地质出版社有限公司 中国地质科学院勘探技术研究所主办

基于克里金代理模型与子集模拟的边坡高效可靠度分析

雷世平, 李京泽, 刘磊磊, 李云青. 2021. 基于克里金代理模型与子集模拟的边坡高效可靠度分析. 钻探工程, 48(12): 107-113. doi: 10.12143/j.ztgc.2021.12.016
引用本文: 雷世平, 李京泽, 刘磊磊, 李云青. 2021. 基于克里金代理模型与子集模拟的边坡高效可靠度分析. 钻探工程, 48(12): 107-113. doi: 10.12143/j.ztgc.2021.12.016
LEI Shiping, LI Jingze, LIU Leilei and LI Yunqing, . 2021. Slope reliability analysis using Kriging-based Subset simulation. DRILLING ENGINEERING, 48(12): 107-113. doi: 10.12143/j.ztgc.2021.12.016
Citation: LEI Shiping, LI Jingze, LIU Leilei and LI Yunqing, . 2021. Slope reliability analysis using Kriging-based Subset simulation. DRILLING ENGINEERING, 48(12): 107-113. doi: 10.12143/j.ztgc.2021.12.016

基于克里金代理模型与子集模拟的边坡高效可靠度分析

  • 基金项目:

    国家自然科学基金青年项目“基于有限勘察数据的边坡稳定可靠度分析与失稳机制研究”(编号:41902291);湖南省自然科学基金青年项目“考虑地层边界不确定性和参数空间变异性的边坡稳定可靠度分析与失稳机制研究”(编号:2020JJ5704)

详细信息
    作者简介: 雷世平,男,畲族,1977年生,高级工程师,岩土与勘查技术专业,从事工程地质勘查与地质灾害防治相关的研究工作,湖南省郴州市七里大道76号,30826260@qq.com。
    通讯作者: 刘磊磊,男,汉族,1987年生,副教授,地质工程专业,博士,从事地质灾害防治与风险控制相关的研究工作,湖南省长沙市麓山南路932号,csulll@foxmail.com。
  • 中图分类号: P642.22

Slope reliability analysis using Kriging-based Subset simulation

More Information
  • 作为一种高效且准确的代理模型,克里金方法近年来被广泛用于边坡高效可靠度分析。然而,传统方法一般直接将克里金模型与蒙特卡洛模拟耦合进行可靠度分析,导致其在高维小失效概率的边坡可靠度计算中容易出现内存占用过大甚至溢出而无法求解的问题。为此,提出一种基于克里金代理模型的子集模拟方法,以高效解决小概率水平的边坡可靠度分析问题。该方法首先采用一定数量的样本校准克里金模型并进行精度验证,然后基于构建的模型开展子集模拟边坡可靠度计算。最后,采用一个单层粘性土坡与一个工程实例土坡验证所提方法的有效性,并研究回归模型、相关函数模型以及训练样本对该方法精度的影响。结果表明:(1)该方法可以有效计算边坡的失效概率,并且比传统方法更高效;(2)构建克里金模型时,采用10倍随机变量数的训练样本即可得到满足计算精度需求的模型,而额外增加训练样本对计算结果影响较小。
  • 加载中
  • [1]

    曹子君,王宇,区兆驹.基于子集模拟的边坡可靠度分析方法研究[J].地下空间与工程学报,2013,9(2):425-450.

    CAO Zijun, WANG Yu, Zhaoju OU. Probabilistic slope stability analysis using Subset simulation[J]. Chinese Journal of Underground Space and Engineering, 2013,9(2):425-450.

    [2]

    [2] 蒋水华,李典庆.基于随机响应面法和Sarma法的边坡可靠度分析[J].铁道工程学报,2011,28(7):21-27.

    JIANG Shuihua, LI Dianqing. Analysis of reliability of slope stability with stochastic response surface method and Sarma method[J]. Journal of Railway Engineering Society, 2011,28(7):21-27.

    [3]

    [3] 谢桂华,张家生,刘荣桂,等.基于多尺度MSR法的边坡体系可靠度分析[J].中南大学学报(自然科学版),2010,41(6):2400-2406.

    XIE Guihua, ZHANG Jiasheng, LIU Ronggui. System reliability analysis of slopes based on multi-scale MSR method[J]. Journal of Central South University (Science and Technology), 2010,41(6):2400-2406.

    [4]

    [4] 王江荣,袁维红,赵睿,等.石头坪景区边坡几何形态对稳定可靠度的影响分析[J].探矿工程(岩土钻掘工程),2018,45(9):66-70.

    WANG Jiangrong, YUAN Weihong, ZHAO Rui, et al. Analysis of influence of slope geometry on stability reliability in the Shitouping scenic area[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(9):66-70.

    [5]

    [5] 熊斌.基于ANSYS软件的边坡开挖模拟和稳定性评价[J].探矿工程(岩土钻掘工程),2009,36(2):64-68.

    XIONG Bin. Simulation of slope excavation and analysis on its stability based on ANSYS software[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2009,36(2):64-68.

    [6]

    [6] 张国信,陈豫津,王谦,等.边坡抗滑桩加固的三维有限元计算[J].探矿工程(岩土钻掘工程),2020,47(9):81-89.

    ZHANG Guoxin, CHEN Yujin, WANG Qian, et al. 3D finite element computations for slope reinforcement with anti-slide piles[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(9):81-89.

    [7]

    [7] 蔡宁,赵明华.边坡稳定可靠度替代模型分析[J].中南大学学报(自然科学版),2014,45(8):2851-2856.

    CAI Ning, ZHAO Minghua. Analysis of alternative model for slope stability reliability[J]. Journal of Central South University (Science and Technology), 2014,45(8):2851-2856.

    [8]

    [8] 张璐璐.岩土工程可靠度理论[M].上海:同济大学出版社,2011.ZHANG Lulu. Reliability Theory of Geotechnical Engineering[M]. Shanghai: Tongji University Press, 2011.

    [9]

    [9] ZHANG J, HUANG H W, JUANG C H, et al. Extension of Hassan and Wolff method for system reliability analysis of soil slopes[J]. Eng Geol, 2013,160:81-88.

    [10]

    [10] 蒋水华,李典庆,曹子君,等.考虑参数空间变异性的边坡可靠度及其敏感性分析多重响应面法[J].防灾减灾工程学报,2015,35(5):592-598.

    JIANG Shuihua, LI Dianqing, CAO Zijun, et al. Multiple response surfaces method for probabilistic analysis and reliability sensitivity analysis of slopes considering spatially varying soil properties[J]. Journal of Disaster and Mitigation Engineering, 2015,35(5):592-598.

    [11]

    [11] LIU L, CHENG Y, WANG X. Genetic algorithm optimized Taylor Kriging surrogate model for system reliability analysis of soil slopes[J]. Landslides, 2017,14(2):535-546.

    [12]

    [12] ZHANG J, HUANG H, K-K PHOON. Application of the Kriging-based response surface method to the system reliability of soil slopes[J]. J Geotech Geoenviron Eng, 2013,139:651-655.

    [13]

    [13] ZHAO L, CHOI K, LEE I. Metamodeling method using dynamic Kriging for design optimization[J]. AIAA J, 2011,49:2034-2046.

    [14]

    [14] GASPAR B, TEIXEIRA A P, SOARES C G. Assessment of the efficiency of Kriging surrogate models for structural reliability analysis[J]. Probab Eng Mech, 2014,37:24-34.

    [15]

    [15] LIU L-L, CHENG Y-M. System reliability analysis of soil slopes using an advanced Kriging metamodel and Quasi-Monte Carlo simulation[J]. Int J Geomech, 2018,18(8):06018019.

    [16]

    [16] LUO X, LI X, ZHOU J, et al. A Kriging-based hybrid optimization algorithm for slope reliability analysis[J]. Struct Saf, 2012,34(1):401-406.

    [17]

    [17] YI P, WEI K, KONG X, et al. Cumulative PSO-Kriging model for slope reliability analysis[J]. Probab Eng Mech, 2015,39:39-45.

    [18]

    [18] CRESSIE N. Spatial prediction and ordinary kriging[J]. Math Geol, 1988,20(4):405-421.

    [19]

    [19] EL HAJ A K, SOUBRA A H. Efficient estimation of the failure probability of a monopile foundation using a Kriging-based approach with multi-point enrichment[J]. Comput Geotech, 2020,121:11-17.

    [20]

    [20] LOPHAVEN S, NIELSEN H, SNDERGAARD J. DACE-A MATLAB Kriging Toolbox[M]. Copenhagen: Technical University of Denmark, 2002.

    [21]

    [21] LIU L-L, CHENG Y-M, ZHANG S-H. Conditional random field reliability analysis of a cohesion-frictional slope[J]. Comput Geotech, 2017,82:173-186.

    [22]

    [22] LI D-Q, XIAO T, CAO Z-J, et al. Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using Subset simulation[J]. Landslides, 2016,13(2):293-303.

    [23]

    [23] GB 50068—2018, 建筑结构可靠性设计统一标准[S].50068— GB2018, Unified standard for reliability design of building structures.

    [24]

    [24] 何木,张飙.基于Bishop条分法的边坡稳定分析及支护方案[J].探矿工程(岩土钻掘工程),2020,47(5):65-71.

    HE Mu, ZHANG Biao. Slope stability analysis and support scheme based on the Bishop strip method[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(5):65-71.

    [25]

    [25] SILVESTRINI R T, MONTGOMERY D C, JONES B. Comparing computer experiments for the Gaussian process model using integrated prediction variance[J]. Qual Eng, 2013,25(2):164-174.

    [26]

    [26] KANG F, HAN S, SALGADO R, et al. System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling[J]. Comput Geotech, 2015,63:13-25.

    [27]

    [27] ZHU H, ZHANG LM, XIAO T. Evaluating stability of anisotropically deposited soil slopes[J]. Can. Geotech. J., 2018,56(5):753-760.

  • 加载中
计量
  • 文章访问数:  613
  • PDF下载数:  73
  • 施引文献:  0
出版历程
收稿日期:  2021-04-06
修回日期:  2021-07-03

目录