内蒙古扎兰屯地区晚三叠世哈拉苏斑状正长花岗岩的成因: 锆石U-Pb年龄、Hf同位素和地球化学证据

胡鹏, 段明, 熊金莲, 曾威, 刘行, 闫国强, 魏佳林. 2023. 内蒙古扎兰屯地区晚三叠世哈拉苏斑状正长花岗岩的成因: 锆石U-Pb年龄、Hf同位素和地球化学证据. 地质通报, 42(12): 2109-2120. doi: 10.12097/j.issn.1671-2552.2023.12.007
引用本文: 胡鹏, 段明, 熊金莲, 曾威, 刘行, 闫国强, 魏佳林. 2023. 内蒙古扎兰屯地区晚三叠世哈拉苏斑状正长花岗岩的成因: 锆石U-Pb年龄、Hf同位素和地球化学证据. 地质通报, 42(12): 2109-2120. doi: 10.12097/j.issn.1671-2552.2023.12.007
HU Peng, DUAN Ming, XIONG Jinlian, ZENG Wei, LIU Xing, YAN Guoqiang, WEI Jialin. 2023. Genesis of Late Triassic Harasu porphyritic syenogranite in Zalantun area, Inner Mongolia: Zircon U-Pb age, Hf isotope and geochemical evidence. Geological Bulletin of China, 42(12): 2109-2120. doi: 10.12097/j.issn.1671-2552.2023.12.007
Citation: HU Peng, DUAN Ming, XIONG Jinlian, ZENG Wei, LIU Xing, YAN Guoqiang, WEI Jialin. 2023. Genesis of Late Triassic Harasu porphyritic syenogranite in Zalantun area, Inner Mongolia: Zircon U-Pb age, Hf isotope and geochemical evidence. Geological Bulletin of China, 42(12): 2109-2120. doi: 10.12097/j.issn.1671-2552.2023.12.007

内蒙古扎兰屯地区晚三叠世哈拉苏斑状正长花岗岩的成因: 锆石U-Pb年龄、Hf同位素和地球化学证据

  • 基金项目:
    中国地质调查局项目《铀铁铜铝等战略性矿产资源调查》(编号:DD20230027)、《华北豫西等重点成矿区带铝铜镍等矿产地质调查》(编号:DD20221686)、《内蒙古阿拉善-河套地区区域地质调查》(编号:DD20211191)
详细信息
    作者简介: 胡鹏(1989-), 男, 硕士, 工程师, 地质学专业, 从事矿产地质调查与研究工作。E-mail: 824901364@qq.com
    通讯作者: 段明(1983-), 男, 硕士, 高级工程师, 矿床学专业, 从事矿产地质调查与研究工作。E-mail: 279549801@qq.com
  • 中图分类号: P534.51;P588.12+1;P59

Genesis of Late Triassic Harasu porphyritic syenogranite in Zalantun area, Inner Mongolia: Zircon U-Pb age, Hf isotope and geochemical evidence

More Information
  • 对内蒙古扎兰屯哈拉苏斑状正长花岗岩进行年代学、地球化学和Hf同位素组成研究。LA-ICP-MS锆石测年结果指示,哈拉苏斑状正长花岗岩于晚三叠世(213.17±0.93 Ma)侵位,矿物组合以石英、碱性长石和斜长石为主,富SiO2(72.56%~74.36%)、K2O(4.74%~5.49%),贫MgO(0.12%~0.34%)、CaO(0.54%~0.95%)、TiO2(0.19%~0.29%)和P2O5(0.042%~0.053%),A/CNK=1~1.05,小于1.1,强烈亏损Ba、Sr、Eu、P、Ti,表现出铝质A型花岗岩的矿物组合及地球化学特征。哈拉苏A型花岗岩具有高的εHft)值(+9.08~+15.3),可能源于新生中基性地壳物质的部分熔融。哈拉苏A型花岗岩形成于后碰撞构造环境。可能受古亚洲洋闭合的远程效应影响,扎兰屯地区地壳加厚并向后造山伸展机制转换,随后在晚三叠世形成了扎兰屯地区哈拉苏斑状正长花岗岩。

  • 加载中
  • 图 1  中国东北地区主要构造单元(据张慧婷等,2019修改)(a)及扎兰屯哈拉苏地区地质简图(b)

    Figure 1. 

    图 2  斑状正长花岗岩手标本(a)和显微照片(b)

    Figure 2. 

    图 3  哈拉苏斑状正长花岗岩样品典型锆石阴极发光(CL)图像(a)和U-Pb谐和图(b)(图a中,实心圆圈为测年位置,虚线圆圈为Hf同位素分析位置)

    Figure 3. 

    图 4  哈拉苏斑状正长花岗岩Si2O-(K2O+Na2O)(a)、Si2O-K2O(b)和A/CNK-A/NK图解(c)

    Figure 4. 

    图 5  哈拉苏斑状正长花岗岩稀土元素球粒陨石标准化分布型式图(a)与微量元素原始地幔标准化蛛网图(b)(球粒陨石和原始地幔标准化数值据Sun et al., 1989)

    Figure 5. 

    图 6  哈拉苏斑状正长花岗岩岩石类型判别图解(图a底图据Collins et al., 1982;b据Eby,1990;c、d据Whalen et al., 1987; e、f据Frost et al., 2001; g、h据Dall'Agnol et al., 2007)

    Figure 6. 

    图 7  哈拉苏斑状正长花岗岩t-εHf(t)图解(兴蒙造山带东段Hf同位素组成据Yang et al., 2006)

    Figure 7. 

    图 8  哈拉苏斑状正长花岗岩构造判别图解(图a、b底图据 Maniar et al., 1989; 图c底图据Pearce et al., 1984;图d底图据Batchelor et al., 1985)

    Figure 8. 

    表 1  哈拉苏斑状正长花岗岩锆石LA-ICP-MS U-Th-Pb同位素分析结果

    Table 1.  Zircon LA-ICP-MS U-Th-Pb dating results of the porphyritic syenogranite in Harasu area

    测点 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb U Th 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    B4.HLSA.1 3 86 67 0.78 0.0504 0.0023 0.2343 0.0105 0.0337 0.0003 215 104 214 10 214 2
    B4.HLSA.2 18 478 295 0.62 0.0506 0.0009 0.2363 0.0045 0.0339 0.0003 222 42 215 4 215 2
    B4.HLSA.3 7 167 250 1.49 0.0501 0.0039 0.2327 0.0186 0.0337 0.0006 199 182 212 17 214 3
    B4.HLSA.4 51 1393 907 0.65 0.0511 0.0006 0.2353 0.0033 0.0334 0.0003 245 29 215 3 212 2
    B4.HLSA.5 24 640 490 0.77 0.0508 0.0006 0.2349 0.0033 0.0336 0.0003 231 29 214 3 213 2
    B4.HLSA.6 6 148 120 0.81 0.0514 0.0017 0.2384 0.0083 0.0336 0.0004 261 77 217 8 213 2
    B4.HLSA.7 41 1146 684 0.60 0.0509 0.0006 0.2350 0.0032 0.0335 0.0003 235 27 214 3 212 2
    B4.HLSA.8 12 324 247 0.76 0.0511 0.0009 0.2350 0.0044 0.0334 0.0003 245 41 214 4 212 2
    B4.HLSA.9 41 1123 836 0.74 0.0510 0.0006 0.2370 0.0032 0.0337 0.0003 243 27 216 3 213 2
    B4.HLSA.10 71 1936 1373 0.71 0.0518 0.0006 0.2400 0.0033 0.0336 0.0004 275 26 218 3 213 2
    B4.HLSA.11 27 741 458 0.62 0.0509 0.0006 0.2351 0.0033 0.0335 0.0003 238 29 214 3 212 2
    B4.HLSA.12 11 329 121 0.37 0.0498 0.0018 0.2361 0.0088 0.0344 0.0004 186 86 215 8 218 2
    B4.HLSA.13 4 112 110 0.98 0.0510 0.0020 0.2376 0.0096 0.0338 0.0004 241 88 216 9 214 2
    B4.HLSA.14 3 80 88 1.10 0.0515 0.0034 0.2379 0.0169 0.0335 0.0004 262 150 217 15 213 3
    B4.HLSA.15 5 131 125 0.95 0.0493 0.0015 0.2259 0.0073 0.0332 0.0003 164 72 207 7 211 2
    B4.HLSA.16 17 461 358 0.78 0.0505 0.0007 0.2338 0.0036 0.0336 0.0004 217 33 213 3 213 2
    B4.HLSA.17 22 635 290 0.46 0.0524 0.0007 0.2394 0.0038 0.0331 0.0004 303 31 218 3 210 2
    B4.HLSA.18 20 564 296 0.52 0.0511 0.0007 0.2387 0.0037 0.0339 0.0003 247 33 217 3 215 2
    B4.HLSA.19 45 1258 735 0.58 0.0511 0.0006 0.2357 0.0035 0.0335 0.0004 244 27 215 3 212 2
    B4.HLSA.20 5 118 106 0.90 0.0509 0.0022 0.2380 0.0108 0.0339 0.0004 237 99 217 10 215 3
    B4.HLSA.21 3 83 73 0.88 0.0511 0.0039 0.2385 0.0187 0.0339 0.0004 243 175 217 17 215 3
    B4.HLSA.22 38 1112 484 0.44 0.0519 0.0007 0.2400 0.0037 0.0335 0.0004 280 29 218 3 213 2
    B4.HLSA.23 21 495 783 1.58 0.0504 0.0007 0.2338 0.0038 0.0336 0.0004 215 33 213 3 213 2
    B4.HLSA.24 11 274 360 1.31 0.0509 0.0011 0.2379 0.0053 0.0339 0.0004 238 49 217 5 215 2
    下载: 导出CSV

    表 2  哈拉苏斑状正长花岗岩锆石Hf同位素分析结果

    Table 2.  Zircon Hf dating results of the porphyritic syenogranite in Harasu area

    样品号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(t) TDM/Ma TDMc/Ma fLu/Hf
    HLSA1-1.xls 213.17 0.04514 0.001614 0.283016 0.000026 13.11 339 411 -0.95
    HLSA1-2.xls 213.17 0.06592 0.002088 0.283008 0.00002 12.76 355 433 -0.94
    HLSA1-3.xls 213.17 0.03371 0.001133 0.282984 0.000021 12.05 381 480 -0.97
    HLSA1-4.xls 213.17 0.06785 0.002123 0.283 0.000023 12.47 367 452 -0.94
    HLSA1-5.xls 213.17 0.0421 0.001332 0.282975 0.000019 11.69 395 501 -0.96
    HLSA1-7.xls 213.17 0.0539 0.001717 0.282903 0.000017 9.08 504 669 -0.95
    HLSA1-9.xls 213.17 0.07692 0.002348 0.282984 0.000022 11.87 393 490 -0.93
    HLSA1-12.xls 213.17 0.05691 0.001767 0.283079 0.000027 15.3 249 269 -0.95
    HLSA1-13.xls 213.17 0.03754 0.001272 0.282952 0.00002 10.88 428 554 -0.96
    HLSA1-14.xls 213.17 0.038 0.001194 0.282958 0.000021 11.09 418 539 -0.96
    HLSA1-16.xls 213.17 0.03927 0.001263 0.28291 0.000017 9.39 488 649 -0.96
    HLSA1-17.xls 213.17 0.05975 0.001868 0.282987 0.000017 12.05 384 480 -0.94
    HLSA1-21.xls 213.17 0.04168 0.001368 0.282931 0.000022 10.14 459 602 -0.96
    HLSA1-22.xls 213.17 0.08942 0.002779 0.28304 0.000025 13.78 315 368 -0.92
    HLSA1-24.xls 213.17 0.04112 0.0013 0.282902 0.000018 9.11 500 668 -0.96
    下载: 导出CSV

    表 3  哈拉苏斑状正长花岗岩主量、微量和稀土元素分析结果

    Table 3.  Major, trace and REE compositions of the porphyritic syenogranite in Harasu area

    元素 B4/1 B5/1 B5/2 B6/1 B6/2 B6/3 元素 B4/1 B5/1 B5/2 B6/1 B6/2 B6/3
    SiO2 72.6 73.9 72.7 73.4 72.9 74.4 Ta 1.06 0.82 1.01 0.86 0.97 1.11
    Al2O3 14.0 13.6 13.9 13.9 13.9 13.3 Zr 329 271 198 285 279 265
    Fe2O3 1.22 1.12 1.08 1.06 1.04 1.05 Hf 9.88 8.62 7.18 8.57 8.92 8.07
    FeO 0.3 0.18 0.28 0.33 0.23 0.19 Be 1.6 1.46 1.71 1.47 1.43 1.39
    TFe2O3 1.55 1.32 1.39 1.43 1.30 1.26 Ga 13.5 12.5 13.3 13.5 12.2 12.4
    TFeO 1.40 1.19 1.25 1.28 1.17 1.13 U 7.55 5.46 5.06 4.93 5.79 6.95
    CaO 0.54 0.75 0.79 0.9 0.78 0.95 Th 15.2 11.6 15.2 13.1 11.6 13.1
    MgO 0.34 0.15 0.19 0.23 0.14 0.12 La 43.4 32.6 47.9 40.1 37.5 42.1
    K2O 5.49 5.32 5.17 4.94 5.12 4.74 Ce 105 86 115.8 92.4 99.2 102.3
    Na2O 4.33 4.06 4.23 4.21 4.14 3.85 Pr 11.1 8.12 13.3 10.2 10.1 12.1
    TiO2 0.29 0.23 0.25 0.26 0.21 0.19 Nd 39.6 29 48.7 36.9 34.3 46.1
    P2O5 0.04 0.04 0.05 0.05 0.04 0.05 Sm 6.93 4.72 7.53 6.45 5.88 6.69
    MnO 0.10 0.08 0.09 0.09 0.08 0.07 Eu 0.43 0.32 0.48 0.4 0.37 0.41
    烧失量 0.62 0.57 0.61 0.65 0.57 0.62 Gd 5.64 4.08 6.13 5.42 4.87 5.23
    CO2 0.06 0.06 0.06 0.06 0.06 0.06 Tb 0.8 0.6 0.84 0.8 0.67 0.81
    A/NK 1.07 1.09 1.11 1.13 1.13 1.16 Dy 4.1 3.09 4.82 4.31 3.34 4.45
    A/CNK 1.01 1 1.01 1.02 1.05 1.03 Ho 0.8 0.58 0.87 0.8 0.63 0.83
    TFeO/MgO 4.11 7.92 6.59 5.58 8.33 9.46 Er 2.16 1.66 2.33 2.2 1.95 2.21
    K2O/Na2O 1.27 1.31 1.22 1.17 1.24 1.23 Tm 0.31 0.24 0.34 0.32 0.28 0.33
    Cr 3.61 2.81 3.83 4.81 3.51 3.12 Yb 2.02 1.62 2.31 2.12 1.93 2.24
    Ni 3.35 2.18 3.15 3.31 2.24 2.47 Lu 0.29 0.25 0.39 0.34 0.28 0.36
    Co 1.02 0.45 0.73 1.01 0.39 0.81 Y 17.5 13.6 21.4 19 19.7 20.1
    Li 0.75 0.52 1.45 1.72 0.87 1.29 ΣREE 223 173 252 203 201 226
    Rb 108 104 98 82.2 172 239 LREE 206 161 234 186 187 210
    Cs 2.74 2.1 3.03 3.2 2.36 2.25 HREE 16.1 12.1 18.0 16.3 14.0 16.5
    W 0.85 0.52 0.64 0.7 0.51 0.62 (La/Yb)N 15.4 14.4 14.9 13.6 13.9 13.5
    Mo 1.75 1.08 1.17 1.35 1.01 0.93 δEu 0.21 0.22 0.22 0.21 0.21 0.21
    Sr 98.8 106 78.6 98.7 87.3 73.1 R1 2002 2227 2134 2227 2194 2486
    Ba 217 217 223 211 305 249 R2 352 356 371 383 368 372
    V 10.3 9.1 10.6 11.7 9.2 8.9 Mg# 30.2 18.4 21.3 24.2 17.6 15.9
    Nb 16.3 12.8 16.3 14.4 21.8 17.4 σ43 3.25 2.84 2.96 2.75 2.85 2.34
    注:主量元素含量单位为%,微量元素含量单位为10-6R1=4Si-11(Na+K)-2(Fe+Ti), R2=6Ca+2Mg+Al, 式中元素指千阳离子
    下载: 导出CSV
  • [1]

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series usingmulticationic parameters[J]. Chemical Geology, 1985, 48(1): 43-55.

    [2]

    Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7

    [3]

    Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1): 1-29.

    [4]

    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    [5]

    Dall'Agnol R, de Oliveira D C. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites[J]. Lithos, 2007, 93(3): 215-233.

    [6]

    Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1/2): 115-134.

    [7]

    Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033

    [8]

    Frost C D, Frost B R. Reduced rapakivi-type granites, the tholeiite connection[J]. Geology(Boulder), 1997, 25(7): 647-650.

    [9]

    Frost C D, Frost B R. On Ferroan(A-type)granitoids: their compositional variability and modes of origin[J]. Journal of Petrology, 2011, 52(1): 39-53. doi: 10.1093/petrology/egq070

    [10]

    Hildreth W, Halliday A N, Christiansen R L. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field[J]. Journal of Petrology, 1991, 32(1): 63-138. doi: 10.1093/petrology/32.1.63

    [11]

    Kemp A I S, Wormald R J, Whitehouse M J, et al. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia[J]. Geology(Boulder), 2005, 33(10): 797-800.

    [12]

    Landenberger B, Collins W J. Derivation of A-type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia[J]. Journal of Petrology, 1996, 37(1): 145-170. doi: 10.1093/petrology/37.1.145

    [13]

    Liu Y J, Li W M, Feng Z Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian orogenic belt[J]. Gondwana Research, 2017, 43: 123-148. doi: 10.1016/j.gr.2016.03.013

    [14]

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    [15]

    Ludwig K R. User's Manual for Isoplot/EX Version 3.00: A geochoronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003: 1-70.

    [16]

    Li G Y, Zhou J B, Li L. A new tectonic framework for the composite orogenic metallogenic systems in the east of North China: The role of the Heilongjiang Ocean in the Late Paleozoic to Mesozoic[J]. Ore Geology Reviews, 2021, 136: 104293. doi: 10.1016/j.oregeorev.2021.104293

    [17]

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [18]

    Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling orogenic belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5/6): 348-370

    [19]

    Mushkin A, Navon O, Halicz L, et al. The petrogenesis of A-type magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 2003, 44(5): 815-832. doi: 10.1093/petrology/44.5.815

    [20]

    Patiño Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology(Boulder), 1997, 25(8): 743-746.

    [21]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    [22]

    Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1): 123-138.

    [23]

    Sun W D, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [24]

    Tong Y, Jahn B M, Wang T, et al. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance[J]. Journal of Asian Earth Sciences, 2015, 97: 320-336. doi: 10.1016/j.jseaes.2014.10.011

    [25]

    Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. doi: 10.1016/0024-4937(92)90029-X

    [26]

    Whalen J B, Currie K L, Chappel B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    [27]

    Whitaker M L, Whitaker M L, Nekvasil H, et al. Can crystallization of olivine tholeiite give rise to potassic rhyolites?—an experimental investigation[J]. Bulletin of Volcanology, 2008, 70(3): 417-434. doi: 10.1007/s00445-007-0146-1

    [28]

    Wu F, Jahn B, Wilde S, et al. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1): 89-113.

    [29]

    Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia(China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364. doi: 10.1016/j.gr.2012.05.015

    [30]

    Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1/2): 89-106.

    [31]

    Zhang X H, Zhang H F, Tang Y J, et al. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology, 2008, 249(3/4): 262-281.

    [32]

    Zhang X H, Yuan L L, Xue F H, et al. Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China: Magmatic monitor of Mesozoic decratonization and a craton-orogen boundary[J]. Lithos, 2012, 144/145: 12-23. doi: 10.1016/j.lithos.2012.03.022

    [33]

    Zhang X H, Yuan L L, Xue F H, et al. Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 2015, 28(1): 311-327. doi: 10.1016/j.gr.2014.02.011

    [34]

    陈彦, 张志诚, 李可, 等. 内蒙古西乌旗地区二叠纪双峰式火山岩的年代学、地球化学特征和地质意义[J]. 北京大学学报(自然科学版), 2014, 50(5): 843-858.

    [35]

    崔玉荣, 涂家润, 李国占, 等. LA-ICP-MS榍石U-Pb定年方法[J]. 华北地质, 2022, 45(4): 53-59.

    [36]

    耿建珍, 李怀坤, 张健, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004

    [37]

    洪大卫, 王式, 谢锡林, 等. 兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘, 2000, 77(2): 441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012

    [38]

    洪大卫, 王式洸, 谢锡林, 等. 从中亚正ε(Nd)值花岗岩看超大陆演化和大陆地壳生长的关系[J]. 地质学报, 2003, (2): 203-209. doi: 10.3321/j.issn:0001-5717.2003.02.008

    [39]

    华北, 高雪, 胡兆国, 等. 兴蒙造山带西段乌珠新乌苏花岗岩岩石成因和构造背景: 地球化学、U-Pb年代学和Sr-Nd-Hf同位素约束[J]. 岩石学报, 2020, 36(5): 1426-1444.

    [40]

    黄波, 付冬, 李树才, 等. 内蒙古贺根山蛇绿岩形成时代及构造启示[J]. 岩石学报, 2016, 32(1): 158-176.

    [41]

    贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017

    [42]

    雷豪, 张贵宾, 徐备. 兴蒙造山带晚古生代伸展减薄过程: 来自内蒙林西地区岩体的地球化学证据[J]. 岩石学报, 2022, 47(19): 3354-3370.

    [43]

    李冬雪, 郑常青, 梁琛岳, 等. 大兴安岭中段扎兰屯南部花岗质糜棱岩岩石成因及地质意义[J]. 地球科学, 2022, 47(9): 3354-3370.

    [44]

    李世超, 张凌宇, 李鹏川, 等. 大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义[J]. 地球科学, 2017, 42(12): 2117-2128.

    [45]

    刘昌实, 陈小明, 陈培荣, 等. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 2003, 9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011

    [46]

    刘文斌, 杨延伟, 刘翔, 等. 内蒙古扎兰屯地区印支期二长花岗岩构造演化: 来自地球化学特征和锆石U-Pb年龄的制约[J]. 地质通报, 2021, 40(5): 698-706. http://dzhtb.cgs.cn/cn/article/id/20210505

    [47]

    潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23.

    [48]

    钱程, 陆露, 秦涛, 等. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用——对额尔古纳-兴安地块和松嫩地块拼合时限的制约[J]. 地质学报, 2018, 92(11): 2190-2214. doi: 10.3969/j.issn.0001-5717.2018.11.002

    [49]

    施光海, 苗来成, 张福勤, 等. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J]. 科学通报, 2004, 49(4): 384-389. doi: 10.3321/j.issn:0023-074X.2004.04.015

    [50]

    石文杰, 赵旭, 魏俊浩, 等. 兴蒙造山带南段白音图嘎地区A型花岗岩地球化学特征及其对古亚洲洋演化的制约[J]. 大地构造与成矿学, 2020, 44(1): 141-156.

    [51]

    王梁, 王根厚, 雷时斌, 等. 内蒙古乌拉山大桦背岩体成因: 地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约[J]. 岩石学报, 2015, 31(7): 1977-1994.

    [52]

    王树庆, 胡晓佳, 赵华雷, 等. 内蒙古京格斯台晚石炭世碱性花岗岩年代学及地球化学特征——岩石成因及对构造演化的约束[J]. 地质学报, 2017, 91(7): 1467-1482.

    [53]

    王兴安, 徐仲元, 刘正宏, 等. 大兴安岭中部柴河地区钾长花岗岩的成因及构造背景: 岩石地球化学、锆石U-Pb同位素年代学的制约[J]. 岩石学报, 2012, 28(8): 2647-2655.

    [54]

    吴锁平, 王梅英, 戚开静. A型花岗岩研究现状及其述评[J]. 岩石矿物学杂志, 2007, 26(1): 57-66.

    [55]

    肖志斌, 张然, 叶丽娟, 等. 沥青铀矿(GBW04420)的微区原位U-Pb定年分析[J]. 地质调查与研究, 2020, 43(1): 1-4.

    [56]

    许保良, 阎国翰, 张臣, 等. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 1998, 5(3): 113-124.

    [57]

    徐备, 王志伟, 张立杨, 等. 兴蒙陆内造山带[J]. 岩石学报, 2018, 34(10): 2819-2844.

    [58]

    薛怀民, 郭利军, 侯增谦, 等. 中亚-蒙古造山带东段的锡林郭勒杂岩: 早华力西期造山作用的产物而非古老陆块?——锆石SHRIMP U-Pb年代学证据[J]. 岩石学报, 2009, 25(8): 2001-2010.

    [59]

    张超, 吴新伟, 刘永江, 等. 大兴安岭中段早二叠世A型花岗岩成因及对扎兰屯地区构造演化的制约[J]. 岩石学报, 2020, 36(4): 1091-1106.

    [60]

    张慧婷, 张长青, 张乔. 内蒙古中东部蘑菇气地区玛尼吐组火山岩构造背景[J]. 西安科技大学学报, 2019, 39(5): 802-810

    [61]

    张克信, 潘桂棠, 何卫红, 等. 中国构造-地层大区划分新方案[J]. 地球科学(中国地质大学学报), 2015, 40(2): 206-233.

    [62]

    张旗, 李承东. 花岗岩[M]. 北京: 海洋出版社, 2012a.

    [63]

    张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012b, 31(4): 621-626.

    [64]

    张晓晖, 翟明国. 华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应[J]. 岩石学报, 2010, 26(5): 1329-1341.

    [65]

    张艳飞, 周永恒, 董洋, 等. 内蒙古拜仁达坝石炭纪岩体年代学、地球化学、Sr-Nd同位素特征及其对中亚造山带的制约[J]. 地球科学, 2022, 47(4): 1234-1252.

  • 加载中

(8)

(3)

计量
  • 文章访问数:  610
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2021-12-29
修回日期:  2022-04-20
刊出日期:  2023-12-15

目录