Calcic interbed evaluation and multi-stage frac optimization for high deviation wells in Chang-7 reservoir, Ba-19 Block of Huanjiang Oilfield
-
摘要: 为实现最大化油藏接触,提高油藏产出水平,长庆环江油田巴19区块长7油藏采用大斜度井开发方式。在初期压裂改造中,由于忽视了层内钙质夹层对压裂缝高的影响,导致实际裂缝的几何形态与设计产生巨大偏差,出现了邻井裂缝串通及生产高含水等问题。本文通过研究油藏剖面测井特征,在细分层位基础上分析纵向应力分布,研究“复合层效应”影响裂缝缝高延伸的关键因素,优化了分段压裂方案,获得了更好的水力裂缝几何形态和尺寸。技术调整后现场压裂工艺质量获得提高,长7段油藏压裂改造质量优良率100%,大大提高了该区块的开发水平。Abstract: In order to maximize reservoir contact and improve reservoir productivity, highly deviated wells are used in Chang-7 reservoir, Ba-19 block of Huanjiang Oilfield. In the earlier frac treatment, negligence of the influence of the calcic interbed on fracture height led to a very different actual fracture geometry from the design, resulting in the problems of fracture channeling between wells and high water cut production. With examination of reservoir profile logging characteristics, analysis of the vertical stress distribution based on the subdivision layers, and investigation of the key factors of “the composite layer effect” affecting fracture height extension, the multi-stage fracturing scheme was optimized which produced a better hydraulic fracture geometry and size. The technical modification improved fracturing treatment quality with the good rate of fracture stimulation in Chang-7 reservoir up 100%; Thus, greatly improving the development level in the area.
-
Key words:
- multi-stage frac /
- calcic interbed /
- high deviation well /
- composite layer effect /
- Huanjiang Oilfield
-
-
[1] 中国石油长庆油田分公司.长庆油田2018年油田产能建设钻采工程方案[R].2018.CNPC Changqing Oilfield Branch. 2018 Changqing Oilfield production capacity construction drilling and production engineering plan[R]. 2018.
[2] [2] 牛增前,隋向云,张平.大斜度井压裂工艺研究[J].石油钻采工艺,2005,27(S1):69-71,97.
NIU Zengqian, SUI Xiangyun, ZHANG Ping. Reserch on fracturing technics for high angle deviated hole[J]. Oil Drilling & Production Technology, 2005,27(S1):69-71,97.
[3] [3] 范华波,刘锦,郭钢,等.致密油气EM30滑溜水压裂液体系[J].石油科技论坛,2017,36(S1):124-127,199.
FAN Huabo, LIU Jin, GUO Gang, et al. Tight oil and gas EM30 slippery hydraulic fracturing fluid system[J]. Petroleum Science and Technology Forum, 2017,36(S1):124-127,199.
[4] [4] 林飞,欧阳传湘,胡兵,等.菱形反九点井网裂缝参数研究[J].石油化工高等学校学报,2016,29(4):38-42.
LIN Fei, OUYANG Chuanxiang, HU Bing, et al. Fracture parameters of diamond shaped nine-spot pattern[J]. Journal of Petrochemical University, 2016,29(4):38-42.
[5] [5] 张士诚,温庆志,王凤和,等.水平缝四点井网整体压裂裂缝参数优化设计[J].石油学报,2004,25(1):74-78
.ZHANG Shicheng, WEN Qingzhi, WANG Fenghe, et al. Optimization design of fracture parameters for four-spot well pattern with horizontal fractures[J]. Acta Petrolei Sinica, 2004,25(1): 74-78
[6] [6] 赵玉东,石瑾,付大其,等.注采井网大斜度井压裂裂缝优化研究及应用[J].内蒙古石油化工,2015,41(17):143-145.
ZHAO Yudong, SHI Jin, FU Daqi, et al. Research and application for optimization of fractured fissure in highly-deviated wells in injection-production well spacing[J]. Inner Mongulia Petrochemical Industry, 2015,41(17):143-145.
[7] [7] 杜波,高咏梅.张家垛油田大斜度井压裂工艺技术研究[J].油气藏评价与开发,2017,7(5):58-63.
DU Bo, GAO Yongmei. Research on fracturing technology of high angle deviated wells in Zhangjiaduo Oilfield[J]. Progress in Exploration Geophysics, 2017,7(5):58-63.
[8] [8] 张欢,安明胜,马明宇,等.安塞特低渗储层钙质夹层识别及其对开发的影响[J].复杂油气藏,2014,7(1):45-48.
ZHANG Huan, AN Mingsheng, MA Mingyu,et al. Identification of calcareous intercalated layer and its impact on development of extra-low permeability reservoirs in Ansai oilfield[J]. Complex Hydrocarbon Reservoirs, 2014,7(1):45-48.
[9] [9] 张义元,魏庆芝.利用测井资料计算连续地应力剖面[J].大庆石油地质与开发,1993(2):61-65,8.
ZHANG Yiyuan, WEI Qingzhi. Calculating continuous terrestrial stress profile by using well-log information[J]. Petroleum Geology & Oilfield Development in Daqing, 1993(2):61-65,8.
[10] [10] 王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1999.WANG Hongxun, ZHANG Shicheng. Numerical Calculation Method for Hydraulic Fracturing Design[M]. Beijing: Petroleum Industry Press, 1999.
[11] [11] 李扬,邓金根,蔚宝华,等.储/隔层岩石及层间界面性质对压裂缝高的影响[J].石油钻探技术,2014,42(6) 80-86.
LI Yang, DENG Jingen, YU Baohua, et al. Effect of reservoir /barrier and interfacial properties on hydraulic fracture height containment[J]. Petroleum Drilling Techniques, 2014,42(6):80-86.
[12] [12] 侯鹏,高峰,张志镇,等.黑色页岩力学特性及气体压裂层理效应研究[J].岩石力学与工程学报,2016,35(4):670-681.
HOU Peng, GAO Feng, ZHANG Zhizhen, et al. Mechanical property and bedding inclination effect on gas fracturing of black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2016,35(4):670-681.
[13] [13] 张景,王颖,范希彬,等.致密砂砾岩储层应力敏感性评价研究[J].中国海上油气,2020,32(3):105-110.
ZHANG Jing, WANG Ying, FAN Xibin, et al. Evaluation study on the stress sensitivity of tight glutenite reservoir[J]. China Offshore Oil and Gas, 2020,32(3):105-110.
[14] [14] 张玉广,杨东,唐鹏飞,等.致密油层水平井缝间干扰因素及干扰界限[J].大庆石油地质与开发,2014,33(5):240-244.
ZHANG Yuguang, YANG Dong, TANG Pengfei, et al. Intercrack interfering factors and limits for the horizontal well in the tight oil layers[J]. Petroleum Geology & Oilfield Development in Daqing, 2014,33(5):240-244.
[15] [15] 江海畏,薛启龙.电爆冲击波对储层致裂效果影响因素的数值模拟研究[J].探矿工程(岩土钻掘工程),2020,47(11):70-76.
JIANG Haiwei, XUE Qilong. Numerical simulation study of the influencing factors of electric explosion shock waves on reservoir fracture initiation[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(11):70-76.
[16] [16] 周明德,付春权,李兴科,等.分段压裂水平井产能影响因素分析[J].当代化工,2018,47(2):313-315,319.
ZHOU Mingde, FU Chunquan, LI Xingke, et al. Analysis on influencing factors of productivity of multi-fracturing horizontal wells[J]. Contemporary Chemical Industry, 2018,47(2):313-315,319.
[17] [17] 李勇明,周文武,赵金洲,等.低渗透油藏水平井分段压裂半解析产能计算与影响因素研究[J].油气藏评价与开发,2018,8(2):52-57.
LI Yongming, ZHOU Wenwu, ZHAO Jinzhou, et al. Semi-analytical productivity calculation and sensitive factors for the multi-stage fractured horizontal well in low permeability reservoirs[J]. Progress in Exploration Geophysics, 2018,8(2):52-57.
-
计量
- 文章访问数: 297
- PDF下载数: 56
- 施引文献: 0