 李巍, 等. 钦杭成矿带大瑶山地区晚白垩世斑岩型铜矿床: 锆石U-Pb定年及Hf同位素制约[J]. 地球科学(中国地质大学学报), 2015, 40(9): 1458-1479. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201509002.htm
[24] 陈港, 陈懋弘, 马克忠, 等. 广西贵港六梅金矿的成因类型及找矿意义[J]. 黄金科学技术, 2020, 28(4): 479-496. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ202004003.htm
[25] 陈懋弘, 李忠阳, 李青, 等. 初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列[J]. 地学前缘, 2015, 22(2): 41-53. doi: 10.13745/j.esf.2015.02.004
[26] 陈懋弘, 李忠阳, 韦子任, 等. 广西贵港大平天山岩浆热液成矿系统[C]//第十三届全国矿床会议论文集. 北京: 中国地质学会, 2016: 45-46.
[27] 陈懋弘, 党院, 李忠阳, 等. 广西大瑶山地区多期次岩浆活动及成矿作用[M]. 北京: 地质出版社, 2019: 1-251.
[28] 葛锐. 广西贵港市头闸银铅锌矿床地质特征和成因研究[D]. 中国地质大学(北京)硕士学位论文, 2019.
[29] 广西壮族自治区二七三地质队. 广西镇龙山地区岩浆热液成矿系统及成矿预测研究报告[R]. 贵港: 广西壮族自治区二七三地质队, 2019: 1-115.
[30] 简伟, 柳维, 石黎红. 斑岩型钼矿床研究进展[J]. 矿床地质, 2010, 29(2): 308-316. doi: 10.3969/j.issn.0258-7106.2010.02.012
[31] 蒋兴洲, 康志强, 许继峰, 等. 广西大瑶山隆起宝山铜矿区斑岩体锆石U-Pb定年及其地质意义[J]. 桂林理工大学学报, 2015, 35(4): 766-773. doi: 10.3969/j.issn.1674-9057.2015.04.014
[32] 李传华, 廖航. 广西镇龙山锑金多金属矿床成矿模式初论——以小圣矿区为例[J]. 大众科技, 2014, 16(9): 139-141, 125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJI201409054.htm
[33] 李建强, 陈冬梅, 陈贤. 宾阳县镇龙山银锑多金属矿床地质特征及其成因[J]. 南方国土资源, 2008, (5): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ200805024.htm
[34] 李建威, 赵新福, 邓晓东, 等. 新中国成立以来中国矿床学研究若干重要进展[J]. 中国科学: 地球科学, 2020, 49(11): 1720-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201911003.htm
[35] 李培喜. 广西镇龙山金(银)矿的构造控制特征[J]. 黄金, 1993, 23(12): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ199312000.htm
[36] 李蔚铮, 许仿实, 李先粤. 广西龙头山—镇龙山地区金(银)铜铅锌矿成矿规律和成矿预测[J]. 华南地质与矿产, 1998, 25(4): 34-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC199804003.htm
[37] 李忠阳, 党院, 韦子任, 等. 广西大瑶山大黎斑岩型钼铜矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 桂林理工大学学报, 2019, 39(2): 249-257. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201902001.htm
[38] 刘晓菲, 袁顺达, 王旭东, 等. 湖南金船塘锡铋矿床流体包裹体特征及矿床成因的初步研究[J]. 岩石学报, 2013, 29(12): 4245-4260. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312013.htm
[39] 卢焕章, 毕献武, 王蝶, 等. 斑岩铜(钼-金)矿床的成矿流体[J]. 矿床地质, 2016, 35(5): 933-952. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201605004.htm
[40] 卢焕章. 论成矿流体[J]. 矿物学报, 2009, 29(S1): 230-231. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1430.htm
[41] 卢焕章. 流体不混溶性和流体包裹体[J]. 岩石学报, 2011, 27(5): 1253-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105002.htm
[42] 倪培, 迟哲, 潘君屹, 等. 热液矿床的成矿流体与成矿机制——以中国若干典型矿床为例[J]. 矿物岩石地球化学通报, 2020, 37(3): 369-394. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803001.htm
[43] 倪培, 范宏瑞, 丁俊英. 流体包裹体研究进展[J]. 矿物岩石地球化学通报, 2014, 33(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201401001.htm
[44] 秦锦华, 王登红, 陈毓川, 等. 矿田尺度成矿规律与成矿系列研究——以湖南水口山为例[J]. 地质学报, 2020, 94(1): 255-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202001019.htm
[45] 王雪苹, 舒晓峰, 朱传宝, 等. 青海五一河地区岩浆热液型铁多金属矿床地质特征与成矿模式[J]. 地质与勘探, 2014, 50(2): 234-245. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201402004.htm
[46] 王莹, 谢玉玲, 钟日晨, 等. 大别造山带沙坪沟斑岩型钼-热液脉型铅锌矿成矿系统: 流体包裹体及稳定同位素约束[J]. 中国有色金属学报, 2019, 29(3): 628-648. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201903022.htm
[47] 杨志强, 李骏青, 马天龙, 等. 广西贵港—平南地区铅锌铜矿床地质特征[J]. 地质与勘探, 2004, 12(6): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200406007.htm
[48] 翟裕生. 地球系统、成矿系统到勘查系统[J]. 地学前缘, 2007, 12(1): 172-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200701017.htm
[49] 翟裕生. 矿床学思维方法探讨[J]. 地学前缘, 2020, 27(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002002.htm
[50] 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 17(1): 14-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200906037.htm
[51] 翟裕生, 王建平, 邓军, 等. 成矿系统时空演化及其找矿意义[J]. 现代地质, 2008, 26(2): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200802001.htm
[52] 张武饰, 黄锐, 梁明建. 浅谈广西镇龙山穹窿铜矿成矿地质条件及成矿规律[J]. 世界有色金属, 2020, 13(22): 97-98. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO202022046.htm
[53] 郑永飞, 徐宝龙, 周根陶. 矿物稳定同位素地球化学研究[J]. 地学前缘, 2000, 22(2): 299-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200002000.htm
[54] 钟宏, 宋谢炎, 黄智龙, 等. 近十年来中国矿床地球化学研究进展简述[J]. 矿物岩石地球化学通报, 2021, 40(4): 819-844. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202104004.htm
[55] 周永章, 郑义, 曾长育, 等. 关于钦-杭成矿带的若干认识[J]. 地学前缘, 2015, 22(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201502002.htm
[56] 周永章, 李兴远, 郑义, 等. 钦杭结合带成矿地质背景及成矿规律[J]. 岩石学报, 2017, 33(3): 667-681. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703001.htm
-