Uplift of Paleozoic magmatic core complex in the Longshoushan area, Gansu: evidence from geochronology and geochemistry of rock veins in the Jinchuan deposit area
-
摘要:
新元古代形成的金川铜镍硫化物矿床位于华北板块西南缘龙首山中部,由于古生代造山过程中的构造挤压作用及变质热液叠加,矿床中铜铂得到再次富集。矿区及周边出露大量古生代基性—中酸性脉岩与岩基,暗示龙首山地区古生代发生了岩浆核杂岩隆起作用。综合研究了矿区切穿赋矿岩体的辉绿岩脉、煌斑岩脉和花岗斑岩脉,通过锆石U-Pb定年,获得侵入金川铜镍矿床的花岗斑岩锆石U-Pb年龄为367.1±2.0 Ma;煌斑岩锆石U-Pb年龄为400.6~425.3 Ma;前期工作获得辉绿岩中锆石的U-Pb年龄为423.5±1.4 Ma。初步认定矿区各类脉岩的形成时代为古生代。岩石地球化学及同位素地球化学分析结果显示,辉绿岩样品的εNd(t)值为-4.59~-1.58,(87Sr/86Sr)i值为0.7056~0.7077;煌斑岩样品的εNd(t)值为-2.97~-2.03,(87Sr/86Sr)i变化范围为0.7083~0.7085;证明基性脉岩的源区为富集型岩石圈地幔;获得花岗斑岩锆石的εHf(t)值介于5.11~12.84之间,指示其为新生地壳部分熔融的产物。结合区域古生代岩浆活动背景,提出了龙首山地区构造-岩浆演化模型。
Abstract:The Neoproterozoic Jinchuan Cu-Ni sulfide deposit is located in the central Longshoushan, southwestern margin of the North China Craton.Due to the tectonic compression and metamorphic hydrothermal superposition in the process of the Paleozoic orogeny, Cu-Pt-rich ores were enriched again.A large number of mafic-felsic rock veins and batholiths crop out in the Jinchuan deposit and its vicinity, which indicates existence of uplift of Paleozoic magmatic core complex in the Longshoushan area.This comprehensive study focuses on dolerite, lamprophyre, and granite porphyry veins crosscutting ore-bearing intrusions of the Jinchuan deposit area.Zircon U-Pb dating indicates that granite porphyry and lamprophyre formed at 367.1±2.0 Ma and 400.6~425.3 Ma, whereas the dolerite formed at 423.5±1.4 Ma based on previous work, preliminarily suggesting the Paleozoic formation ages for various types of rock veins in the deposit area.Petrochemical and isotope geochemical results show the dolerite and lamprophyre have εNd(t)values ranging from -4.59 to -1.58 and -2.97 to -2.03, with corresponding (87Sr/86Sr)i values of 0.7056 to 0.7077 and 0.7083 to 0.7085, respectively, indicating that the magma sources of these mafic rock veins were derived from an enriched lithospheric mantle.The granite porphyry has zircon εHf(t)values of 5.11 to 12.84, suggesting it was sourced from partial melting of the juvenile crust.Combined with previous studies on regional Paleozoic magmatic activities, the authors put forward an integrated tectonic-magmatic evolution model.
-
Key words:
- rock veins /
- zircon U-Pb dating /
- petrogenesis /
- tectonic setting /
- Jinchuan Cu-Ni sulfide deposit /
- Gansu
-
-
图 1 金川地区大地构造背景示意图(焦建刚等, 2012)
Figure 1.
图 2 金川铜镍硫化物矿床地质图(a)、矿区纵投影图(b)(Jiao et al., 2019)、Ⅱ矿区东部48~50勘探线1100 m标高平面图(c)和Ⅱ矿区东部33~40勘探线1250 m标高平面图(d)
Figure 2.
图 5 金川辉绿岩与煌斑岩TAS图解(Rock, 1987; Le et al., 1989)(a)和花岗斑岩TAS图解(Middlemost, 1994)(b)
Figure 5.
图 6 球粒陨石标准化稀土元素配分模式和原始地幔标准化微量元素蛛网图(辉绿岩数据据Duan et al., 2015;花岗斑岩数据据曾认宇等, 2022;MORB、OIB数据据Sun et al., 1989)
Figure 6.
图 7 金川基性脉岩(87Sr/86Sr)i-εNd(t)图解(a,Zindler et al., 1986)和金川花岗斑岩锆石年龄-εHf(t)图解(b,花岗斑岩数据据曾认宇等, 2022)
Figure 7.
图 9 金川基性脉岩La/Nb-La/Ba(a)和Nb/Y-Rb/Y图解(b)(Saunders et al., 1991; Woodhead et al., 2001)
Figure 9.
表 1 花岗斑岩和煌斑岩锆石U-Th-Pb定年结果
Table 1. Zircon U-Th-Pb dating results of granite porphyry and lamprophyre
分析点 含量/10-6 Th/U 同位素比值 同位素年龄/Ma Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 花岗斑岩 GB01 156.7 223.2 0.70 0.0639 0.0015 0.6246 0.0133 0.0707 0.0010 740 49 493 8 440 6 GB02 251.1 230.3 1.09 0.0525 0.0011 0.4258 0.0081 0.0586 0.0007 309 47 360 6 367 4 GB03 116.9 105.7 1.11 0.0503 0.0023 0.4057 0.0169 0.0583 0.0012 210 101 346 12 365 7 GB04 394.8 311.4 1.27 0.0536 0.0013 0.4309 0.0092 0.0582 0.0008 355 52 364 7 364 5 GB05 214.9 205.4 1.05 0.0527 0.0013 0.4280 0.0095 0.0587 0.0008 317 54 362 7 368 5 GB06 207.8 167.6 1.24 0.0526 0.0017 0.4280 0.0125 0.0589 0.0009 311 71 362 9 369 6 GB07 527.4 341.7 1.54 0.0532 0.0013 0.4267 0.0096 0.0580 0.0008 339 55 361 7 364 5 GB08 128.8 119.8 1.08 0.0522 0.0018 0.4244 0.0132 0.0589 0.0010 292 76 359 9 369 6 GB09 308.4 415.8 0.74 0.0543 0.0010 0.5014 0.0080 0.0669 0.0007 383 39 413 5 417 4 GB10 165.9 120.8 1.37 0.0533 0.0019 0.4303 0.0138 0.0584 0.0010 341 77 363 10 366 6 GB11 347.9 282.5 1.23 0.0529 0.0011 0.4284 0.0081 0.0586 0.0007 324 47 362 6 367 4 GB12 137 105 1.31 0.0504 0.0018 0.4114 0.0134 0.0590 0.0010 215 80 350 10 370 6 GB13 69.6 88.6 0.79 0.1056 0.0016 4.7264 0.0673 0.3240 0.0040 1725 28 1772 12 1809 19 GB14 99.7 113.9 0.88 0.0504 0.0015 0.4082 0.0108 0.0587 0.0008 211 65 348 8 368 5 GB15 155 253.4 0.61 0.0505 0.0012 0.4085 0.0087 0.0586 0.0007 217 53 348 6 367 4 GB16 206.5 207 1.00 0.0534 0.0012 0.4250 0.0085 0.0577 0.0007 345 49 360 6 361 4 GB17 111.3 92.8 1.20 0.0540 0.0018 0.4373 0.0133 0.0586 0.0010 372 73 368 9 367 6 GB18 160 201.3 0.79 0.0510 0.0012 0.4147 0.0089 0.0589 0.0008 241 53 352 6 369 5 GB19 333.5 277.3 1.20 0.0560 0.0010 0.5179 0.0085 0.0670 0.0007 452 40 424 6 418 5 GB20 111.2 414.3 0.27 0.1018 0.0012 2.3202 0.0231 0.1652 0.0015 1657 21 1219 7 985 9 GB21 263.2 255.1 1.03 0.0525 0.0011 0.4278 0.0081 0.0590 0.0007 308 47 362 6 370 4 GB22 242.6 143.5 1.69 0.0520 0.0014 0.4204 0.0100 0.0586 0.0008 285 59 356 7 367 5 GB23 592.8 384.9 1.54 0.0517 0.0009 0.4169 0.0064 0.0584 0.0006 271 39 354 5 366 4 GB24 138.3 120.4 1.15 0.0535 0.0016 0.4351 0.0117 0.0589 0.0009 350 66 367 8 369 5 GB25 252.1 291.3 0.87 0.0591 0.0012 0.4756 0.0083 0.0583 0.0007 572 42 395 6 365 4 GB26 298.3 357.8 0.83 0.0533 0.0011 0.4370 0.0079 0.0594 0.0007 342 45 368 6 372 4 GB27 120.4 127.4 0.95 0.0533 0.0016 0.4257 0.0114 0.0580 0.0009 339 65 360 8 363 5 GB28 193.4 193.1 1.00 0.0518 0.0013 0.4211 0.0092 0.0589 0.0008 277 54 357 7 369 5 煌斑岩 JC29-1 61.0 60.1 1.01 0.1409 0.0026 8.4500 0.1500 0.4254 0.0046 2258 19 2282 17 2285 21 JC29-2 128 96.6 1.33 0.1111 0.0010 5.0420 0.0670 0.3236 0.0042 1810 11 1826 11 1807 21 JC29-3 106 123 0.87 0.1100 0.0008 4.4520 0.0410 0.3054 0.0030 1798 9 1722 8 1718 15 JC29-4 86.7 67.5 1.28 0.1104 0.0007 5.1300 0.1200 0.3305 0.0081 1806 6 1842 20 1839 39 JC29-5 500 497 1.01 0.1337 0.0008 7.3460 0.0700 0.3971 0.0028 2146 6 2154 9 2156 13 JC29-7 490 561 0.87 0.1301 0.0014 7.2300 0.2400 0.3930 0.0100 2099 17 2135 29 2143 50 JC29-8 259 285 0.91 0.1411 0.0013 8.0600 0.1900 0.4132 0.0089 2238 15 2242 19 2248 29 JC29-9 136 144 0.94 0.1457 0.0012 8.6870 0.0770 0.4311 0.0037 2298 9 2305 8 2310 17 JC29-10 98.0 92.3 1.06 0.1130 0.0006 5.1110 0.0830 0.3297 0.0067 1847 6 1836 14 1828 29 JC29-11 321 316 1.02 0.1133 0.0005 4.5970 0.0340 0.2984 0.0018 1852 5 1749 6 1683 9 JC29-12 90.0 95.7 0.94 0.1413 0.0015 8.0200 0.1500 0.4137 0.0056 2248 12 2232 18 2231 25 JC29-15 102 107 0.95 0.1118 0.0016 4.7000 0.0810 0.3159 0.0041 1829 17 1768 15 1769 20 JC29-16 107 102 1.05 0.1408 0.0017 8.0170 0.0940 0.4129 0.0047 2232 15 2234 10 2228 21 JC29-17 181 199 0.91 0.1116 0.0008 4.8570 0.0380 0.3203 0.0022 1825 7 1795 7 1791 11 JC29-19 51.8 64.8 0.80 0.1457 0.0020 8.1500 0.1700 0.4163 0.0063 2300 7 2247 19 2243 29 JC29-20 37.0 44.4 0.83 0.1415 0.0023 7.9700 0.1900 0.4100 0.0045 2245 15 2224 22 2214 21 JC29-21 143 252 0.57 0.1521 0.0019 9.1700 0.1900 0.4400 0.0057 2366 18 2356 19 2350 26 JC29-22 104 120 0.87 0.1435 0.0019 8.8000 0.1200 0.4390 0.0037 2271 12 2317 12 2346 16 JC29-23 119 110 1.09 0.1457 0.0024 8.9400 0.2100 0.4366 0.0091 2300 13 2330 21 2334 41 JC29-24 77.9 11.9 6.55 0.0563 0.0018 0.5200 0.0240 0.0661 0.0021 459 37 425 16 413 13 JC29-25 161 139 1.16 0.1396 0.0013 7.4700 0.1800 0.3822 0.0078 2223 10 2170 22 2085 37 JC29-26 86.3 86.1 1.00 0.1343 0.0016 7.3600 0.2700 0.3960 0.0140 2154 14 2147 33 2145 65 JC29-27 53.2 56.5 0.94 0.1449 0.0031 9.0100 0.1600 0.4391 0.0047 2291 22 2338 16 2346 21 JC29-30 160 32.3 4.95 0.0558 0.0023 0.5980 0.0250 0.0769 0.0013 435 57 474 16 477 8 JC29-32 302 394 0.77 0.1449 0.0012 7.8680 0.0910 0.4089 0.0031 2275 9 2216 10 2210 14 JC29-33 67.0 76.8 0.87 0.1403 0.0022 8.4700 0.2000 0.4460 0.0100 2226 19 2284 21 2378 45 JC29-34 71.3 68.3 1.04 0.1174 0.0009 4.8260 0.0760 0.2984 0.0034 1917 10 1788 13 1683 17 JC29-35 63.8 73.1 0.87 0.1438 0.0021 7.2700 0.2100 0.3715 0.0076 2277 14 2150 26 2035 36 JC29-36 62.5 71.8 0.87 0.1427 0.0017 6.6900 0.1600 0.3481 0.0067 2258 11 2075 20 1925 32 JC29-37 98.5 88.7 1.11 0.1115 0.0010 4.9290 0.0610 0.3222 0.0028 1828 7 1806 10 1800 14 JC29-38 178 221 0.80 0.1173 0.0005 4.6600 0.1200 0.2894 0.0061 1916 5 1760 23 1637 31 JC29-39 247 248 1.00 0.1421 0.0017 8.8500 0.3700 0.4300 0.0150 2259 15 2322 36 2315 71 JC29-41 50.1 52.1 0.96 0.1289 0.0016 8.5000 0.2000 0.4778 0.0093 2098 14 2282 22 2515 41 JC29-42 73.1 78.9 0.93 0.1330 0.0023 7.2530 0.0890 0.3959 0.0045 2137 25 2144 11 2150 21 JC29-43 33.8 38.9 0.87 0.1366 0.0023 6.4700 0.1500 0.3525 0.0078 2176 14 2044 19 1945 37 JC29-44 62.1 70.9 0.88 0.1467 0.0020 7.4800 0.1700 0.3779 0.0062 2299 19 2167 21 2065 29 JC29-45 35.4 42.5 0.83 0.1343 0.0026 8.0300 0.3500 0.4300 0.0140 2157 33 2222 41 2306 65 JC29-46 49.4 62.5 0.79 0.1459 0.0023 8.0900 0.1800 0.4134 0.0048 2303 11 2243 21 2230 22 JC29-47 55.1 67.2 0.82 0.1476 0.0019 9.1700 0.1400 0.4520 0.0048 2318 12 2360 13 2403 21 JC29-48 98.0 84.0 1.17 0.1160 0.0010 5.0550 0.0750 0.3171 0.0030 1897 10 1827 13 1775 15 JC29-51 62.7 65.3 0.96 0.1459 0.0018 8.7100 0.1300 0.4295 0.0046 2301 12 2308 14 2303 21 JC29-52 88.8 114 0.78 0.1421 0.0014 8.0600 0.1200 0.4147 0.0038 2259 12 2236 14 2236 17 JC29-53 500 636 0.79 0.1536 0.0020 5.9600 0.3200 0.2880 0.0170 2380 16 1959 49 1625 85 JC29-54 53.4 52.9 1.01 0.1279 0.0019 6.4700 0.2000 0.3710 0.0100 2056 20 2040 27 2029 47 JC29-55 180 162 1.11 0.1480 0.0020 8.4400 0.1100 0.4046 0.0042 2325 14 2281 13 2190 19 JC29-56 389 490 0.79 0.1448 0.0007 7.7600 0.1000 0.3924 0.0034 2281 6 2202 12 2133 16 JC29-57 269 249 1.08 0.1349 0.0017 6.7000 0.1300 0.3538 0.0050 2161 19 2071 17 1952 24 JC29-58 363 71.1 5.11 0.0565 0.0010 0.5220 0.0110 0.0680 0.0007 463 24 427 8 424 4 JC29-59 175 40.9 4.28 0.0570 0.0018 0.5380 0.0170 0.0699 0.0014 493 40 436 11 436 8 JC29-60 191 240 0.80 0.1503 0.0010 8.9770 0.0790 0.4373 0.0027 2347 6 2336 8 2340 12 JC29-61 102 85.5 1.19 0.1167 0.0010 5.6700 0.1600 0.3497 0.0088 1908 8 1921 24 1930 42 JC29-62 24.0 30.9 0.78 0.1449 0.0033 8.0900 0.2000 0.4125 0.0059 2292 20 2243 23 2226 27 JC29-64 129 131 0.99 0.1134 0.0011 5.0700 0.1200 0.3284 0.0065 1856 9 1830 20 1830 32 JC29-65 99.0 98.0 1.01 0.1461 0.0016 9.1000 0.1900 0.4388 0.0076 2299 12 2349 19 2344 34 JC29-66 170 174 0.97 0.1395 0.0010 6.6700 0.1600 0.3472 0.0049 2222 10 2063 21 1920 24 表 2 金川煌斑岩全岩主量、微量和稀土元素分析结果
Table 2. Analytical results of whole-rock major, trace and rare earth elements for the Jinchuan lamprophyre
样品号 JC-1 JC-2 JC-3 JC-4 JC-5 JC-6 JC-7 JC-8 JC-16 JC-29 JC-11 SiO2 52.65 53.88 50.78 52.19 53.37 53.58 52.64 53.93 51.37 54.63 53.76 TiO2 1.48 1.02 0.89 0.87 1.00 0.86 0.96 0.92 1.33 0.82 0.89 Al2O3 14.64 18.18 15.72 16.26 17.45 16.22 16.47 16.34 16.88 16.81 15.30 Fe2O3 9.00 6.76 5.74 5.20 6.92 6.94 6.88 6.41 8.53 5.73 5.67 MnO 0.13 0.07 0.09 0.09 0.08 0.11 0.11 0.09 0.14 0.11 0.07 MgO 6.50 5.06 8.96 7.55 4.82 6.20 6.92 6.60 7.99 5.94 7.73 CaO 5.65 4.22 4.92 5.16 4.39 5.93 6.07 4.33 6.30 3.94 3.77 Na2O 3.89 5.23 2.16 1.30 3.95 4.68 4.85 3.99 4.41 4.53 5.21 K2O 2.36 2.95 5.64 7.20 4.98 2.69 2.15 4.63 1.56 3.96 2.32 P2O5 0.64 0.40 0.47 0.46 0.41 0.35 0.39 0.40 0.43 0.34 0.81 烧失量 2.11 1.87 3.77 3.47 1.84 1.59 1.77 1.90 1.74 3.46 2.97 总量 99.05 99.64 99.14 99.75 99.21 99.15 99.21 99.54 100.68 100.27 98.50 La 49.7 43 66 56.4 35.1 39.2 42.5 33.2 27.8 32.9 63.9 Ce 113 101 147 130 80 88 94 76 66 76 140 Pr 13.63 11.86 17.84 15.65 10.13 10.67 11.36 9.33 8.26 9.04 16.97 Nd 53.45 46.15 67.77 60.35 40.87 41.95 44.46 37.67 34.16 36.87 67.51 Sm 9.15 7.47 10.49 9.55 7 7.19 7.55 6.76 6.42 6.36 9.78 Eu 2.45 1.99 2.7 2.67 1.9 1.89 2.07 1.78 1.81 1.73 2.55 Gd 7.69 5.73 7.37 6.84 5.54 5.8 5.87 5.54 6.52 6.29 8.45 Tb 1.04 0.74 0.85 0.78 0.75 0.76 0.76 0.76 0.85 0.67 0.8 Dy 5.2 3.64 3.58 3.31 3.64 3.79 3.71 3.64 4.56 3.45 3.22 Ho 1.02 0.7 0.63 0.58 0.72 0.73 0.72 0.7 0.88 0.65 0.53 Er 2.64 1.83 1.5 1.39 1.81 1.89 1.85 1.85 2.47 1.74 1.34 Tm 0.35 0.25 0.19 0.18 0.25 0.25 0.24 0.24 0.33 0.22 0.16 Yb 2.23 1.57 1.15 1.08 1.6 1.62 1.6 1.54 1.89 1.25 1.03 Lu 0.33 0.24 0.17 0.15 0.24 0.26 0.23 0.23 0.31 0.22 0.14 ∑REE 262 226 328 288 190 204 217 179 162 178 317 δEu 0.87 0.9 0.89 0.96 0.9 0.87 0.92 0.86 0.85 0.83 0.84 Li 17.05 27 68.8 40.53 26.36 25.85 24 18.48 16.42 31.41 36.47 Be 1.61 1.35 1.26 1.52 1.16 1.19 1.43 0.77 1.15 1.26 1.33 Sc 15.79 10.63 10.13 9.34 12.72 12.54 14.19 12.66 20.57 15.05 10.09 V 155.2 133.9 89.97 83.72 137.9 117.1 132 121.3 149.7 103.1 98.76 Cr 184.4 27.94 63.04 102.8 41.66 78.82 88.99 76.94 126.3 65.52 191.29 Co 28.19 14.1 24.78 14.54 15.95 24.9 22.12 18.3 29.39 18.95 25.55 Ni 129.4 17.12 71.56 88.28 30.44 73.94 72.48 59.31 85.95 52.54 118.45 Cu 42.56 15.18 15.78 34.01 15.91 155.9 68.66 25.24 55.58 46.91 71.35 Zn 102.4 35.34 69.97 62.87 44.16 48.26 63.27 46.01 71.04 217.8 64.67 Ga 20.13 21.67 19.62 16.59 20.46 20.23 21.42 20.2 16.08 16.55 20.18 Rb 208.6 32.81 99.75 116.6 54.14 44.91 51.58 48.52 46.37 73.13 51.87 Sr 979 1268 2498 2476 1264 1189 1167 684 860 805 1122 Y 22.68 15.95 14.55 13.74 16.6 17.04 16.98 16.63 22.07 15.91 15.59 Zr 204.1 187.7 230.6 212.8 190.1 187.5 189 160.1 182.4 169.9 224.73 Nb 11.77 8.52 9.29 8.93 8.45 9.31 9.15 10.03 8.48 9.22 9.71 Cd 0.19 0.08 0.17 0.15 0.08 0.1 0.08 0.06 0.4 3.89 0.35 In 0.07 0.03 0.05 0.04 0.04 0.06 0.05 0.04 0.06 0.09 0.04 Cs 2.61 2.21 1.71 1.52 2.17 1.4 5.1 1.3 2.02 2.76 3.28 Ba 1189 766 1271 6546 717 1534 1244 508 305 807 1047 Hf 4.34 4.51 5.27 4.86 4.48 4.44 4.32 3.88 4.18 4.01 4.24 Ta 0.66 0.46 0.48 0.46 0.43 0.53 0.44 0.5 0.49 0.53 0.38 Pb 28.59 5.11 20.87 13.88 4.42 6.88 7.59 3.55 8.68 6.81 9.79 Bi 0.29 0.09 0.22 0.21 0.12 0.14 0.1 0.08 0.18 0.11 0.29 Th 7.65 9.34 11.65 10.64 8.29 9.42 8.38 8.04 5.99 7.43 8.76 U 2.06 1.56 2 1.83 1.45 2.07 1.85 1.64 4.52 3.94 1.58 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 3 金川基性脉岩Sr-Nd同位素分析结果
Table 3. Analytical results of Sr-Nd isotopes for the Jinchuan mafic rock veins
岩性 样品 Rb Sr Sm Nd 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd εNd(t) 资料来源 煌斑岩 JC-16 46.37 860 6.42 34.16 0.1560 0.7085 0.7077 0.1136 0.5123 -2.03 本文 JC-29 73.13 805 6.36 36.87 0.2629 0.7083 0.7068 0.1043 0.5123 -2.97 本文 JC38-1 32.33 493 6.38 31.71 0.1898 0.7088 0.7077 0.1224 0.5123 -3.12 本文 JC38-2 69.43 459 6.34 30.68 0.4384 0.7095 0.7068 0.1259 0.5122 -4.59 本文 辉绿岩 Bu16-1 21.64 345 6.34 30.25 0.1815 0.7067 0.7056 0.1275 0.5124 -1.67 Duan et al., 2015 Bu17-1 33.33 382 7.72 35.08 0.2525 0.7078 0.7063 0.134 0.5124 -1.58 Bu17-2 51.12 326 7.33 32.96 0.4547 0.7085 0.7058 0.1353 0.5123 -2.31 表 4 金川花岗斑岩脉锆石Hf同位素分析结果
Table 4. Analytical results of zircon Hf isotope for the Jinchuan granite porphyry veins
分析点 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ t/Ma εHf(0) εHf(t) tDM1/Ma tDM2/Ma GB-03 0.025960 0.000650 0.282842 0.000028 365 2.54 10.35 577 705 GB-04 0.033748 0.000791 0.282888 0.000022 364 4.16 11.91 514 604 GB-06 0.032543 0.000814 0.282830 0.000025 369 2.12 9.96 596 732 GB-08 0.032667 0.000838 0.282888 0.000024 369 4.19 12.03 514 600 GB-12 0.038796 0.001038 0.282694 0.000023 370 -2.7 5.11 792 1042 GB-15 0.027787 0.000757 0.282844 0.000023 367 2.62 10.45 575 700 GB-16 0.028465 0.000743 0.282842 0.000020 361 2.54 10.23 578 709 GB-18 0.026222 0.000666 0.282910 0.000021 369 4.96 12.84 481 548 GB-23 0.038488 0.001110 0.282729 0.000024 366 -1.46 6.25 744 966 GB-24 0.042180 0.001118 0.282783 0.000023 369 0.47 8.25 667 842 GB-25 0.036151 0.001036 0.282863 0.000037 365 3.29 11 553 663 表 5 龙首山地区基性—中酸性岩年龄
Table 5. Chronological data of mafic-felsic rock veins in the Longshoushan area
岩体 岩性 年龄/Ma 岩浆活动时期 资料来源 金川矿区 花岗闪长斑岩 361.7±4.6 晚泥盆世 Zeng et al., 2016 北海子 橄榄辉长岩 374±4 焦建刚等, 2017 金川矿区 二长闪长玢岩 390.8±3.1 早志留世—早泥盆世 Zeng et al., 2020 金川矿区 闪斜煌斑岩 400.6±3.9 Zeng et al., 2020 西井 花岗岩 408±4 张丽琪, 2019 玉石沟 蚀变辉绿岩 414±9.1 Zeng et al., 2016 新开沟 花岗岩 414±3 张丽琪, 2019 新开沟 似斑状花岗岩 419±4 张丽琪, 2019 西井 橄榄辉石岩、辉长岩 421.0±9.0 段俊等, 2015 圣容寺 钾长花岗岩 422±3 张丽琪, 2019 金川矿区 辉绿岩 423.5±1.4 Duan et al., 2015 孟家大湾 石英闪长岩 424±2 张丽琪, 2019 金川矿区 正长花岗岩 425.7±2.5 张晓旭等, 2021 杨前大山 花岗闪长岩 427±4 张丽琪, 2019 金川矿区北侧 石英正长岩 429±11 Zeng et al., 2016 金川矿区南侧 石英正长岩 433.4±3.7 晚奥陶世—早志留世初期 Zeng et al., 2016 西井 角闪辉长岩 441±2 张丽琪, 2019 西井 石英二长岩 437±5 张丽琪, 2019 西井 二长岩 438±4 张丽琪, 2019 莲花山 花岗闪长岩 441±4 张丽琪, 2019 孟家大湾 花岗闪长岩 441±3 张丽琪, 2019 河西堡 花岗岩体 444±2 魏俏巧等, 2013 芨岭 角闪辉长岩 446±6 张丽琪, 2019 -
[1] Bienvenu P, Bougault H, Joron J L, et al. MORB alteration: rare-earth element/non-rare-earth hygromagmaphile element fractionation[J]. Chemical Geology, 1990, 82: 1-14. doi: 10.1016/0009-2541(90)90070-N
[2] Bouvier A, Vervoort J D, Patchett J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of the terrestrial planets[J]. Earth and Planetary Science Letters, 2008, 280: 285-295. http://www.sciencedirect.com/science/article/pii/S0012821X08003828
[3] Chai G, Naldrett A J. The Jinchuan ultramafic intrusion: Cumulate of a High-Mg basaltic magma[J]. Journal of Petrology, 1992, (2): 277-303. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1029.3508&rep=rep1&type=pdf
[4] DePaolo D J, Wasserburg G J. Nd isotopic variations and petrogenetic models[J]. Geophysical Research Letters, 1976, 3(5): 249-252. doi: 10.1029/GL003i005p00249
[5] Duan J, Li C S, Qian Z Z, et al. Geochronological and geochemical constraints on the petrogenesis and tectonic significance of paleozoic dolerite dykes in the southern margin of Alxa Block, North China Craton[J]. Journal of Asian Earth Sciences, 2015, 111(1): 244-253.
[6] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
[7] Jiao J G, Han F, Zhao L D, et al. Magnetite geochemistry of the Jinchuan Ni-Cu-PGE deposit, NW China: Implication for its Ore-Forming processes[J]. Minerals, 2019, 9(10): 593. doi: 10.3390/min9100593
[8] Kinny P D, Maas R. Lu-Hf and Sm-Nd isotope systems in zircon[C]//Zircon, 2003, 53(1): 327-341.
[9] Le Maitre R W, Bateman P, Dudek A, et al. A Classification of igneous rocks and glossary of terms[M]. Oxford: Black Well Scientific Publications, 1989.
[10] Li C F, Chu Z Y, Guo J H, et al. A rapid single column separation scheme for high-precision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry[J]. Analytical Methods, 2015, 7(11): 4793-4802. doi: 10.1039/C4AY02896A
[11] Li C F, Wang X C, Guo J H, et al. Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(5): 1150-1159. doi: 10.1039/C5JA00477B
[12] Liu Y. Continental and oceanic crust recycling-induced Melt-Peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. J. Petrol., 2010, 51(1/2): 537-571.
[13] Ma Y F, Liu Y J, Peskov A Y, et al. Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt in NE China[J]. China Geology, 2022, 5(4): 555-578.
[14] Middlemost E. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224.
[15] Rock N M S. The nature and origin of lamprophyres: an overview[J]. Geological Society, London, Special Publications, 1987, 30(1): 191-226. doi: 10.1144/GSL.SP.1987.030.01.09
[16] Saunders A D, Norry M J, Tarney J. Fluid influence on the trace element compositions of subduction zone magmas[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1991, 335(1638): 377-392.
[17] Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293(5536): 1766. doi: 10.1126/science.293.5536.1766
[18] Song S, Zhang L, Niu Y, et al. Evolution from oceanic subduction to continental collision: A case study from the Northern Tibetan plateau based on geochemical and geochronological data[J]. Journal of Petrology, 2006, 47(3): 435-455. doi: 10.1093/petrology/egi080
[19] Sun S S, Mcdonough. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[20] Tung K A, Yang H Y, Liu D Y, et al. SHRIMP U-Pb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance[J]. Science Bulletin, 2007, 52(10): 12.
[21] Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes[J]. Earth & Planetary Science Letters, 2001, 192(3): 331-346.
[22] Yang G, Du A, Lu R, et al. Re-Os(ICP-MS)dating of the massive sulfide ores from the Jinchuan Ni-Cu-PGE deposit[J]. Science in China(Series D: Earth Sciences), 2005, 48(10): 106-111.
[23] Yang S H, Yang G, Qu W J, et al. Pt-Os isotopic constraints on the age of hydrothermal overprinting on the Jinchuan Ni-Cu-PGE deposit, China[J]. Mineralium Deposita, 2018, 53(6): 757-774. doi: 10.1007/s00126-017-0775-z
[24] Zeng R Y, Lai J Q, Mao X C, et al. Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China: Constraints on their petrogenesis, source characteristics and tectonic implication[J]. Journal of Asian Earth Sciences, 2016, 121(May1): 20-33.
[25] Zeng RY, Lai J Q, Mao X C, et al. Petrogenesis and tectonic significance of the Early Devonian lamprophyres and diorites in the Alxa Block, NW China[J]. Chemie der Erde - Geochemistry, 2020, 81(1): 1-21.
[26] Zhang M, Kamo S L, Li C, et al. Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, Western China[J]. Mineralium Deposita, 2010, 45(1): 3-9. doi: 10.1007/s00126-009-0259-x
[27] Zindler A, Hart S R. Chemical geodynamics[C]//Workshop on the Earth As A Planet, 1986.
[28] 陈建林, 郭原生, 付善明. 花岗岩研究进展——ISMA花岗岩类分类综述[J]. 甘肃地质学报, 2004, 13(1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200401008.htm
[29] 段俊, 钱壮志, 焦建刚, 等. 甘肃龙首山岩带西井镁铁质岩体成因及其构造意义[J]. 吉林大学学报(地球科学版), 2015, 45(3): 832-846. doi: 10.13278/j.cnki.jjuese.201503115
[30] 宫江华, 张建新, 于胜尧. 阿拉善地块南缘龙首山岩群及相关岩石的起源和归属——来自LA-ICP-MS锆石U-Pb年龄的制约[J]. 岩石矿物学杂志, 2011, 30(5): 795-818. doi: 10.3969/j.issn.1000-6524.2011.05.005
[31] 焦建刚, 汤中立, 闫海卿, 等. 金川铜镍硫化物矿床的岩浆质量平衡与成矿过程[J]. 矿床地质, 2012, 31(6): 1135-1148. doi: 10.3969/j.issn.0258-7106.2012.06.001
[32] 焦建刚, 高栋, 张国鹏, 等. 甘肃永昌北海子镁铁—超镁铁质岩体岩石学、地球化学及年代学研究[J]. 地学前缘, 2017, 24(2): 130-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702019.htm
[33] 李献华, 苏犁, 宋彪, 等. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J]. 科学通报, 2004, 49(4): 401-402. doi: 10.3321/j.issn:0023-074X.2004.04.018
[34] 李献华, 苏犁, 李正祥. 金川超镁铁岩体形成时代的SHRIMP斜锆石定年[C]//第六届世界华人地质科学研讨会和中国地质学会二零零五年学术年会, 2005: 133.
[35] 李永军, 李甘雨, 佟丽莉, 等. 玄武岩类形成的大地构造环境Ta, Hf, Th, La, Zr, Nb比值对比判别[J]. 地球科学与环境学报, 2015, 37(3): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201503004.htm
[36] 刘秉翔, 张招崇, 程志国. 煌斑岩的分类、特征及成因[J]. 地质学报, 2021, 95(2): 292-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102002.htm
[37] 刘健, 于强, 王猛, 等. 金川铜镍硫化物矿床晚中生代以来抬升冷却事件的磷灰石裂变径迹约束[J/OL]. 大地构造与成矿学, 2022: 1-15.
[38] 吕古贤, 李洪奎, 丁正江, 等. 胶东地区"岩浆核杂岩"隆起-拆离带岩浆期后热液蚀变成矿[J]. 现代地质, 2016, 30(2): 247-262. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201602001.htm
[39] 宋晨, 苏尚国, 伍月, 等. 甘肃金川铜镍(铂)硫化物矿床中高镁辉绿岩脉的发现及其意义[J]. 岩石学报, 2014, 30(11): 3375-3382. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411021.htm
[40] 汤中立. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 1990, 4(4): 55-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199004005.htm
[41] 汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995.
[42] 汤中立, 白云来. 华北古大陆西南边缘构造格架与成矿系统[J]. 地学前缘, 1999, 6(2): 78-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY902.006.htm
[43] 汤中立. 中国的小岩体岩浆矿床[J]. 中国工程科学, 2002, 4(6): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200206002.htm
[44] 汤中立, 闫海卿, 焦建刚, 等. 中国岩浆硫化物矿床新分类与小岩体成矿作用[J]. 矿床地质, 2006, 25(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200601000.htm
[45] 王强. 龙首山群白家嘴子组变质作用研究[D]. 长安大学硕士学位论文, 2014.
[46] 魏俏巧, 郝立波, 陆继龙, 等. 甘肃河西堡花岗岩LA-MC-ICP-MS锆石U-Pb年龄及其地质意义[J]. 矿物岩石地球化学通报, 2013, 32(6): 729-735. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306009.htm
[47] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
[48] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
[49] 曾南石, 汪劲草, 罗先熔, 等. 金川地区构造序列及与铜镍硫化物矿床的关系[J]. 地学前缘, 2013, 20(6): 210-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306029.htm
[50] 曾认宇, 赖健清, 毛先成, 等. 金川铜镍矿床中断裂系统的形成演化及对矿体的控制[J]. 中国有色金属学报, 2013, 23(9): 2574-2583. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201309029.htm
[51] 曾认宇, 赖健清, 毛先成, 等. 甘肃龙首山地区构造-岩浆事件及其地质意义[M]. 北京: 地质出版社, 2022: 57-94.
[52] 张冬冬, 高阳, 刘军, 等. 黑龙江漠河地区早古生代早期花岗岩的厘定及其地质意义[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1926-1945. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202206014.htm
[53] 张丽琪. 北祁连—阿拉善地块南缘古生代碰撞后岩浆作用及深部过程[D]. 中国地质大学(武汉)博士学位论文, 2019.
[54] 张晓旭, 苏尚国, 刘美玉, 等. 甘肃金川早古生代正长花岗岩锆石SHRIMP U-Pb年代学, 岩石学, 地球化学特征及其构造意义[J]. 地学前缘, 2021, 28(4): 283-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202104034.htm
[55] 周立发. 阿拉善地块南缘早古生代大地构造特征和演化[J]. 西北大学学报(自然科学版), 1992, (1): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ199201027.htm
-