国际水力压裂与地震关系研究进展及地质工作建议

王尧, 郭迟辉, 吕承训, 孙月, 刘江涛. 2023. 国际水力压裂与地震关系研究进展及地质工作建议. 地质通报, 42(2-3): 193-200. doi: 10.12097/j.issn.1671-2552.2023.2-3.001
引用本文: 王尧, 郭迟辉, 吕承训, 孙月, 刘江涛. 2023. 国际水力压裂与地震关系研究进展及地质工作建议. 地质通报, 42(2-3): 193-200. doi: 10.12097/j.issn.1671-2552.2023.2-3.001
WANG Yao, GUO Chihui, LYU Chengxun, SUN Yue, LIU Jiangtao. 2023. Research progress on the relationship between international hydraulic fracturing and earthquakes and suggestions for geological work. Geological Bulletin of China, 42(2-3): 193-200. doi: 10.12097/j.issn.1671-2552.2023.2-3.001
Citation: WANG Yao, GUO Chihui, LYU Chengxun, SUN Yue, LIU Jiangtao. 2023. Research progress on the relationship between international hydraulic fracturing and earthquakes and suggestions for geological work. Geological Bulletin of China, 42(2-3): 193-200. doi: 10.12097/j.issn.1671-2552.2023.2-3.001

国际水力压裂与地震关系研究进展及地质工作建议

  • 基金项目:
    中国地质调查局项目《生态保护和自然资源利用综合评价》(编号:DD20211413)
详细信息
    作者简介: 王尧(1979-),女,博士,研究员,从事地质战略研究。E-mail:wangyaopku@pku.edu.cn
  • 中图分类号: TE357.1;P315.1

Research progress on the relationship between international hydraulic fracturing and earthquakes and suggestions for geological work

  • 水力压裂技术是开采致密气、煤层气、页岩油气、干热岩等资源的一项关键技术,随着中国页岩气主产区四川盆地及周缘规模化工业开采活动的不断推进,水力压裂等工作量激增,关于水力压裂是否诱发地震的问题受到各界高度关注。综述了国际水力压裂诱发地震风险的研究进展,梳理了国际上采取的有效风险防控措施,研究表明,水力压裂通过高压注入流体使岩石产生裂缝,不可避免地会导致微震活动发生;水力压裂诱发地震活动机理研究取得进展,为风险防控提供基础;水力压裂对三级以上地震活动影响有限,自然地震较少的地区人为地震活动记录也较少;水力压裂诱发微地震可能有助于释放累积的地应力或能量,降低大震风险;目前国际上水力压裂对地震的影响尚未量化。国际上已实施了应对水力压裂诱发地震风险的工程措施、法律制度、管理措施、技术研发等系列有效防控措施。对中国页岩油气、干热岩等资源开发提出建议:加强断裂构造调查评价,将水力压裂控制在距断层一定距离以内;加强微震监测,开展水力压裂地震危害评估;加强关键科学问题研究;加大公众科普宣传力度。

  • 加载中
  • 图 1  水力压裂原理与地震关系示意图(据Li et al., 2020)

    Figure 1. 

  • [1]

    Bao X, Eaton D W. Fault activation by hydraulic fracturing in western Canada[J]. Science, 2016, 354(6318): 1406-1409. doi: 10.1126/science.aag2583

    [2]

    Caine J S, Evans J P, Forster C B. Fault Zone Architecture and Permeability Structure[J]. Geological Society of America, 1996, 24(11): 1025-1028. https://pubs.geoscienceworld.org/gsa/geology/article-abstract/24/11/1025/187969/Fault-zone-architecture-and-permeability-structure

    [3]

    Cipolla C L, Wright C A. Diagnostic techniques to understand hydraulic fracturing: what? why? and how? [J]. SPE Production & Facilities, 2002, 17(1): 23-35.

    [4]

    Dittrick P. General interest: EIA-ARI issues update of world assessment of shale oil, shale gas[J]. Oil and Gas Journal, 2013, 111(7): 46-48.

    [5]

    Ellsworth W L. Injection-induced earthquakes[J]. Science, 2013, 341(6142): 142-149.

    [6]

    Ellsworth W L, Llenos A L, Mcgarr A F, et al. Increasing seismicity in the u. s. midcontinent: implications for earthquake hazard[J]. The Leading Edge, 2015, 34(6): 618-626. doi: 10.1190/tle34060618.1

    [7]

    Frohlich C, Hayward C, Stump B, et al. The Dallas-Fort Worth Earthquake Sequence: October 2008 through May 2009[J]. Bulletin of the Seismological Society of America, 2011, 101(1): 327-340. doi: 10.1785/0120100131

    [8]

    Gail M A, David W E, Hadi G, et al. 西加拿大沉积盆地中的水力压裂和地震活动[J]. 国际地震动态, 2018, (10): 2-19. doi: 10.3969/j.issn.0253-4975.2018.10.002

    [9]

    Genter A, Evans K, Cuenot N, F et al. Contribution of the exploration of deep crystalline fractured reservoir of soultz to the knowledge of enhanced geothermal systems (egs)[J]. Comptes Rendus Geoscience, 2010, 342(7/8): 502-516. https://www.sciencedirect.com/science/article/pii/S1631071310000179

    [10]

    Hubbert M, Willis D. Mechanics of hydraulic fracturing [M]. AIME Pet. Trans. 1957, 210: 153-168.

    [11]

    Bai J M, Cheng H, Zhu S Q, et al. Discussion on feasibility of enhancing production of low-production cbm wells by using powerful pulse techniques[J]. China Coalbed Methane, 2010, 92(3): 278-279.

    [12]

    Li L, Tan J, Wood D A, et al. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs[J]. Fuel, 2019, 242: 195-210. doi: 10.1016/j.fuel.2019.01.026

    [13]

    Wilson M P, Worrall F, Davies R J, et al. Fracking: How far from faults?[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2018, 4(2): 193-1999. doi: 10.1007/s40948-018-0081-y

    [14]

    Mcgarr A. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(2): 1008-1019. doi: 10.1002/2013JB010597

    [15]

    National Research Council. Division on Earth and Life Studies, Board on Earth Sciences and Resources, Committee on Seismology and Geodynamics, Committee on Geological and Geotechnical Engineering, Committee on Earth Resources, Committee on Induced Seismicity Potential in Energy Technologies. Induced Seismicity Potential in Energy Technologies[M]. National Academies Press, 2013.

    [16]

    Rubinstein J L, Mahani A B. Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity[J]. Seismological Research Letters, 2015, 86(4): 1060-1067. doi: 10.1785/0220150067

    [17]

    Schimamoto T, Togo T, Lim H, et al. Search for the fault that caused the 2017 Mw5.4 Korea Pohang earthquake in the geothermal borehole cuttings[C]//日本地質学会学術大会講演要旨第126年学術大会(2019山口). 一般社団法人日本地質学会, 2019: 210.

    [18]

    Schultz R, Atkinson G, Eaton D W, et al. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play[J]. Science, 2018, 359(6373): 304-308. doi: 10.1126/science.aao0159

    [19]

    Skoumal R J, Brudzinski M R, et al. Earthquakes induced by hydraulic fracturing in poland township, ohio. Bulletin of the Seismological Society of America, 2015, 105(1): 189-197. doi: 10.1785/0120140168

    [20]

    Parsons T, Kirby E, 张效亮. 2008年汶川地震造成的应力变化和四川盆地地震危险性增加[J]. 世界地震译丛, 2009, (1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYC200901004.htm

    [21]

    Tester, Jefferson W, et al. The future of geothermal energy[R]. Massachusetts Institute of Technology, 2006.358.

    [22]

    USGS. What work is the USGS doing to better understand the occurrence of injection-induced earthquakes?https://www.usgs.gov/faqs/what-work-usgs-doing-better-understand-occurrence-injection-induced-earthquakes?qt-news_science_products=0#qt-news_science_products

    [23]

    Walsh F R, Zoback M D. Oklahoma"s recent earthquakes and saltwater disposal[J]. Science Advances, 2015, 1(5): e1500195.

    [24]

    Warpinski N R, Du J, Zimmer U. Measurements of hydraulic-fracture-induced seismicity in gas shales[J]. Spe Production & Operations, 2012, 27(3): 240-252.

    [25]

    Weingarten M, Ge S, Godt J W, et al. High-rate injection is associated with the increase in u. s. mid-continent seismicity[J]. Science, 2015, 348(6241): 1336-1340. doi: 10.1126/science.aab1345

    [26]

    Lei X L, Wang Z W, Su J R. 页岩气开采水力压裂诱发四川盆地南部2018年12月ML5.7地震和2019年1月ML5.3地震[J]. 世界地震译丛, 2020, 51(2): 144-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYC202002003.htm

    [27]

    蔡峰, 刘泽功, 张朝举, 等. 高瓦斯低透气性煤层深孔预裂爆破增透数值模拟[J]. 煤炭学报, 2007, 32(5): 499-503. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200705011.htm

    [28]

    陈雪莲. 能源与节能钻井作业中网电钻井技术的优势及运用[J]. 能源与节能, 2015, 115(4): 108-109.

    [29]

    陈英方, 陈长林, 崔秋文. 美国自然灾害的社会学研究[J]. 防灾博览, 2006, (4): 16-17. https://www.cnki.com.cn/Article/CJFDTOTAL-FZBL200604009.htm

    [30]

    郭剑, 陈继良, 曹文炅, 等. 增强型地热系统研究综述[J]. 电力建设, 2014, 35(4): 10-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS201404005.htm

    [31]

    韩渭宾, 蒋国芳. 川滇地区较长时间尺度的地震活动盛衰交替性[J]. 地震, 2005, 25(1): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200501007.htm

    [32]

    何登发, 鲁人齐, 黄涵宇, 等. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发, 2019, (5): 993-1006. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201905021.htm

    [33]

    刘尧文, 廖如刚, 张远, 等. 涪陵页岩气田井地联合微地震监测气藏实例及认识[J]. 天然气工业, 2016, 36(10): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201610010.htm

    [34]

    马子涵, 邢会林, 靳国栋, 等. 基于微地震数据的增强型地热储层参数及采热的数值模拟研究[J]. 水文地质工程地质, 2022, 49(6): 190-199. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202206020.htm

    [35]

    邱爱慈, 张永民, 蒯斌, 等. 高功率脉冲技术在非常规天然气开发中应用的设想[C]//中国工程院/国家能源局能源论坛. 2012: 22-24.

    [36]

    天工. 中国最大页岩气田2018年产气量突破60×108 m3[J]. 天然气工业, 2019, 39(1): 80. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201706007.htm

    [37]

    王大锐. 页岩压裂会引发地震吗?——访中国地质大学(北京)何登发教授[J]. 石油知识, 2019, (5): 6-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZS201905003.htm

    [38]

    张东晓, 杨婷云. 美国页岩气水力压裂开发对环境的影响[J]. 石油勘探与开发, 2015, 42(6): 801-807. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506015.htm

    [39]

    张晓林, 张峰, 李向阳, 等. 水力压裂对速度场及微地震定位的影响[J]. 地球物理学报, 2013, 56(10): 3552-3560. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201310030.htm

  • 加载中

(1)

计量
  • 文章访问数:  2199
  • PDF下载数:  166
  • 施引文献:  0
出版历程
收稿日期:  2021-01-09
修回日期:  2021-03-09
刊出日期:  2023-03-15

目录