Geological characteristics and prospecting otential of sandstone-type copper-rhenium deposits in Mishi Basin, Xichang
-
摘要:
在四川西昌市昭觉-普格米市中生代陆相盆地下白垩统飞天山组中新发现了与砂岩型铜矿伴生的铼矿体,重点介绍了铜-铼矿床(点)的分布、矿体特征,分析矿床的成因及找矿前景。发现的矿床(点)呈似层状、透镜状分布于砂岩中,主要矿石类型为含沥青条带的碎裂状、透镜状砂岩,矿石中Cu、Re、Ag含量较高,Cu含量0.23%~39.10%,平均7.23%;Re含量为2.76~131.49 g/t,平均为24.70 g/t,Ag含量为41.4~384 g/t,可称为铜-铼-银砂岩型矿床。成矿作用与沥青等有机质关系密切,初步认为Re等元素超常富集的成矿作用与古油藏形成演化具有密切联系。米市盆地飞天山组含矿层位相对稳定,找矿标志明显,具有较大的找矿潜力。
Abstract:A new rhenium ore body associated with sandstone-type copper deposits was discovered in the Lower Cretaceous Feitianshan Formation (K1f) of the Mishi Mesozoic continental basin in Zhaojue-Puge, Xichang.This article mainly introduces the distribution of the copper-rhenium deposit (occunence) and the characteristics of the ore body, and preliminary analysis of the genesis and prospecting potential of the ore deposit.The discovered deposits (occurrences) are layered and lenticular distributed in sandstone.The main ore types are fragmented and lenticular sandstones with bituminous bands.The ores of the deposit have relatiively high Cu, Re and Ag, with the content of Cu 0.23%~39.10%, average 7.23%; Re content 2.76~131.49 g/t, average 24.70 g/t, Ag content 41.4~384 g/t, which can be called Cu-Re-Ag sandstone deposit.The mineralization is closely related to organic matter such as bitumen.It is preliminarily believed that the mineralization of rhenium and other elements is closely related to the formation and evolution of ancient oil reservoirs.The Feitianshan Formation (K1f) ore-bearing horizon in the Mishi Basin is relatively stable, with obvious prospecting signs and great prospecting potential.
-
Key words:
- rhenium deposit /
- dispersed element /
- organic matter /
- Xichang /
- prospecting potential
-
-
表 1 米市盆地铜-铼矿床(点)地质特征
Table 1. Geological characteristics of copper-rhenium deposit (occurrenee) in Mishi Basin
序号 矿床(点) 矿体形态 矿化特征 样品数 品位 1 红莫依达 矿层厚0.5~1 m,地表可见延伸长逾200 m,深部延深超40 m 具孔雀石化、蓝铜矿化,见铅灰色—银灰色辉铜矿化团块,矿石类型为具黑色沥青条带碎裂状砂岩 18 Cu: 0.06%~39.10%
Re: 0.03~131.49 g/t
Ag: 2.37~337 g/t2 白庙子 矿层厚0.4~0.8 m,地表可见断续延伸长逾240 m,深部延深超50 m 具孔雀石化、蓝铜矿化,见银灰色辉铜矿化团块,矿石类型为具黑色沥青条带碎裂状砂岩 12 Cu: 0.01%~12.66%
Re: 0.02~6.49 g/t
Ag: 2.79~384 g/t3 薄日泥堡 矿层厚0.3~0.7 m,地表可见断续延伸长逾120 m,深部延深超20 m 具孔雀石化、蓝铜矿化,矿石类型为具黑色沥青条带碎裂状砂岩 8 Cu: 0.04%~6.83%
Re: 0.02~3.85 g/t
Ag: 9.40~103 g/t4 二虎村 矿层厚0.3~0.7 m,地表可见断续延伸长逾120 m,深部延深超30 m 孔雀石化、蓝铜矿化,矿石类型为具黑色沥青条带碎裂状砂岩 7 Cu: 0.10%~3.13%
Re: 0.01~0.65 g/t
Ag: 9.07~149 g/t5 轿顶山 矿化好,地表断续延伸长逾1000 m 孔雀石化、蓝铜矿化,矿石类型为具黑色沥青条带碎裂状砂岩 9 Cu: 0.74%~14.79%
Re: 0.02~20.47 g/t
Ag:24.9~175 g/t6 拉基乡 矿层厚0.4~0.8 m,地表可见断续延伸长逾240 m,深部延深超30 m 具孔雀石化、蓝铜矿化,见银灰色—铅灰色辉铜矿团块;矿石类型为具黑色沥青条带碎裂状砂岩 24 Cu: 0.08%~26.66%
Re: 0.02~94.39 g/t
Ag: 3.16~180 g/t表 2 米市盆地铜-铼矿床(点)矿石中Cu、Re、Mo、Ag元素分析结果
Table 2. Analytical results of copper, rhenium, molyb denum and silver contents in the ores of copper-rhenium deposit (occurrence) in Mizhi Basin
样号 矿区(点) Cu/% Re/(g·t-1) Mo/10-6 Ag/(g·t-1) 样号 矿区(点) Cu/% Re/(g·t-1) Mo/10-6 Ag/(g·t-1) S0121-H1 红莫依达矿床 6.83 10.62 5.68 66.8 S0126-h1 薄日泥堡矿点 6.83 3.85 5.58 48.3 S0121-H2 39.10 131.49 36.9 271 S0126-h2 3.04 0.66 2.5 9.4 S0121-H3 1.01 1.22 3.02 6.6 SKD05-5-1H1 3.34 0.53 2.96 103 STC01-0H1 0.13 0.03 2.26 5.8 SKD05-5-2H1 1.22 1.50 5.01 34.4 STC01-1H1 3.36 1.43 7.43 159 SKD05-5-3H1 0.18 0.04 2.33 < 2.0 STC01-2H1 18.80 2.97 10.5 136 SKD05-11-0H1 2.30 0.06 2.38 41.4 STC01-2H2 5.08 6.71 9.69 198 SKD05-11-1H1 0.11 0.02 2.25 < 2.0 STC01-3H1 0.75 0.33 2.72 55.2 SKD05-11-2H1 3.24 0.30 2.49 101 STC01-4H1 0.10 0.05 2.37 4.66 SKD06-14-0H1 二虎村矿点 0.12 0.01 3.47 < 2.0 STC02-0H1 0.06 0.03 2.45 2.37 SKD06-14-1H1 0.29 0.57 12.5 11.8 STC02-1H1 0.12 0.03 2.27 5.98 SKD06-14-3H1 3.13 0.16 24.2 38.2 STC02-1H2 2.11 0.03 3.17 55.5 SKD06-25-0H1 0.10 0.01 2.87 < 2.0 STC02-2H1 5.42 0.95 6.73 171 SKD06-25-1H1 0.26 0.65 9.66 9.07 STC02-2H2 5.69 3.43 8.7 220 SKD06-25-2H1 2.28 0.14 15.8 49.4 STC02-2H3 7.86 0.63 4.32 155 SKD06-25-3H1 2.83 0.15 35.1 149 STC02-2H4 9.83 2.78 5.98 337 SKD01-11-0H1 拉基乡矿点 0.24 0.02 2.4 3.16 STC02-3H1 0.23 0.18 2.28 7.56 SKD01-11-1H1 25.89 94.39 24.7 4.17 STC02-3H2 0.28 0.13 2.55 8.62 SKD01-11-2H1 1.03 2.76 3.18 6.87 S0123-h1 白庙子矿点 3.42 1.16 9.52 117 SKD01-11-3H1 26.66 43.62 18.1 145 S0123-h2 9.38 1.34 11.5 384 SKD01-11-4H1 0.38 0.29 3.14 < 2.0 S0124-h1 7.57 4.70 5.41 91.5 SKD01-11-5H1 24.32 70.49 25 180 S0125-h1 12.66 0.06 3.44 45.8 SKD01-11-6H1 0.23 0.29 2.19 19.7 SKD04-8-1H1 11.20 6.49 4.58 2.79 SKD01-11-7H1 5.88 7.99 6 48.3 SKD04-8-2H1 3.68 0.33 2.22 14.2 SKD01-11-8H1 1.44 1.02 5.59 8.14 SKD04-8-3H1 10.46 1.64 4.8 3.99 SKD01-Z-0H1 1.34 9.24 8.41 9.17 SKD04-8-4H1 0.14 0.02 2.14 < 2.0 SKD01-Z-1H1 17.76 70.57 61.8 136 SKD04-14-0H1 0.01 0.02 2.73 < 2.0 SKD01-Z-2H1 2.56 11.14 29.2 16.4 SKD04-14-1H1 9.33 0.04 2.81 113 SKD01-Z-3H1 8.81 24.82 11.6 50.9 SKD04-14-2H1 2.53 0.25 2.36 72 SKD01-Z-4H1 0.13 0.15 2.35 < 2.0 SKD04-14-3H1 11.29 0.10 3.09 88.7 SKD01-Z-5H1 10.34 22.46 13.1 75.1 SZY01-H1 轿顶山矿床 2.96 0.36 10.2 115 SKD02-8-0H1 0.08 0.21 2.67 < 2.0 SZY02-H1 3.96 0.02 3.68 76.8 SKD02-8-1H1 8.76 17.14 5.58 28.2 SZY02-H2 8.70 2.85 2.72 175 SKD02-8-2H1 1.95 4.78 3.07 11.4 SZY03-H1 13.90 20.47 15.5 138 SKD02-15-0H1 0.12 0.15 2.72 < 2.0 SZY03-H2 14.79 13.30 10.6 24.9 SKD02-15-1H1 11.54 57.60 9.95 67.8 SZY04-H1 8.50 1.62 1.35 115 SKD02-15-2H1 2.10 16.04 4.24 12.6 SZY04-H2 10.14 10.80 2.4 76.8 SKD03-5-0H1 0.05 0.24 2.41 < 2.0 SZY05-H1 11.03 0.48 2.64 175 SKD03-5-1H1 19.13 35.15 21.8 < 2.0 SZY06-H2 0.74 0.14 38.7 24.9 SKD03-5-2H1 1.10 7.73 4.25 4.84 表 3 沥青的碳同位素组成
Table 3. Carbon isotopic composition of bitumen
样品号 δ13CorgPDB/‰ 样品号 δ13CorgPDB/‰ SZY02-H2 -22.8 SKD01-11-1H1 -22.2 SZY03-H1 -23.3 SKD01-11-5H1 -21.7 SKD01-2-H1 -22.8 S0121-H1 -23.3 -
[1] Dill H G. The "chessboard" classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium[J]. Earth Science Reviews, 2010, 100: 1-42.
[2] Lee M K, Williams D D. Paleohydrology of the Delaware basin, western Texas: Overpressure development, hydrocarbon migration, and ore genesis[J]. AAPG Bulletin, 2000, 84(7): 961-974.
[3] Sun Y Z, Wilhem Puttmann W. The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen Basin, Germany[J]. Organic Geochemistry, 2000, 31: 1143-1161. doi: 10.1016/S0146-6380(00)00117-0
[4] Schulz K J, Deyoung J H, Seal R R, et al. Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply[J]. U.S. Geological Survey Professional Paper, 2017, 1802: 1-49.
[5] U.S. Geological Survey. Mineral commodity summaries[R]. U.S. Geological Survey, 2018.
[6] U.S. Geological Survey. Mineral commodity summaries[R]. U.S. Geological Survey, 2019.
[7] Zhuang H P, Lu J L, Fu J M. Crude oil as carrier of gold: petrological and geochemical evidence from Lannigou gold deposit in southwestern Guizhou, China[J]. Science in China, 1999, 28(6): 552-558.
[8] 蔡勋育, 朱扬明, 黄仁春. 普光气田沥青地球化学特征及成因[J]. 石油与天然气地质, 2006, 27(3): 340-347. doi: 10.3321/j.issn:0253-9985.2006.03.008
[9] 方联华, 肖翔, 李科. 四川省攀西地区江舟、米市红盆砂岩型铜矿地质特征及远景预测[J]. 世界有色金属, 2019, 6: 108-116.
[10] 顾雪祥, 章永梅, 李葆华等. 沉积盆地中金属成矿与油气成藏的耦合关系[J]. 地学前缘, 2010, 17(2): 83-105.
[11] 黄凡, 王登红, 王岩, 等. 中国铼矿成矿规律和找矿方向研究[J]. 地质学报, 2019, 93(6): 1252-1269. doi: 10.3969/j.issn.0001-5717.2019.06.007
[12] 黎彤, 倪守斌. 地球和地壳的化学元素丰度[M]. 北京: 地质出版社, 1990: 1-136.
[13] 李葆华, 李雯霞, 顾雪祥, 等. 贵州丹寨汞矿田甲烷包裹体研究及其地质意义[J]. 地学前缘, 2013, 20(1): 55-63.
[14] 廖仁强, 刘鹤, 李聪颖, 等. 从铼的地球化学性质看我国铼找矿前景[J]. 岩石学报, 2019, 35(11): 55-67.
[15] 王登红, 王瑞江, 李建康, 等. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 2013, 40(2): 361-370.
[16] 王瑞江, 王登红, 李建康, 等. 稀有稀土稀散矿产资源及其开发利用[M]. 北京: 地质出版社, 2015: 1-429.
[17] 魏洪刚, 陈燃, 牟必鑫, 等. 西昌盆地上三叠统白果湾组天然气地球化学特征及勘探潜力[J]. 天然气地球科学, 2020, 31(11): 1637-1647.
[18] 杨敏之. 分散元素矿床类型、成矿规律及成矿预测[J]. 矿物岩石地球化学通报, 2000, 19(4): 381-383.
[19] 杨威, 魏国齐, 金惠, 等. 西昌盆地上三叠统白果湾组沉积相与油气勘探前景[J]. 天然气工业, 2020, 40(3): 13-22.
[20] 张复新. 砂岩型铀矿与浅层低温热液矿床[C]//刘池洋, 谭成仟, 孙卫. 盆地多种能源矿产共存富集成藏(矿) 研究进展. 北京: 科学出版社, 2005: 164-171.
[21] 庄汉平, 卢家烂. 与有机质有成因联系的金属矿床[J]. 地质地球化学, 1996, 4: 6-11.
-