Analysis of vibration isolation characteristics of the sonic drill power head based on Workbench
-
摘要: 声频动力头的隔振是保证其能否安全稳定工作的关键,本文基于单自由度系统有阻尼受迫振动理论建立了动力头隔振机构受迫振动模型,发现隔振橡胶刚度k、阻尼c以及施加外部激励力频率w等是影响动力头隔振性能的主要因素;在此基础上建立动力头的动力学模型,对其进行振动特性仿真研究。研究结果显示,动力头的隔振传递率与外部施加的激励力频率成正比,与隔振弹簧刚度成反比,与隔振弹簧阻尼成正比,且当弹簧刚度增大到一定值时,隔振传递率趋于定值。因此在实际工作时,可通过适当提高外部激励频率,隔振弹簧选择刚度较小、阻尼较大的橡胶材料等方法,以提高动力头隔振性能。研究结论可为设定声频钻机工作频率、优化设计动力头隔振机构等提供参考。Abstract: Vibration isolation of the sonic power head of is the key to ensure whether it can work safely and stably. In this paper, the forced vibration model of the power head isolation mechanism is established based on the damped forced vibration theory of the single-degree-freedom system, and it is found that the rubber stiffness k, damping c and frequency w of the external excitation force are the main factors affecting the vibration isolation performance of the power head. On this basis, the dynamic model of the power head is established to simulate its vibration characteristics. The results show that the vibration isolation transfer rate of the power head is proportional to the frequency of the external excitation force, inversely proportional to the stiffness of the vibration isolation spring, and proportional to the damping of the vibration isolation spring. When the stiffness of the spring increases to a certain value, the vibration isolation transfer rate tends to a constant value. Therefore, in practice, the vibration isolation performance of the power head can be improved by appropriately increasing the external excitation frequency and choosing rubber material with low stiffness and large damping for the vibration isolation spring. The conclusions can provide reference for setting the working frequency of the sonic drill and optimizing the vibration isolation mechanism of the power head.
-
-
[1] 王瑜,刘宝林,周琴,等.基于双偏心轴驱动的声频振动钻机设计研究[J].中国机械工程,2013,24(17):2386-2390.
WANG Yu, LIU Baolin, ZHOU Qin, et al. Design and research of audio vibration drill based on double eccentric shaft drive[J]. China Mechanical Engineering, 2013,24(17):2386-2390.
[2] [2] Reece, Ray. Good vibes: Sonic drilling excels in tailings applications[J]. Engineering and Mining Journal, 2010,211(2):73-73.
[3] [3] 韩萌,孙平贺,徐金鉴,等.美国声波钻探进展ASTM D6914/D6914M—16[J].探矿工程(岩土钻掘工程),2018,45(10):141-146.
HAN Meng, SUN Pinghe, XU Jinjian, et al. Analysis of sonic drilling standard ASTM D6914/D6914M—16[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(10):141-146.
[4] [4] Burlingame Michael J, Dincer Egin, Armstrong William B. Unit weight determination of landfill waste using sonic drilling methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007,133(5):609-612.
[5] [5] 陈博文.声频钻机空气隔振性能研究[D].北京:中国地质大学(北京),2020.CHEN Bowen. Study on air vibration isolation performance of audio drill[D]. Beijing: China University of Geosciences (Beijing), 2020.
[6] [6] 熊玉成.声频振动钻进的机理研究[D].北京:中国地质大学(北京),2007.XIONG Yucheng. Study on mechanism of acoustic vibration drilling[D]. Beijing: China University of Geosciences (Beijing), 2007.
[7] [7] 赵晓冬,吴浩,陆卫星,等.YSZ-50型声钻机动力头减振方案的改进[J].探矿工程(岩土钻掘工程),2012,39(12):1-3.
ZHAO Xiaodong, WU Hao, LU Weixing, et al. Improvement of vibration reduction scheme of YSZ-50 acoustic drill power head[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2012,39(12):1-3.
[8] [8] 张德龙,郭强,吴川,等.基于摩擦纳米发电机的耐高温井下振动传感器研制[J].钻探工程,2022,49(1):120-127.
ZHANG Delong, GUO Qiang, WU Chuan, et al. Development of high temperature resistant downhole vibration sensor based on friction nanogenerator[J]. Drilling Engineering, 2022,49(1):120-127.
[9] [9] 吴浩,陆卫星,任晓飞,等.YSZ-50型声频振动钻机的研制[J].探矿工程(岩土钻掘工程),2012,39(1):9-13.
WU Hao, LU Weixing, REN Xiaofei, et al. Development of YSZ-50 acoustic vibration drill[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2012,39(1):9-13.
[10] [10] 声频振动钻机及钻探技术研究[Z].北京:中国地质大学(北京),2008.Research on acoustic vibration drilling rig and drilling technology[Z]. Beijing: China University of Geosciences (Beijing), 2008.
[11] [11] 北京探矿工程研究所,等.取样钻机用声频振动头:
201020181134.5 [P].2011-05-11 .Beijing Institute of Exploration Engineering, et al. Audio vibration head for sampling drill:
201020181134.5 [P].2011-05-11 .[12] [12] 刘延柱,陈立群,陈文良.振动力学(第三版)[M].北京:高等教育出版社,2019.LIU Yanzhu, CHEN Liqun, CHEN Wenliang. Vibration Mechanics (Third Edition)[M]. Beijing: Higher Education Press, 2019.
[13] [13] 许佩霞,蔡炳芳.基于ANSYS的全地形车车架结构优化设计[J].机械设计,2008,25(12):56-58.
XU Peixia, CAI Bingfang. Optimization design of all-terrain vehicle frame structure based on ANSYS[J]. Journal of Machine Design, 2008,25(12):56-58.
[14] [14] 唐建国,高曙明,蔺宏伟.面向 CAE的模型简化中的误差评估与边界补偿[J].计算机辅助设计与图形学学报,2010,22(8):1308-1315.
TANG Jianguo, GAO Shuming, LIN Hongwei. Error evaluation and boundary compensation in CAE oriented model simplification[J]. Journal of Computer-aided Design and Computer Graphics, 2010,22(8):1308-1315.
[15] [15] ABLE R E, ALTRICHTER K C, DRIVDAHL K S. Core sample sonic drilling method for indicating petroleum and precious metals, involves threading base nut onto end of shaft, and advancing preloaders through base nut to apply preload force to bearings:
AU2011213777-A1 ;AU2011213777-B2 [P].[16] [16] 高鹏举,董耀.基于ANSYS Workbench的轻便岩心钻机动力头有限元分析[J].探矿工程(岩土钻掘工程),2016,43(9):20-25.
GAO Pengju, DONG Yao. Finite element analysis of power head of portable core drill based on ANSYS Workbench[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016,43(9):20-25.
[17] [17] 曹彦伟,李谦.一种同轴双向回转模式的钻具结构设计及振动模拟[J].钻探工程,2021,48(11):83-92.
CAO Yanwei, LI Qian. A kind of coaxial bidirectional rotary mode drilling tool structure design and vibration simulation[J]. Drilling Engineering, 2021,48(11):83-92.
[18] [18] 成思源.有限元法的方法论[J].重庆大学学报(社会科学报),2001,7(4):61-63.
CHENG Siyuan. The methodology of finite element method[J]. Journal of Chongqing University (Social Sciences), 2001,7(4):61-63.
[19] [19] 何胜煜,胡远彪,卜长根.同振动特性参数对振动沉管压实的影响[J].探矿工程(岩土钻掘工程),2020,47(11):83-87.
HE Shengyu, HU Yuanbiao, BU Changgen. Effect of different characteristic parameters of vibration on vibration tube[J].Exploration Engineering (Rock & Soil Drilling and Tunneling), 2022,47(11):83-87.
[20] [20] 于春玲.某大型客车车身框架有限元分析[D].哈尔滨:哈尔滨工业大学,2012.YU Chunling. Finite element analysis of a large bus body frame[D]. Harbin: Harbin Institute of Technology, 2012.
[21] [21] 李凤成.1500米水头段多级能量回收透平水力模型方案的开发研究[D].兰州:兰州理工大学,2011.LI Fengcheng. Development and research on hydraulic model scheme of 1500m multi-stage energy recovery turbine[D]. Lanzhou: Lanzhou University of Technology, 2011.
[22] [22] 吴浩,赵晓冬,李伟.新型声频振动环保钻机的研制与工程应用[J].机床与液压,2019,47(4):62-66.
WU Hao, ZHAO Xiaodong, LI Wei. Development and engineering application of new sound frequency vibration environmental protection drill[J]. Machine Tool & Hydraulics, 2019,47(4):62-66.
[23] [23] 孙伟,李以农,刘万里,等.橡胶隔振器非线性动态特性建模及实验研究[J].振动与冲击,2012,31(23):71-76.
SUN Wei, LI Yinong, LIU Wanli, et al. Dynamic modeling and test for a nonlinear rubber damper[J]. Journal of Vibration and Shock, 2012,31(23):71-76.
[24] [24] 王锐.橡胶隔振器动力学性能及设计方法研究[D].武汉:华中科技大学,2007.WANG Rui. Study on dynamic performance and design method of rubber vibration isolator[D]. Wuhan: Huazhong University of Science and Technology, 2007.
[25] [25] 郑明军,王文静,陈政南,等.橡胶Mooney-Rivlin模型力学性能常数的确定[J].橡胶工业,2003,50(8):462-465.
ZHENG Mingjun, WANG Wenjing, CHEN Zhengnan, et al. Determination for mechanical constants of rubber Mooney-Rivlin model[J]. China Rubber Industry, 2003,50(8):462-465.
-
计量
- 文章访问数: 1414
- PDF下载数: 111
- 施引文献: 0