Nano composite cement based wellbore protection and plugging materials for deep drilling
-
摘要: 本文围绕深部钻探技术中护壁堵漏材料性能的实际需要,研制了一种深孔纳米复合水泥基护壁堵漏新材料。首先,通过分析100 ℃条件下2种水泥材料的基本性能,确定了G级油井水泥为胶凝材料;然后,基于深孔钻探护壁堵漏材料的性能缺陷,采用特种纤维、纳米材料针对性改善水泥基浆液的力学性能,并优选早强剂(ZQ)、减水剂(GB)作为外加剂进行正交实验,进而研制出纳米复合水泥基护壁堵漏材料优化配方;最后,对其主要性能进行分析评价。结果表明该材料在深孔钻探中浆液流动性好,力学性能优异,综合性能满足深孔钻探护壁堵漏需求。Abstract: A new kind of nano cement-based plugging material has been developed to meet the actual needs of the performance of wellbore protection materials in deep drilling technology. First, through analyzing the performance results of different types of cement at the same temperature, Grade G oil well cement was determined as cementing material; second, based on the performance defects of deep drilling wellbore protection and plugging material, special fiber and nano materials were used to improve the mechanical properties of cement slurry, and the early strength agent (ZQ) and the water reducer (GB) were selected as additives for orthogonal experiment, which led to the development of the optimum formula of cement based wellbore protection and plugging material. Finally, its main performance was analyzed and evaluated. The results show that the material has good fluidity and excellent mechanical properties, and its comprehensive performance can meet the needs of wellbore protection and plugging in deep drilling.
-
Key words:
- deep drilling /
- wellbore protection and plugging /
- nano materials /
- superstack effect
-
-
[1] 姜建军.实施“三深一土”国土资源科技创新发展战略的思考[J].国土资源科技管理,2017,34(3):1-8.
JIANG Jianjun. Thinking on the implementation of the “Three Deep and One Soil” strategy of land and resources science and technology innovation and development[J]. Scientific and Technological Management of Land and Resources, 2017,34(3):1-8.
[2] [2] 瞿雪姣,杨立伟,薛璇,等.松辽盆地白垩系大陆科学钻探松科2井:井底温度、地层压力预测[J].地学前缘,2017,24(1): 257-264.
QU Xuejiao, YANG Liwei, XUE Xuan, et al. Prediction of the bottom hole geotemperature, formation pressure and formation fracture pressure of the Continental Scientific Drilling of Cretaceous Songliao Basin (SK2)[J]. Earth Science Frontiers, 2017,24(1):257-264.
[3] [3] 冯竟竟,傅宇方,陈忠辉,等.高温对水泥基材料微观结构的影响[J].建筑材料学报,2009,12(3):318-322.
FENG Jingjing, FU Yufang, CHEN Zhonghui, et al. Effect of high temperatures on microstructure of cement-based composite material[J]. Journal of Building Materials, 2009, 12(3):318-322.
[4] [4] 张彬.水泥基材料的高温特性及其再水化修复的研究[D].武汉:武汉理工大学,2012.ZHANG Bing. Study on the high temperature characteristics and rehydration repair of cement-based materials[D]. Wuhan: Wuhan University of Technology, 2012.
[5] [5] 吴相豪,戴圣男,李志卫,等.高温后水泥基材料抗压强度与微观结构研究[J].硅酸盐通报,2019,38(6):1755-1758,1763.
WU Xianghao, DAI Shengnan, LI Zhiwei, et al. Compressive strength and microstructure of cement-based materials after high temperature[J]. Bulletin of the Chinese Ceramic Society, 2019,38(6):1755-1758,1763.
[6] [6] 张森琦,严维德,黎敦朋,等.青海省共和县恰卜恰干热岩体地热地质特征[J].中国地质,2018,45(6):1087-1102.
ZHANG Senqi, YAN Weide, LI Dunpeng, et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai province[J]. Geology of China, 2018,45(6):1087-1102.
[7] [7] 王仕富,曾晓辉,周尧,等.PVA及玄武岩纤维对水泥基复合材料力学性能的影响[J].功能材料,2020,51(4):4072-4076.
WANG Shifu, ZENG Xiaohui, ZHOU Yao, et al. Effect of PVA and basalt fiber on mechanical properties of cement-based composites [J]. Journal of Functional Materials, 2020,51(4):4072-4076.
[8] [8] Afroz M, Patnaikuni I, Venkatesan S. Chemical durability and performance of modified basalt fiber in concrete medium[J]. Construction and Building Materials, 2017,154:191-203.
[9] [9] 李黎,曹明莉.混杂纤维增强水泥基复合材料弯曲韧性与纤维增强指数的定量关系[J].复合材料学报,2018,35(5):1349-1353.
LI Li, CAO Mingli. Quantitative relationship between flexural toughness and fiber reinforcing index of hybrid fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica, 2018,35(5):1349-1353.
[10] [10] 周建伟,余保英,孔亚宁,等.热处理对聚合物改性纤维增韧水泥基复合材料物理力学性能的影响[J].硅酸盐通报,2021,40(2):392-400.
ZHOU Jianwei, YU Baoying, KONG Yaning, et al. Effect of heat treatment on physical and mechanical properties of polymer modified fiber toughened cement-based composites[J]. Bulletin of the Chinese Ceramic Society, 2021,40(2):392-400.
[11] [11] 孙举鹏,魏灯塔,王依璞.钢纤维形状对混凝土力学性能的影响及湿喷支护应用研究[J].煤矿安全,2019,50(3):53-56.
SUN Jupeng, WEI Dengta, WANG Yipu. Effect of steel fiber shape on mechanical properties of concrete and application of wet spray support[J]. Safety in Coal Mines, 2019,50(3):53-56.
[12] [12] 生兆亮,辛欣,夏多田,等.纤维增强水泥基材料强度和微结构的影响因素研究[J].硅酸盐通报,2020,39(10):3108-3114.
SHENG Zhaoliang, XIN Xin, XIA Duotian, et al. Influence factors of strength and microstructure of fiber reinforced cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020,39(10):3108-3114.
[13] [13] 蒋国盛,郑少军,代天,等.纳米二氧化硅在固井水泥浆中的应用研究进展[J].钻探工程,2021,48(1):68-74.
JIANG Guosheng, ZHENG Shaojun,DAI Tian,et al. Research status of nano-silica application in well cementing slurry[J]. Drilling Engineering, 2021,48(1):68-74.
[14] [14] 李晓娇.纳米材料改性水泥基复合材料及其界面性能研究[D].哈尔滨:哈尔滨工业大学,2015.LI Xiaojiao. Investigation on the interfacial properties of nano materials modified cement based composite[D]. Harbin: Harbin Institute of Technology, 2015.
[15] [15] Jo B W, Chakraborty S, Kim K H. Investigation on the effectiveness of chemically synthesized nano cement in controlling the physical and mechanical performances of concrete[J]. Constr. Build. Mater., 2014,70:1-8.
[16] [16] Sobolev K, Lin Z, Flores-Vivian I. Nano-engineered cements with enhanced mechanical performance[J]. J. Am. Ceram. Soc., 2016,99(2):564-572.
[17] [17] 黄春龙,王栋民,白亚飞.纳米微晶纤维素应用于水泥基材料研究综述[J].材料导报,2018,32(S1):462-465.
HUANG Chunlong, WANG Dongmin, BAI Yafei. Research progress of the application of nanocrystalline cellulose in cement-based materials[J]. Materials Review, 2018,32(S1):462-465.
[18] [18] 陈胜宇,李古,朱江.复掺单壁碳纳米管/碳纤维水泥基复合材料的力学性能研究[J].福建质量管理,2019(22):154,153.CHEN Shengyu, LI Gu, ZHU Jiang. Mechanical properties of composite materials with single wall carbon nanotubes/carbon fiber cement matrix[J]. Fujian Quality Management, 2019(22):154,153.
-
计量
- 文章访问数: 619
- PDF下载数: 152
- 施引文献: 0