东昆仑昆中缝合带的活化: 来自石炭纪花岗岩的证据

董越, 刘畅, 曹伟伟, 关力伟, 段星星, 刘珉. 2023. 东昆仑昆中缝合带的活化: 来自石炭纪花岗岩的证据. 地质通报, 42(12): 2060-2083. doi: 10.12097/j.issn.1671-2552.2023.12.004
引用本文: 董越, 刘畅, 曹伟伟, 关力伟, 段星星, 刘珉. 2023. 东昆仑昆中缝合带的活化: 来自石炭纪花岗岩的证据. 地质通报, 42(12): 2060-2083. doi: 10.12097/j.issn.1671-2552.2023.12.004
DONG Yue, LIU Chang, CAO Weiwei, GUAN Liwei, DUAN Xingxing, LIU Min. 2023. Activation of the Central Kunlun Suture Zone, East Kunlun: Evidence from Carboniferous granites. Geological Bulletin of China, 42(12): 2060-2083. doi: 10.12097/j.issn.1671-2552.2023.12.004
Citation: DONG Yue, LIU Chang, CAO Weiwei, GUAN Liwei, DUAN Xingxing, LIU Min. 2023. Activation of the Central Kunlun Suture Zone, East Kunlun: Evidence from Carboniferous granites. Geological Bulletin of China, 42(12): 2060-2083. doi: 10.12097/j.issn.1671-2552.2023.12.004

东昆仑昆中缝合带的活化: 来自石炭纪花岗岩的证据

  • 基金项目:
    中国地质调查局项目《新疆且末县阿克苏河一带(J45E015010、J45E016009、J45E016010)1:5万区域地质矿产调查》(编号:DD2016007907)、中国核工业地质局地勘费项目《川藏地区雅安-林芝段铀多金属资源评价研究》(编号:地GT2201)
详细信息
    作者简介: 董越(1988-), 男, 高级工程师, 矿物学、岩石学、矿床学专业。E-mail: 305940186@qq.com
    通讯作者: 刘畅(1992-), 男, 高级工程师, 矿物学、岩石学、矿床学专业。E-mail: wlc120@163.com
  • 中图分类号: P534.45;P588.12+1

Activation of the Central Kunlun Suture Zone, East Kunlun: Evidence from Carboniferous granites

More Information
  • 在东昆仑西段工作程度较低的阿克苏河地区,首次识别出石炭纪侵入岩浆活动。阿克苏复式岩体位于昆中断裂带西段,锆石LA-ICP-MS定年显示,花岗闪长斑岩结晶年龄为361±2.4 Ma,二长花岗岩结晶年龄为357.5±2.8 Ma,花岗闪长岩结晶年龄为354±4.3 Ma,代表这些岩体侵位于晚泥盆世—早石炭世(临近昆中缝合带西部),该阶段岩浆事件此前未见公开报道。主量元素分析显示,此套花岗闪长斑岩、二长花岗岩和花岗闪长岩具有富Si、Al、K的特征,为高钾钙碱性过铝质系列;微量和稀土元素分析显示,岩石具有轻、重稀土元素分馏和轻稀土元素富集及负Eu异常特征,富集大离子亲石元素(LILE)Th、U、Rb、K;亏损高场强元素(HFSE)Nb、P、Ti等。锶同位素分析显示,87Sr/86Sr初始值为0.70612~0.71009,εNdt)为-7.1~-5.1,TDM2为1.51~1.69 Ga。综合岩石-矿物特征和地球化学分析,这些岩石应该属于I型花岗岩,主要为受幔源岩浆作用后地壳物质重熔的结果,指示东昆仑昆中缝合带在石炭纪处于拉张裂解的状态。结合区域岩相学和岩石学资料,推断这一裂解事件应该为古特提斯洋俯冲引起的弧后盆地初始扩张,并将前人认为的古特提斯洋俯冲开启时间为二叠纪提前到石炭纪。

  • 加载中
  • 图 1  东昆仑造山带区域地质简图及岩浆岩带划分示意图(据Dong et al., 2018修改,年龄数据据Dong et al., 2018)

    Figure 1. 

    图 2  东昆仑阿克苏河地区地质简图及岩浆岩分布

    Figure 2. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 3  东昆仑阿克苏河侵入体锆石阴极发光(CL)图像及锆石U-Pb年龄值(白色圆圈代表测点位置,圈中数字为分析点号,编号同表 1,锆石下方年龄为206Pb/238U表面年龄)

    Figure 3. 

    图 4  东昆仑阿克苏河侵入体锆石U-Pb谐和年龄图和加权平均年龄直方图

    Figure 4. 

    图 5  阿克苏河侵入体地球化学分类图解

    Figure 5. 

    图 6  阿克苏河侵入体球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b) (球粒陨石和原始地幔数据据Sun et al., 1989)

    Figure 6. 

    图 7  东昆仑西段阿克苏河侵入体全岩Sr-Nd同位素组成图解

    Figure 7. 

    图 8  东昆仑区域岩浆岩年龄分布直方图及主要地质事件(据Dong et al., 2018修改)

    Figure 8. 

    图 9  阿克苏河侵入体成因类型判别图解

    Figure 9. 

    图 10  阿克苏河侵入体Yb-La/Yb(a)、La-La/Sm(b)和Yb-Tb/Yb(c)判别图解

    Figure 10. 

    图 11  阿克苏河侵入体物质来源判别图解

    Figure 11. 

    图 12  阿克苏河侵入体构造环境判别图(底图据Pearce et al., 1984)

    Figure 12. 

    表 1  阿克苏河侵入体锆石LA-ICP-MS U-Th-Pb同位素测试结果

    Table 1.  Zircon LA-ICP-MS U-Th-Pb dating results of Aksu River intrusion

    点号 同位素比值 年龄/Ma
    232Th/238U 207Pb/206Pb σ 207Pb/235U σ 206Pb/238U σ Rho 207Pb/206Pb σ 207Pb/235U σ 206Pb/238U σ
    花岗闪长斑岩(37°22′23″N、86°21′35″E)
    PM2-10-TW1-1 0.29 0.051 0.0019 0.4004 0.0143 0.0574 0.0008 0.39 239 87 342 10.4 359 5.1
    PM2-10-TW1-2 0.33 0.053 0.0021 0.4145 0.0161 0.0571 0.0011 0.5 328 88.9 352 11.6 358 6.5
    PM2-10-TW1-3 0.14 0.0568 0.0016 0.5771 0.015 0.0738 0.001 0.52 487 56.5 463 9.6 459 5.7
    PM2-10-TW1-4 1.08 0.1246 0.0026 6.2138 0.1358 0.3612 0.0047 0.6 2033 37 2006 19.2 1988 22.3
    PM2-10-TW1-5 0.71 0.0543 0.0021 0.4319 0.0165 0.0581 0.0009 0.41 389 85.2 364 11.7 364 5.7
    PM2-10-TW1-6 0.54 0.0535 0.0021 0.4182 0.0155 0.0571 0.0008 0.38 350 90.7 355 11.1 358 5.1
    PM2-10-TW1-7 0.27 0.0568 0.0018 0.4519 0.0148 0.0578 0.0008 0.42 483 72.2 379 10.3 362 5.1
    PM2-10-TW1-8 1.10 0.0615 0.0019 0.9172 0.0296 0.1076 0.0014 0.4 657 66.7 661 15.7 659 8.1
    PM2-10-TW1-9 0.06 0.0511 0.0019 0.4035 0.0148 0.0579 0.0011 0.52 256 83.3 344 10.7 363 6.6
    PM2-10-TW1-10 0.45 0.0555 0.0021 0.4371 0.016 0.0574 0.0009 0.43 435 86.1 368 11.3 360 5.4
    PM2-10-TW1-11 0.43 0.0545 0.0027 0.4174 0.0198 0.0564 0.0011 0.41 394 113 354 14.2 354 6.9
    PM2-10-TW1-12 0.39 0.0543 0.0019 0.4355 0.0154 0.0581 0.0009 0.44 383 77.8 367 10.9 364 5.7
    PM2-10-TW1-13 0.28 0.0513 0.0025 0.4034 0.0189 0.0575 0.001 0.37 254 80.5 344 13.7 360 6.2
    PM2-10-TW1-14 0.14 0.0528 0.0017 0.423 0.0135 0.0578 0.0009 0.49 317 74.1 358 9.6 362 5.2
    PM2-10-TW1-15 0.26 0.0501 0.0019 0.3999 0.0141 0.0579 0.0012 0.59 198 90.7 342 10.2 363 7.3
    PM2-10-TW1-16 0.30 0.0527 0.0023 0.4222 0.0183 0.0581 0.0011 0.44 322 98.1 358 13 364 6.9
    PM2-10-TW1-17 0.42 0.0576 0.0036 0.4618 0.0275 0.0579 0.0012 0.35 522 141.6 386 19.1 363 7.5
    PM2-10-TW1-18 0.33 0.0551 0.0023 0.4391 0.0173 0.0576 0.0009 0.4 417 92.6 370 12.2 361 5.7
    PM2-10-TW1-19 0.19 0.0527 0.002 0.4207 0.0143 0.0582 0.0009 0.45 317 85.2 357 10.2 365 5.3
    PM2-10-TW1-20 0.38 0.0559 0.0022 0.4492 0.0166 0.058 0.0012 0.56 456 116.7 377 11.6 364 7.1
    PM2-10-TW1-21 0.15 0.1629 0.0043 7.4011 0.3113 0.3163 0.0095 0.71 2487 44.4 2161 37.7 1771 46.6
    PM2-10-TW1-22 0.35 0.0547 0.0036 0.4281 0.0249 0.058 0.0015 0.44 398 141.7 362 17.7 363 9.1
    PM2-10-TW1-23 0.37 0.0522 0.0021 0.416 0.0162 0.0577 0.0009 0.4 300 94.4 353 11.6 361 5.3
    PM2-10-TW1-24 0.52 0.0528 0.0022 0.4216 0.0169 0.0584 0.001 0.43 317 94.4 357 12.1 366 6.4
    PM2-10-TW1-25 0.36 0.0549 0.0034 0.4328 0.0211 0.0579 0.0011 0.39 409 138.9 365 15 363 6.8
    PM2-10-TW1-26 0.25 0.0558 0.0022 0.4513 0.0185 0.0584 0.0011 0.46 456 88.9 378 13 366 6.7
    PM2-10-TW1-27 0.27 0.0511 0.0017 0.4089 0.0132 0.0579 0.0008 0.43 256 77.8 348 9.5 363 5
    PM2-10-TW1-28 0.56 0.0565 0.0021 0.4527 0.0168 0.058 0.0009 0.42 478 83.3 379 11.8 363 5.6
    PM2-10-TW1-29 0.13 0.0534 0.0022 0.426 0.0168 0.0578 0.001 0.44 346 92.6 360 12 363 5.9
    PM2-10-TW1-30 0.48 0.0568 0.0038 0.4374 0.0249 0.0574 0.0012 0.37 483 150.9 368 17.6 360 7.5
    花岗闪长岩(37°22′46″N、86°22′23″E)
    PM2-16-TW1-1 0.90 0.1248 0.0028 6.3756 0.1611 0.3695 0.0056 0.6 2028 38.9 2029 22.2 2027 26.4
    PM2-16-TW1-2 0.66 0.0664 0.0014 1.1776 0.0258 0.1286 0.0016 0.57 820 42.6 790 12 780 9.2
    PM2-16-TW1-3 0.73 0.1158 0.0021 5.5322 0.1092 0.3453 0.0039 0.57 1894 33.3 1906 17 1912 18.7
    PM2-16-TW1-4 0.59 0.0692 0.0016 1.3537 0.0348 0.1416 0.0023 0.63 906 46.3 869 15 854 13.2
    PM2-16-TW1-5 1.21 0.0612 0.0024 0.9235 0.0364 0.11 0.0018 0.42 656 83.3 664 19.2 673 10.7
    PM2-16-TW1-6 0.40 0.057 0.0023 0.4395 0.0173 0.0563 0.0009 0.41 500 88.9 370 12.2 353 5.5
    PM2-16-TW1-7 0.61 0.0553 0.0014 0.4356 0.0121 0.0568 0.0008 0.51 433 57.4 367 8.5 356 5
    PM2-16-TW1-8 0.52 0.0624 0.0031 0.9189 0.0433 0.1072 0.0022 0.44 687 107.4 662 22.9 657 12.9
    PM2-16-TW1-9 0.09 0.0602 0.0015 0.8803 0.0234 0.1057 0.0016 0.57 609 55.5 641 12.6 647 9.4
    PM2-16-TW1-10 1.09 0.1116 0.0027 4.3053 0.1064 0.2777 0.0039 0.57 1826 42.4 1694 20.4 1580 19.9
    PM2-16-TW1-11 0.37 0.0545 0.002 0.4204 0.0153 0.0559 0.0009 0.44 394 85.2 356 11 351 5.6
    PM2-16-TW1-12 0.72 0.0647 0.0033 0.9418 0.0345 0.1049 0.002 0.52 765 112 674 18.1 643 11.4
    PM2-16-TW1-13 0.45 0.0698 0.0034 1.5918 0.0782 0.1657 0.0039 0.48 921 101.1 967 30.6 988 21.4
    PM2-16-TW1-14 0.35 0.0961 0.0025 2.2282 0.0615 0.1657 0.0025 0.55 1550 48.3 1190 19.4 989 13.9
    PM2-16-TW1-15 0.34 0.0732 0.002 1.8365 0.0488 0.1794 0.0026 0.55 1020 53.7 1059 17.5 1064 14.2
    PM2-16-TW1-16 0.53 0.0728 0.0024 1.6725 0.0554 0.1651 0.0027 0.49 1009 68.5 998 21.1 985 14.7
    PM2-16-TW1-17 0.78 0.1258 0.0026 6.7305 0.1392 0.3819 0.0048 0.61 2040 37 2077 18.3 2085 22.3
    PM2-16-TW1-18 0.44 0.0516 0.0017 0.4069 0.0139 0.0562 0.0009 0.47 333 74.1 347 10 353 5.6
    PM2-16-TW1-19 0.21 0.052 0.0014 0.4115 0.0118 0.0564 0.0008 0.49 283 61.1 350 8.5 354 5
    PM2-16-TW1-20 0.53 0.058 0.0016 0.8603 0.0274 0.1054 0.0021 0.63 532 59.3 630 15 646 12.2
    PM2-16-TW1-21 0.53 0.0555 0.0018 0.4386 0.0136 0.0566 0.0009 0.51 432 65.7 369 9.6 355 5.7
    二长花岗岩(37°22′23″N、86°21′28″E)
    PM2-7-TW1-1 0.56 0.0537 0.002 0.4118 0.0147 0.0551 0.0009 0.46 367 85.2 350 10.6 346 5.3
    PM2-7-TW1-2 0.40 0.0621 0.0028 0.4563 0.0225 0.0524 0.0013 0.5 680 91.7 382 15.7 329 7.7
    PM2-7-TW1-3 0.47 0.0531 0.0024 0.4257 0.019 0.0579 0.0009 0.35 345 103.7 360 13.5 363 5.5
    PM2-7-TW1-4 0.41 0.0562 0.0034 0.4465 0.025 0.058 0.0013 0.4 457 133.3 375 17.6 363 7.7
    PM2-7-TW1-5 0.40 0.0546 0.0017 0.4191 0.0143 0.0549 0.001 0.53 394 66.7 355 10.2 344 6.2
    PM2-7-TW1-6 0.43 0.0542 0.0021 0.4297 0.017 0.057 0.0009 0.4 389 82.4 363 12.1 357 5.8
    PM2-7-TW1-7 0.44 0.059 0.0024 0.4451 0.0164 0.0548 0.0009 0.45 565 87 374 11.5 344 5.4
    PM2-7-TW1-8 0.34 0.0557 0.0019 0.4503 0.0153 0.0585 0.0009 0.45 439 78.7 378 10.7 366 5.7
    PM2-7-TW1-9 0.75 0.0675 0.003 1.2458 0.0585 0.1323 0.0023 0.37 854 89.8 822 26.5 801 13.1
    PM2-7-TW1-10 0.43 0.0536 0.0016 0.4282 0.0135 0.0577 0.0009 0.49 354 68.5 362 9.6 361 5.7
    PM2-7-TW1-11 0.34 0.0597 0.0025 0.4368 0.0189 0.053 0.0008 0.35 591 90.7 368 13.4 333 5.1
    PM2-7-TW1-12 0.43 0.0537 0.0017 0.4253 0.0137 0.0572 0.0008 0.43 361 72.2 360 9.7 358 5.1
    PM2-7-TW1-13 0.33 0.0584 0.0043 0.4614 0.0316 0.0579 0.001 0.25 546 161.1 385 21.9 363 5.9
    PM2-7-TW1-14 0.40 0.0611 0.0022 0.8435 0.0312 0.0997 0.0018 0.49 643 75.9 621 17.2 613 10.6
    PM2-7-TW1-15 0.41 0.0519 0.002 0.4359 0.0163 0.0614 0.001 0.44 280 88.9 367 11.5 384 6.1
    PM2-7-TW1-16 0.59 0.1181 0.0023 4.2078 0.0949 0.255 0.0034 0.59 1928 36.3 1676 18.5 1464 17.3
    PM2-7-TW1-17 0.46 0.0521 0.0018 0.4092 0.0137 0.0569 0.0008 0.42 300 79.6 348 9.9 357 5
    PM2-7-TW1-18 0.06 0.0586 0.0018 0.5142 0.0156 0.0632 0.0011 0.57 550 66.7 421 10.5 395 6.6
    PM2-7-TW1-19 0.11 0.0512 0.0013 0.3848 0.0094 0.0539 0.0007 0.53 250 59.3 331 6.9 338 4.1
    PM2-7-TW1-20 0.28 0.0522 0.0021 0.4144 0.0156 0.0581 0.001 0.46 300 92.6 352 11.2 364 6.2
    PM2-7-TW1-21 0.30 0.0493 0.0023 0.4873 0.0245 0.0711 0.0015 0.42 161 138.9 403 16.7 443 9
    PM2-7-TW1-22 0.59 0.0556 0.0024 0.432 0.018 0.0563 0.001 0.43 439 93.5 365 12.8 353 6.4
    PM2-7-TW1-23 0.53 0.0513 0.0031 0.4063 0.0205 0.0575 0.001 0.34 254 138.9 346 14.8 361 6.2
    PM2-7-TW1-24 0.44 0.0516 0.0019 0.4064 0.0144 0.0571 0.0009 0.44 333 82.4 346 10.4 358 5.6
    PM2-7-TW1-25 0.52 0.0495 0.0017 0.3729 0.0127 0.0541 0.0008 0.43 172 75 322 9.4 340 5
    PM2-7-TW1-26 0.43 0.0602 0.0039 0.4861 0.0279 0.0574 0.001 0.3 613 140.7 402 19.1 360 5.9
    PM2-7-TW1-27 0.59 0.0521 0.003 0.4248 0.0263 0.0583 0.0014 0.39 300 131.5 359 18.8 365 8.3
    PM2-7-TW1-28 0.19 0.0718 0.0025 0.5879 0.0202 0.0588 0.001 0.49 989 72.2 470 12.9 369 6.3
    注:Rho代表误差相关系数,Rho=(σ6/38/206Pb/238U)/(σ7/35/207Pb/235U)
    下载: 导出CSV

    表 2  阿克苏河侵入体主量、微量及稀土元素分析结果

    Table 2.  Major, trace and rare earth element compositions of the Aksu River intrusion

    元素 PM2-10-TW1 PM2-10-YQ1 PM2-16-TW1 PM2-16-YQ2 PM2-16-YQ3 PM2-7-TW1 PM2-9-YQ1
    花岗闪长斑岩 花岗闪长岩 二长花岗岩
    SiO2 71.44 71.33 72.54 72.35 69.2 77.53 76.23
    TiO2 0.32 0.31 0.27 0.25 0.44 0.04 0.04
    Al2O3 13.97 13.59 14.24 13.8 14.78 12.37 12.66
    Fe2O3 0.75 0.67 0.47 0.45 0.84 0.18 0.24
    FeO 2.1 2.28 1.92 1.6 2.78 0.56 0.63
    MnO 0.07 0.08 0.06 0.04 0.07 0.02 0.03
    MgO 0.83 0.81 0.73 0.71 1.19 0.17 0.18
    CaO 1.16 0.87 2.28 2.57 2.77 0.5 0.89
    K2O 3.54 3.38 2.54 2.83 2.03 3.72 4.17
    Na2O 4.33 4.17 3.41 3.48 3.23 3.45 3.56
    P2O5 0.08 0.08 0.08 0.08 0.12 0.03 0.02
    烧失量 1.58 1.48 0.87 1.15 1.56 0.89 1.21
    Mg# 35 34 36 39 38 30 28
    A/CNK 1.07 1.12 1.14 1.02 1.18 1.16 1.05
    A/NK 1.28 1.30 1.71 1.58 1.98 1.28 1.23
    Rb 101 90.8 69.3 80.6 74.5 182 201
    Ba 1035 1146 806 898 413 197 203
    Th 9.73 9.88 9.84 9.55 8.75 11.7 10
    U 2.21 2.2 1.33 1.85 1.41 3.74 3.85
    K 119.23 115.03 85.59 95.73 69.17 125.32 140.36
    Ta 0.7 0.67 1.03 0.9 1.11 1.63 1.49
    Nb 9.26 9.17 11.1 6.47 12.7 10.7 11
    La 31.3 31.3 32.3 32.8 32.7 16.3 13.1
    Ce 64.1 62 64 66.5 67.9 37 29.3
    Sr 153 165 214 208 311 34.5 37.2
    Nd 26.9 25.7 28.6 26.4 27.4 17.9 14.6
    P 3.73 3.77 3.73 3.74 5.66 1.4 0.93
    Zr 136 124 114 117 141 53.7 49.4
    Hf 4.42 4.23 3.65 4.07 4.4 2.8 2.67
    Sm 5.39 5.29 5.22 5.4 5.56 5.41 4.14
    Ti 1.5 1.47 1.26 1.17 2.08 0.19 0.19
    Y 23.7 23.3 14.8 15.4 18.9 44.2 40.7
    Yb 2.48 2.41 1.67 1.65 1.71 4.86 4.44
    Lu 0.39 0.37 0.26 0.26 0.26 0.7 0.66
    La 31.3 31.3 32.3 32.8 32.7 16.3 13.1
    Ce 64.1 62 64 66.5 67.9 37 29.3
    Pr 7.59 7.26 7.77 7.78 7.84 4.98 3.88
    Nd 26.9 25.7 28.6 26.4 27.4 17.9 14.6
    Sm 5.39 5.29 5.22 5.4 5.56 5.41 4.14
    Eu 1.03 0.89 1.08 1.08 1.31 0.14 0.12
    Gd 4.77 4.78 4.26 4.4 4.9 5.91 4.77
    Tb 0.75 0.76 0.61 0.62 0.7 1.2 0.99
    Dy 4.36 4.3 3.18 3.14 3.69 7.81 6.62
    Ho 0.86 0.85 0.57 0.56 0.65 1.54 1.34
    Er 2.54 2.57 1.66 1.64 1.89 4.73 4.21
    Tm 0.37 0.38 0.25 0.24 0.26 0.74 0.66
    Yb 2.48 2.41 1.67 1.65 1.71 4.86 4.44
    Lu 0.39 0.37 0.26 0.26 0.26 0.7 0.66
    Y 23.7 23.3 14.8 15.4 18.9 44.2 40.7
    ΣREE 152.83 148.86 151.43 152.47 156.77 109.22 88.83
    δEu 0.61 0.53 0.68 0.66 0.75 0.08 0.08
    TZr/℃ 793 789 789 783 809 728 713
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6; A/CNK=molar[Al2O3/(CaO +Na2O+K2O)]; A/NK=molar [Al2O3/(Na2O+K2O)]; δEu = EuN/(SmN*GdN)1/2; TTi-in-zircon(℃)=(4800±86)/((5.711±0.072)-logαSiO2+logαTiO2-log(Ti-in-zircon))
    下载: 导出CSV

    表 3  阿克苏河侵入体标准矿物计算结果

    Table 3.  Mineral composition of Aksu River intrusion

    样品号 PM2-10-TW1 PM2-10-YQ1 PM2-16-TW1 PM2-16-YQ2 PM2-16-YQ3 PM2-7-TW1 PM2-9-YQ1
    石英(Q) 28.35 30.80 37.09 34.84 35.24 42.16 37.31
    斜长石(P) 43.40 41.09 40.99 42.90 42.66 32.23 34.99
    钙长石(An) 5.18 3.81 10.74 12.13 13.24 2.23 4.16
    钠长石(Ab) 38.22 37.29 30.25 30.77 29.42 30.00 30.83
    正长石(Or) 22.33 21.60 16.11 17.89 13.21 23.12 25.81
    刚玉(C) 0.75 1.17 1.33 0.37 1.79 1.24 0.48
    紫苏辉石(Hy) 4.38 4.54 3.78 3.37 5.99 1.08 1.23
    钛铁矿(Il) 0.35 0.34 0.30 0.27 0.50 0.04 0.04
    磁铁矿(Mt) 0.28 0.30 0.24 0.20 0.37 0.07 0.08
    磷灰石(Ap) 0.16 0.16 0.16 0.16 0.25 0.06 0.04
    合计 100 100 100 100 100 100 100
    分异指数(DI) 94.07 93.50 94.19 95.63 91.11 97.51 98.12
    密度/(g·cc-1) 2.69 2.70 2.71 2.69 2.75 2.65 2.65
    液相密度 2.40 2.40 2.41 2.41 2.44 2.35 2.36
    干粘度 0.92 0.95 1.02 1.02 0.90 1.29 1.19
    湿粘度 0.69 0.70 0.75 0.74 0.69 0.83 0.80
    液相线温度 801.26 789.57 780.42 778.71 827.88 688.14 713.40
    A/CNK 1.09 1.14 1.16 1.04 1.21 1.17 1.06
    下载: 导出CSV

    表 4  阿克苏河侵入体Sr-Nd同位素分析结果

    Table 4.  Sr-Nd isotopic data of Aksu River intrusion

    样品号 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd(0) εNd(t) TDM2/Ma
    PM2-7-TW1 14.516 0.774857 0.000022 0.70899 0.1735 0.512324 0.000007 0.511918 -6.1 -5.1 1521
    PM2-10-TW1 1.8995 0.71988 0.000018 0.71009 0.1190 0.512142 0.000007 0.511860 -9.7 -6.1 1606
    PM2-16-TW1 1.0037 0.715145 0.000019 0.70068 0.1121 0.512078 0.000007 0.511821 -10.9 -7.1 1681
    下载: 导出CSV
  • [1]

    Chappell B W, Stephens W E. Origin of infracrustal(I-type) granite magmas[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 1988, 79(2/3): 71-86.

    [2]

    Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3

    [3]

    Chen J, Fu L, Wei J, et al. Proto-Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian-Middle Devonian A-type magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China[J]. Lithos, 2020, 356/357: 105304. doi: 10.1016/j.lithos.2019.105304

    [4]

    Chen L, Sun Y, Pei X Z, et al. Northernmost Paleo-Tethyan oceanic basin in Tibet: geochronological evidence from 40Ar/39Ar age dating of Dur'ngoi ophiolite[J]. Chinese Science Bulletin, 2001, 46: 1203-1205. doi: 10.1007/BF02900603

    [5]

    Dong Y, He D, Sun S, et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 2018, 186: 231-261. doi: 10.1016/j.earscirev.2017.12.006

    [6]

    Dong Y, Sun S, Liu X, et al. Geochronology and geochemistry of the Yazidaban ophiolitic mélange in Qimantagh: constraints on the Early Paleozoic back-arc basin of the East Kunlun Orogen, northern Tibetan Plateau[J]. Journal of the Geological Society, 2019, 176(2): 306-322. doi: 10.1144/jgs2018-145

    [7]

    Frost B R. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033

    [8]

    Hawkesworth C, Gallagher K, Herot J, et al. Mantle and slab contributions in arc magmas[J]. Annual Review of Earth Planetary Sciences, 1993, 21: 175-2004. doi: 10.1146/annurev.ea.21.050193.001135

    [9]

    Huang H, Niu Y L, Nowell G, et al. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: implications for continental crust growth through syn-collisional felsic magmatism[J]. Chemical Geology, 2014, 370: 1-18. doi: 10.1016/j.chemgeo.2014.01.010

    [10]

    Huang H, Niu Y, Mo X. Syn-collisional granitoids in the Qilian Block on the Northern Tibetan Plateau: A long-lasting magmatism since continental collision through slab steepening[J]. Lithos, 2016, 246/247: 99-109. doi: 10.1016/j.lithos.2015.12.018

    [11]

    Icenhower J, Longdon D. Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt[J]. American Mineralogist, 1996, 81: 719-734. doi: 10.2138/am-1996-5-619

    [12]

    Karsli O, Dokuz A, Uysal I, et al. Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harsit Pluton, Eastern Turkey[J]. Contributions to Mineralogy and Petrology, 2010, 160: 467-487. doi: 10.1007/s00410-010-0489-z

    [13]

    Lee C T A, Bachmann O. How important is the role of crystal fractionation in making intermediate magmas?Insights from Zr and P systematics[J]. Earth and Planetary Science Letters, 2014, 393: 266-274. doi: 10.1016/j.epsl.2014.02.044

    [14]

    Ludwig K R. ISOPLOT 3.00: A geochronological toolkit for Microsoft excel[M]. Berkeley, 2003.

    [15]

    Meng F C, Zhang J X, Cui M H. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance[J]. Gondwana Research, 2013, 23(2): 825-836. doi: 10.1016/j.gr.2012.06.007

    [16]

    Middlemost E A K. Magmas and magmatic rocks: an introduction to igneous petrology[M]. London: Longman, 1985: 1-266.

    [17]

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224.

    [18]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983 doi: 10.1093/petrology/25.4.956

    [19]

    Peccerillo R, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contribution to Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745

    [20]

    Roberts M, Clemens J. Origin of high-potassium, calc-alkaline, I-type granitoids[J]. Geology, 1993, 21: 825-828.

    [21]

    Song S, Bi H, Qi S, et al. HP-UHP metamorphic belt in the East Kunlun Orogen: final closure of the Proto-Tethys Ocean and formation of the Pan-North-China Continent[J]. Journal of Petrology, 2018, 59(11): 2043-2060. doi: 10.1093/petrology/egy089

    [22]

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [23]

    Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4): 29-44.

    [24]

    Wang Q, Xu J, Jian P, et al. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization[J]. Journal of petrology, 2006, 47(1): 119-144. doi: 10.1093/petrology/egi070

    [25]

    Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    [26]

    Xin W, Sun F, Li L, et al. The Wulonggou metaluminous A 2-type granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post-collision extension[J]. Lithos, 2018, 312/313: 108-127. doi: 10.1016/j.lithos.2018.05.005

    [27]

    Xiong F H, Ma C Q, Zhang J Y, et al. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J]. Mineralogy and Petrology, 2012, 104(3/4): 211-224.

    [28]

    Xiong F H, Ma C Q, Hong J A, et al. Multi-style modification of subcontinental lithospheric mantle during a Tethys orogeny: evidence from Permo-Triassic mafic dike swarms in Northern Tibet Plateau[J]. Acta Geologica Sinica(English Edition), 2013, 87(supp): 274-276.

    [29]

    Xiong F H, Ma C Q, Zhang J Y, et al. Reworking of old continental lithosphere: an important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society, 2014, 171(6): 847-863. doi: 10.1144/jgs2013-038

    [30]

    Zhang J Y, Ma C Q, Xiong F H, et al. Early Paleozoic high-Mg diorite-granodiorite in the eastern Kunlun Orogen, western China: Response to continental collision and slab break-off[J]. Lithos, 2014, 210/211: 129-146. doi: 10.1016/j.lithos.2014.10.003

    [31]

    Zhao X, Wei J, Fu L, et al. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen[J]. Lithos, 2020, 360/361: 105446. doi: 10.1016/j.lithos.2020.105446

    [32]

    Zheng Z, Chen Y, Deng X, et al. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean[J]. Lithos, 2018, 296/299(Supplement C): 181-194.

    [33]

    Zhu Z, Campbell I H, Allen C M, et al. S-type granites: Their origin and distribution through time as determined from detrital zircons[J]. Earth and Planetary Science Letters, 2020, 536: 116140. doi: 10.1016/j.epsl.2020.116140

    [34]

    陈国超. 东昆仑南缘印支期花岗岩岩石成因及其地质意义[D]. 长安大学硕士学位论文, 2011.

    [35]

    陈国超. 东昆仑造山带(东段) 晚古生代-早中生代花岗质岩石特征、成因及地质意义[D]. 长安大学博士学位论文, 2014.

    [36]

    谌宏伟, 罗照华, 莫宣学, 等. 东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J]. 岩石矿物学杂志, 2006, 25(1): 25-32.

    [37]

    陈静, 谢智勇, 李彬, 等. 东昆仑拉陵灶火地区泥盆纪侵入岩成因及其地质意义[J]. 矿物岩石, 2013, 33(2): 26-34.

    [38]

    陈能松, 朱杰, 游振东, 等. 中央山系大别、东秦岭和东昆仑造山带最古老岩系变质过程对比[J]. 地球科学, 1998, 23(5): 15-20.

    [39]

    陈有炘, 裴先治, 李瑞保, 等. 东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地学前缘, 2013, 20(6): 240-254.

    [40]

    陈有炘, 裴先治, 李瑞保, 等. 东昆仑东段纳赤台岩群变沉积岩地球化学特征及构造意义[J]. 现代地质, 2014, 28(3): 489-500.

    [41]

    国显正, 贾群子, 李金超, 等. 东昆仑高压变质带榴辉岩、榴闪岩年代学、地球化学及其地质意义[J]. 地球科学, 2018, 43(12): 1-23.

    [42]

    郝娜娜, 袁万明, 曹建辉, 等. 东昆仑喀雅克登塔格晚泥盆世花岗闪长岩的发现与地质意义[J]. 西北地质, 2014, 47(1): 107-115. doi: 10.3969/j.issn.1009-6248.2014.01.008

    [43]

    贾丽辉, 孟繁聪, 冯惠彬. 榴辉岩相峰期流体活动: 来自东昆仑榴辉岩石英脉的证据[J]. 岩石学报, 2014, 30(8): 2339-2350.

    [44]

    李积清, 王秉璋, 王涛, 等. 东昆仑黑刺沟金矿区晚奥陶世花岗斑岩的成因: 锆石U-Pb年龄、岩石地球化学和Sr-Nd-Pb-Hf同位素制约[J]. 地质通报, 2022, 41(12): 2173-2185. http://dzhtb.cgs.cn/cn/article/doi/10.12097/j.issn.1671-2552.2022.12.010

    [45]

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 2012, 19(5): 244-254.

    [46]

    李瑞保, 裴先治, 李佐臣, 等. 东昆中构造混杂岩带清泉沟弧前玄武岩地质、地球化学特征及构造环境[J]. 地球科学, 2018, 43(12): 4521-4535.

    [47]

    刘彬, 马昌前, 郭盼, 等. 东昆仑中泥盆世A型花岗岩的确定及其构造意义[J]. 地球科学(中国地质大学学报), 2013, 38(5): 947-962.

    [48]

    刘成东, 周肃, 莫宣学, 等. 东昆仑造山带后碰撞花岗岩岩石地球化学和40Ar/39Ar同位素年代学约束[J]. 华东地质学院学报, 2003, (4): 301-305. doi: 10.3969/j.issn.1674-3504.2003.04.001

    [49]

    刘战庆, 裴先治, 李瑞保, 等. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J]. 地质学报, 2011, 85(2): 185-194.

    [50]

    陆露, 吴珍汉, 胡道功, 等. 东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义[J]. 岩石学报, 2010, 26(4): 1150-1158.

    [51]

    陆露, 张延林, 吴珍汉, 等. 东昆仑早古生代花岗岩锆石U-Pb年龄及其地质意义[J]. 地球学报, 2013, 34(4): 447-454.

    [52]

    马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555-3568.

    [53]

    孟繁聪, 崔美慧, 贾丽辉, 等. 东昆仑榴辉岩的原岩性质[C]//中国地球科学联合学术年会, 2014: 2.

    [54]

    莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414.

    [55]

    潘桂棠, 丁俊, 王立全, 庄育勋, 等. 青藏高原区域地质调查重要新进展[J]. 地质通报, 2002, 21(11): 787-793. doi: 10.3969/j.issn.1671-2552.2002.11.018

    [56]

    祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 2014, 30(11): 3345-3356.

    [57]

    祁晓鹏, 范显刚, 杨杰, 等. 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义[J]. 地质通报, 2016, 35(11): 1771-1783. http://dzhtb.cgs.cn/cn/article/id/20161102

    [58]

    任军虎, 柳益群, 周鼎武, 等. 东昆仑小庙基性岩脉地球化学及LA-ICP-MS锆石U-Pb定年[J]. 吉林大学学报(地球科学版), 2010, 40(4): 859-868.

    [59]

    施彬, 朱云海, 钟增球, 等. 东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义[J]. 地球科学, 2016, 41(1): 35-54.

    [60]

    田广阔, 孟繁聪, 范亚洲, 等. 东昆仑早古生代造山后花岗岩的特征——以大干沟花岗岩为例[J]. 岩石矿物学杂志, 2016, 35(3): 371-390.

    [61]

    王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义[J]. 大地构造与成矿学, 2013, 37(4): 685-697.

    [62]

    王国灿, 王青海, 简平, 等. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J]. 地学前缘, 2004, 11(4): 481-490. doi: 10.3321/j.issn:1005-2321.2004.04.014

    [63]

    王艺龙, 李艳军, 魏俊浩, 等. 东昆仑五龙沟地区晚志留世A型花岗岩成因: U-Pb年代学、地球化学、Nd及Hf同位素制约[J]. 地球科学, 2018, (4): 1219-1236.

    [64]

    王增振, 韩宝福, 丰成友, 等. 新疆白干湖地区花岗岩年代学、地球化学研究及其构造意义[J]. 岩石矿物学杂志, 2014, 33(4): 597-616. doi: 10.3969/j.issn.1000-6524.2014.04.001

    [65]

    吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238.

    [66]

    武若晨, 顾雪祥, 章永梅, 等. 东昆仑造山带早古生代-早中生代构造演化的沉积地球化学记录[J]. 现代地质, 2017, 31(4): 716-733. doi: 10.3969/j.issn.1000-8527.2017.04.007

    [67]

    熊富浩, 马昌前. 东昆仑中部原特提斯洋壳深俯冲事件的岩石学证据[R]. 成都: 20162.

    [68]

    殷鸿福, 张克信. 中央造山带的演化及其特点[J]. 地球科学, 1998, (5): 3-5.

    [69]

    张耀玲, 胡道功, 石玉若, 等. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地质通报, 2010, 29(11): 1614-1618. http://dzhtb.cgs.cn/cn/article/id/20101103

    [70]

    赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, (1): 267-286.

    [71]

    朱弟成, 莫宣学, 王立全, 等. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J]. 中国科学: 地球科学, 2009, 39(7): 833-848.

  • 加载中

(13)

(4)

计量
  • 文章访问数:  800
  • PDF下载数:  100
  • 施引文献:  0
出版历程
收稿日期:  2021-11-05
修回日期:  2022-05-23
刊出日期:  2023-12-15

目录